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Facilitating exploratory 
talk through mathematical 

programming problems

morten munthe

With several Nordic countries implementing programming into their curricula, there 
is a need for research into the combination of mathematical learning and program-
ming. With tasks being the main ”thing to do” in the mathematics classroom and 
exploratory talk being closely linked to learning this article investigates what contri-
butes to and what hinders exploratory talk when working on mathematical program-
ming problems. The data collection comprises of recordings of students working on 
tasks in a mathematics classroom in Norway. The findings indicate that program-
ming can facilitate mathematical talk in the classroom, that programming is best 
implemented to facilitate in-depth learning, and that adversities are present in both 
instances.

The implementation of programming, often in combination with algo-
rithms, into the curricula in many European countries (Bocconi et al., 
2022) and the lack of research into how to facilitate the implementa-
tion of programming, especially in upper secondary school (see Lv et al., 
2023) is a challenge. In Sweden and Norway programming have been 
implemented into the mathematics curriculum (Bocconi, 2018; Skolver-
ket, 2019; Utdanningsdirektoratet, 2020). Previous research has shown 
that programming improves students’ logical thinking (Park et al., 2015) 
and their understanding of mathematical processes (Calao et al., 2015), 
which can lead to more joyful learning processes (Djurdjevic-Pahl et 
al., 2017) and strengthen students’ self-confidence (Shim et al., 2016). 
Combining student interaction with task design, where students rely 
on each other to generate, challenge, refine and pursue new ideas, has 
been shown to be beneficial (Francisco & Maher, 2005). Small group col-
laborative learning in school mathematics can bring about more equal 
academic success amongst all students compared to traditional methods 
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of teaching (Davidson & Kroll, 1991; DePree, 1998; Slavin, 1990; Urion & 
Davidson, 1992). Exploratory talk, where students engage critically but 
constructively with each other in small groups (Mercer, 2005; Mercer & 
Littleton, 2007), is used here as it has been shown to stimulate subject 
learning and reasoning skills (Knight & Mercer, 2015; Mercer et al., 
2004; Mercer & Sams, 2006). The aim is to investigate what hinders and 
facilitates exploratory talk in students in upper secondary school when 
working on mathematical programming problems. 

A mathematical programming problem (MPP) is a series of tasks 
designed to combine mathematics with programming to resolve a 
problem (Munthe, 2022a, 2022b). Through an analysis of the interaction 
between students working in groups on MPPs, the article investigates 
elements contributing to and hindering mathematical exploratory talk. 

Background for and the design of MPPs
The design of the MPPs is presented in-depth in other works (see Munthe, 
2022a, 2022b), but as it is important, a short description is provided. 
The following section presents research in learning programming, then 
applying the theory of didactical situations (TDS) to build the foun-
dation for combining mathematical learning and programming in the 
design. Finally, the design of the MPPs is presented followed by challenges 
with implementing programming in the classroom.

Theory
Research into computer education indicates that learning to program is 
difficult as ”students exhibit various misconceptions and other difficul-
ties in syntactic knowledge, conceptual knowledge, and strategic know-
ledge” (Qian & Lehman, 2017, p. 17). Ko et al. (2004) use the term bar-
riers to differentiate between six different types of adversities students 
encounter when learning to build a program. These barriers are a combi-
nation of syntax errors, structural errors, logical challenges, error hand-
ling issues and problems related to the number of commands available 
(Ko et al., 2004). When combined with the difficulty of creating tasks 
using digital technologies (Joubert, 2007; Laborde & Sträßer, 2010), text-
based programming is expected to present difficulties when introduced 
and implemented into the mathematics classroom. 

According to the theory of didactical situations (TDS), mathemati-
cal learning is more likely to take place when students are committed 
to a solving a problem (Brousseau 1997) where knowledge is defined as 
a pro-perty of a system consisting of a subject and a milieu. As students 
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work on the problems, they interact with the milieu creating an adidac-
tical situation, where students show initiative and responsibility for the 
outcome of the learning process. Designing problems that facilitate stu-
dents adapting their strategies to obtain the desired knowledge is chal-
lenging. and obstacles in TDS are a central part of this adaptation. An 
epistemological obstacle constitutes a form of knowledge that has been 
relevant and successful, often in school contexts, but becomes false or 
insufficient at a particular moment in time. If students overcome such an 
obstacle through the adaptation of their strategies, the desired knowledge 
can be obtained. Ontogenic obstacles relate to the limitations of students 
and a lack of required prior learning, and didactical obstacles relate to the  
presentation of the subject, ”the result of narrow or faulty instruction” 
(Harel & Sowder, 2005, p. 34). If students encounter and overcome obstac-
les when working through the given problems, adaptation may take place. 
Similarly, Stein et al. (1996, p. 426) state that ”tasks used in mathematics 
classrooms highly influence the kinds of thinking processes in which stu-
dents engage, which, in turn, influences student learning outcomes.” The 
aim of MPPs is to create adidactical situations (Brousseau, 1997), facili-
tating mathematical exploratory talk during which students reconsider 
their strategies, develop new pathways, discuss with their peers, conjec-
ture and experiment, all related to the intended learning process (Leung 
& Baccaglini-Frank, 2016). To facilitate adidactical situations, an MPP is 
structured using seven steps, see figure 1. 

