Svar och lösningar, april 2019

Vi tackar
Hugo Dahlgren, Alexander Nyberg, Mou Beskow, Tyra Pihlgren, klass 5B, Kungsholms skola, Stockholm
Jack Filipsson och Melker Marcusson, klass 5, Långareds skola, Alingsås
Isac Melin, Melvin Hjort och Viggo Karlsson, Alingsås
Signe Ahlning och Ella Ahlberg, Alingsås
Felix och Lucas, Vibyskolan
Douglas Oredsson, åk 7, Markaryd
Ebba, Nina och Viktor, Mattegrupp, Paulinska skolan, Strängnäs
Eda Demir, Långareds skola, Alingsås
Alva Ahlgning, Långareds skola, åk 6, Alingsås
Mattegrupp åk 2, Almby skola, Örebro
Elias Eriksson, åk 5
Ester Jakobsson, åk 5a, Askimsskolan, Göteborg
Agnes Q, Klara H och Lina åk 6 Grimstaskolan Upplands Väsby
Sebastian, Edit och Isak åk 8 Grimstaskolan Upplands Väsby
Eleverna på Elevens val mattetävlingar. Grimstaskolan Upplands Väsby

som har skickat in lösningsförslag eller svar på minst ett av problemen.




Rätt svar: 2400 meter

Det finns många fina lösningar på problemet. Så här skriver Signe Ahlning och Ebba Ahlberg från Alingsås;

Det är 600 m mellan tre soptunnor, därför är det 300 m mellan varje soptunna. Det är 9 soptunnor och 8 mellanrum, och därför blir det 300 x 8 = 2400 m

Åk 2 i Almbyskolan i Örebro har skickat in följande bild med lösning:


De har också skrivit förklaringen: Det blir 2 avstånd mellan de tre första papperskorgarna. Alltså 300 + 300. Det blir 4 sträckor med 600 m, alltså 600×4. Totala sträckan mellan de nio papperskorgarna blir 2400 meter.




Rätt svar: 42 ringar

Jack Filipsson och Melker Marcusson, Långareds skola klass 5 har skickat följande lösning.
Den första ringen är 6 cm och sen blir resten 4 cm för när man kopplar ihop den förlorar man 2 cm.
170 – 6 = 164 den första ringen är 6 cm för det är den första ringen i kedjan.
164/4 = 41 nu vet vi att vi behöver 41 ringar.
41 + 1 = 42
Svar: Det behövs 42 ringar för att komma till sträckan 1,7 meter.

Douglas Oredsson, Markaryd, åk 7 har skickat följande lösning.




Rätt svar: c = 4

Man kan bilda sex tresiffriga tal genom att permutera a, b och c. Talen är abc, acb, bac, bca, cab och cba. Det ger:

2(a + b + c)·100 + 2(a + b + c)·10 + 2(a + b + c)·1 = 1554
(a + b + c)·100 + (a + b + c)·10 + (a + b + c)·1 = 777
a + b + c = 7
De tre siffrorna är 1, 2 och 4. Eftersom c ska var den högsta siffran så är c = 4.

Här visar vi svaret från Grimstaskolan, Upplands Väsby:

Genom att permutera dessa a,b,c får man 3+2+1=6 möjliga tal:

abc
acb
bac
bca
cab
cba

Genom prövning kom vi fram till att 1; 2 och 4 ger summan 1554.

124 + 142 + 214 + 241 + 412 + 421 = 1554.

Eftersom a<b<c måste c vara det största talet, alltså 4.

Månadens problem, maj 2019

Du kan ladda ner alla problemen som en pdf. Glöm heller inte att skicka in dina lösningar! Vi publicerar lösningar och kommentarer när inkomna lösningar är sammanställda.
Maj_månadens_problem_2019


Skicka in lösningar
Vi utmanar alla enskilda, grupper och klasser att skicka in lösningar, kommentarer eller förklaringar till hur ni löst problemen. Bidragen kan vara digitala eller på papper. Inkomna lösningar publiceras ibland och kan fungera som underlag för diskussion om problemen. Tala om om ni inte vill att ditt namn skall publiceras, tala gärna också om om ni är lärare eller elev.
Mejla era bidrag …
eller skicka till:
Nämnaren/NCM
Göteborgs universitet
Box 160
405 30 Göteborg

Svar och lösningar, mars 2019

Vi tackar
Montessoriskolan Plejaderna 4/5 B, Borås
Liam Bang Karlsson, Isabelle Di Cecca, åk 4, Sallerupskolan, Eslöv
Gabriel Nordlund, Göteborg
Elias Eriksson, Kristianstad
Aisling, Winona 6B Christinaskolan, Lidingö
Douglas Oredsson, åk 7, Markaryd
Ebba, Nina och Viktor, Mattegrupp, Paulinska skolan, Strängnäs
Herrgården 2, Oxledsskolan, Sävedalen
Simon Lindskog, Alexander Scheuer, åk 7 Påskbergsskolan, Varberg
Samuel Karlsson, Sunds skola, Åland
Mattegrupp åk 2, Almby skola, Örebro
Astrid, Elis, Emilia, Hannes, Leah mattegrupp 4-5, Sörbyängsskolan, Örebro
som har skickat in lösningsförslag eller svar på minst ett av problemen.


