Publikationerna kan i de flesta fall köpas genom någon svensk internetbokhandel som AdLibris eller Bokus. Vill man veta vilka bibliotek som har boken söker man i Libris.Andzans, A., J. Benedikt, et al. (2005). Dirichlet principle : theory, examples, problems, experimental training material. Part 1. Riga, Macibu gramata.
”The book is an advanced teaching aid in mathematics for elementary school students. It contains theoretical considerations, examples and problems for independant work. It can be used as a supplementary text in classroom or for individual studies, including preparation to mathematical olympiads.”
Andzans, A., J. Benedikt, et al. (2005). Dirichlet principle : theory, examples, problems, experimental training material. Part 2. Riga, Macibu gramata.
”The book is an advanced teaching aid in mathematics for elementary school students. It contains theoretical considerations, examples and problems for independant work. It can be used as a supplementary text in classroom or for individual studies, including preparation to mathematical olympiads.”
Avotina, M. and M. Opmanis (2013). Matematikas sacensibas : 9.-12.klasem : 2011./2012. macibu gada. Riga, Latvijas Universitate.
Bergsten, C., E. Jablonka, et al. (2012). Evaluation and comparison of mathematical achievement : dimensions and perspectives : proceedings of MADIF 8. Linköping, Svensk förening för matematikdidaktisk forskning (SMDF).
Björklund, C. (2013). Vad räknas i förskolan? : matematik 3-5 år. Lund, Studentlitteratur.
Dowker, A. and Great Britain. Department for Education and Skills. (2004). What works for children with mathematical difficulties? Nottingham, DfES Publications.
Kaibe, Z., D. Kuma, et al. (2013). Matematikas sacensibas : 4.-9. klasem : 2011./2012. macibu gada. Riga, Latvijas Universitate.
Kasuba, R. (2008). Once upon a time I saw a puzzle. Part 1. Riga, University of Latvia.
”The book demonstrates psychological aspects of problem solving on the basis of contest problems for junior students. Nevertheless, the approaches discussed are of value also for highest grades, for teachers, problem composers etc. The text can be used by all those who are preparing to research in mathematics and / or to math contests.”
Kasuba, R. (2008). Once upon a time I saw a puzzle. Part 2. Riga, University of Latvia.
”The book demonstrates psychological aspects of problem solving on the basis of contest problems for junior students. Nevertheless, the approaches discussed are of value also for highest grades, for teachers, problem composers etc. The text can be used by all those who are preparing to research in mathematics and / or to math contests.”
Kasuba, R. and D. Bonka (2006). What to do when you don’t know what to do?.[ Part 1]. Riga, Macibu gramata.
”The book analyses psychological aspects of problem solving on the basis of contest problems for junior (4th – 9th Grades) students. Nevertheless, the approaches discussed are of value also for highest grades, for teachers, problem composers etc. The text can be used by all those who are preparing to research in mathematics and / or to math contests.”
Kasuba, R. and D. Bonka (2007). What to do when you don’t know what to do?. Part 2. Riga, Macibu gramata.
”The book analyses psychological aspects of problem solving on the basis of contest problems for junior (4th – 9th Grades) students. Nevertheless, the approaches discussed are of value also for highest grades, for teachers, problem composers etc. The text can be used by all those who are preparing to research in mathematics and / or to math contests.”
Lehtinen, M. (2008). Events in mathematics. Part 1. Riga, University of Latvia.
”This book is based on lectures given to students – future mathematics teachers – during the period of almost 30 years. It covers the period from ancient times to the invention of calculus (not including it).”
Lehtinen, M. (2009). Events in mathematics. Part 2. Riga, University of Latvia.
”This book is based on lectures given to students – future mathematics teachers – during the period of almost 30 years. It covers the period from the invention of the calculus to the end of the 20th century.”
Mårald, E. and Föreningen för svensk undervisningshistoria (2013). Med barnen som framtidsbyggare : Ellen Keys dröm och Sigrids verklighet. Uppsala,
Föreningen för svensk undervisningshistoria.
Roman, A. M. and F. Wigforss (1927). Räknelära för barndomsskolor. Andra årskursen. Stockholm, Magn. Bergvall.
Sverige. Riksdagen. Utbildningsutskottet (2013). Hur kan ny kunskap komma till bättre användning i skolan. Stockholm, Sveriges riksdag.
Szabo, A. (2013). Matematiska förmågors interaktion och det matematiska minnets roll vid lösning av matematiska problem. Stockholm, Stockholms universitet.
Wigforss, F. (1923). Hur man spelar schack : en handledning. Stockholm, Tiden.