Rätt svar:
a) 6
b) 28
c) samtliga

a) De tvåsiffriga tal som har siffersumman 6 är 15, 24, 33, 42, 51 och 60

b) De tresiffriga tal som har siffersumman 6 är 105, 114, 123, 132, 141, 150, 204, 213, 222, 231, 240, 303, 312, 321, 330, 402, 411, 420, 501, 510, 600

Det finns ett ensiffrigt tal med siffersumma 6, nämligen talet 6. Det sammanlagda antalet tal mindre än 1000 med siffersumma 6 är 1 + 6 + 21 = 28

c) Ett heltal är delbart med 3 om talets siffersumma är delbar med 3. Eftersom 6 är delbart med 3 är samtliga 28 talen delbara med 3.

Rätt svar: 25

Från diagonalen 16 + 10 + 4 = 30 får vi att summan av talen i varje rad, kolumn eller diagonal är 30. Då är B+ C = 30 – 16 = 14 och A = 30 – 16 – 3 = 11. A + B + C = 11 + 14 = 25

Rätt svar: 56

Går vi runt frågetecknet genom de åtta talen är varannan udda och varannan jämn, alltså är det fyra udda tal och fyra jämna tal. De nio talens summa ska vara jämn, alltså måste även talet i mitten vara jämn. Talet i mitten är större än 54 eftersom 54 + 4·55 + 4·56 <500 och mindre än 58 eftersom 58 + 4·57 + 4·56>500 så talet måste vara 56.

Månadens problem, april 2019

Du kan ladda ner alla problemen som en pdf. Glöm heller inte att skicka in dina lösningar! Vi publicerar lösningar och kommentarer när inkomna lösningar är sammanställda.
Månadens_problem_apr_2019



Skicka in lösningar
Vi utmanar alla enskilda, grupper och klasser att skicka in lösningar, kommentarer eller förklaringar till hur ni löst problemen. Bidragen kan vara digitala eller på papper. Inkomna lösningar publiceras ibland och kan fungera som underlag för diskussion om problemen. Tala om om ni inte vill att ditt namn skall publiceras, tala gärna också om om ni är lärare eller elev.
Mejla era bidrag …
eller skicka till:
Nämnaren/NCM
Göteborgs universitet
Box 160
405 30 Göteborg

Svar och lösningar, februari 2019

Vi tackar
Douglas Oredsson, åk 7, Markaryd
Signe Ahlning, Långareds skola klass 5b, Långared
Isabelle Di Cecca och Liam Karlsson, Sallrupskolan klass 4, Eslöv
Tuva Yangbyn och Alexander Nyberg, Kungsholmens grundskola åk 5, Stockholm
Melker Waltersson Strängnäs Montessoriskola, klass 6.1, Strängnäs
Märta Ramqvist, Strängnäs Montessoriskola, klass 5.1, Strängnäs
Erica Sandell och William Östlund, N17a, Danderyds gymnasium, Danderyd
Astrid, Elis, Emilia, Hannes och Leah, Matte-grupp åk 4-5 Sörbyängsskolan Örebro
År 2, Tybbelundskolan, Örebro
Flora Stepanuan, åk 6, Enöglaskolan, Enköping
som har skickat in lösningsförslag eller svar på minst ett av problemen.

Feb_manadens_problem_2019


Rätt svar: 177 eller 178 beroende på om man räknar med 4 mars.

Vi väljer att visa Douglas resonemang om hur man kommer fram till datumet när detta inträffade senast.

Rätt svar: 1 eller 3

Flertalet av dem som har lämnat in svar skriver att de har prövat sig fram och sedan visat att det går att hitta övriga tal så att förutsättningarna är uppfyllda.

Vi publicerar Erica Sandells lösning:

Observera att det står fel i texten L är en punkt på BC, däremot är bilden korrekt.

Rätt svar: 36 grader


Matematik för vår tid

Alla matematiker har många gånger mött frågan: Vad gör du egentligen?

Och det naturliga svaret förefaller att vara: Praktiskt taget ingenting.

Läs mer …

Not: Lättläst skrivet av en av vårt lands främsta matematiker: Lennart Carleson.

Do NOT follow this link or you will be banned from the site!