Design
The structure of the design is the product of a three-year iterative process 
of implementing MPPs in an upper-secondary school mathematics class 
(see Munthe, 2022b). As an example, I will use the building of a program 
to calculate the zero-point of a function using the bisectional method 1. 
Step 1 consists of asking the students to find the zero-points for several 
different types of functions, exemplifying the different methods required 
for each function type. Step 2 problematizes finding the zero-point if the 

Figure 1. The seven steps for designing MPPs
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given function, such as f (x) = ln (x + 2) – x, does not conform to any set 
method. In step 3, one student takes the role of a ”program” and is given 
a set of graphs where the function is unknown, but the zero-points are 
provided. The rest of the group is tasked with finding the zero-points by 
giving the ”program” x-coordinates, and the ”program” can only respond 
with the accompanying function values. This allows several strategies for 
finding the zero-point to be tested and evaluated. In step 4, tasks allowing 
students to recollect necessary programming structures and commands 
are given. Step 5 consists of transforming the method discovered in step 3 
into a coding structure, and step 6 consists of building the program. Both 
steps 5 and 6 contain tasks to assist with aspects of code building. The 
final step asks the students to evaluate the program, investigate whether 
it works for all functions and provide explanations of why it does not 
work for some functions if that is the case. An in-depth description of 
the design is presented in Munthe (2022b).

Tasks using programming need to avoid overloading students with 
complexity and programming syntax (Ko et al., 2004), and combined 
with mathematics this becomes even more important. An investigation 
of mathematical textbooks in Sweden shows that tasks are often in the 
form of ”follow a procedure”, and not using programming facilitating 
mathematical exploration (Bråting & Kilhamn, 2022), which is central 
to the MPPs. Research show that complex problem-solving without suf-
ficient support structures can result in an unproductive cognitive process 
(Kirschner et al., 2006; Reiser, 2004). In task design, insufficient support 
structures often result in either didactical or ontogenic obstacles (Brous-
seau, 1997). Based on this research, this article collectively refers to adver-
sity when the students encounter an obstacle, but does not view adver-
sity as a negative as it can lead to a productive struggle, where making 
connections between mathematical constructions visible to the students 
(Hiebert & Grouws, 2007). 

Theory
Here, mathematical learning is linked to exploratory talk and the inter-
action between students. This is followed by the reviewing literature 
regarding small-group interactions and the relation to programming. The 
interactions are then presented in more detail building the foundation 
for the coding scheme.

Learning in mathematics can be seen as ”the construction of a web 
of connections – between classes of problems, mathematical objects 
and relationships, real entities and personal situation-specific expe-
riences” (Noss & Hoyles, 1996, p. 105). The linking of concepts is also well  
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established in the adidactical situations in TDS, and part of the design 
of the MPPs Facilitating students to explain their reasoning and provid-
ing warrants for their arguments while recognizing them as contributors 
are part of the exploratory talk that takes place between the students 
(Choi & Walters, 2018; Mercer, 2005). Exploratory talk is defined as a  
dialogical feature where 

partners engage critically but constructively with each other’s ideas. 
Statements and suggestions are offered for joint consideration. 
These may be challenged and counter-challenged, but challenges 
are justified, and alternative hypotheses are offered. Partners all 
actively participate, and opinions are sought and considered before 
decisions are jointly made. (Mercer, 2005, p. 9) 

This definition coincides with the aim of the MPPs, where student dis-
cussion is central. The role of mathematical talk and discussion in learn-
ing (Kazemi & Stipek, 2009; Resnick et al., 2017) and in the effective 
teaching and development of mathematics (Cobb et al., 1997; Sfard, 2000) 
is well documented, and the foundation for this article and the MPPs is 
that exploratory talk can promote mathematical learning.

Small group learning in mathematics, especially in conjunction with 
technology, has demonstrated notable advantages (Berry & Sahlberg, 
2006). Lou et al. (2001, p. 449) affirm that when technology is integrated 
with exploration, small group learning yields significantly greater bene-
fits compared to individual learning. In this study, students were orga-
nized into groups to facilitate exploratory talk. This process encompasses 
distinct stages, starting with an initializer, which may manifest as a claim, 
a suggestion, or the presentation of a problem. Toulmin (1969) defines 
a claim as an assertion, distinguishing it from hypothetical or frivolous 
statements. Conversely, a suggestion often takes the form of stating a 
hypothesis (Pedaste et al., 2015), demanding varying degrees of atten-
tion. While both a claim and a suggestion are propositions, they diverge 
in the certainty of their assertions. When confronted with a problem, 
students frequently draw upon prior knowledge to initiate the talk. This 
collective reflection not only forms the foundation for problem-solving 
but also underpins the creation of new knowledge (Tabach & Schwarz, 
2018; Yackel & Cobb, 1996).

The usage of short exercises promoting curiosity and eliciting prior 
knowledge is essential to facilitate engagement, and the exploration 
that follows is the result of a combination of promoting curiosity and 
accessing previous knowledge to ensure that the students are prepared 
for the learning outcomes of the current problem (Bybee et al., 2006). 
The ensuing exploration, driven by ”what if” inquiries can help the  
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students locate new mathematical ideas (Alrø & Skovsmose, 2004). Curio- 
sity, when integrated with presenting a challenge, can facilitate a process 
of engagement (Pedaste et al., 2015). Exploration is a sequence of activi-
ties initiated by the problem and undertaken by the students, using prior 
knowledge to generate new ideas, explore possibilities and undertake an 
investigation (Bybee et al., 2006). Both engagement and exploration are 
observable through the lens of exploratory talk (Mercer, 2005). 

Student engagement and exploration in mathematics education has 
been a focal point in the literature. This is particularly evident in the 
emphasis on explanation as a means for students to manifest their grasp 
of the concepts involved (Bybee et al., 2006). By prompting students with 
”why” questions, they are not only encouraged to delve into deeper under-
standing but also to unearth novel mathematical ideas (Alrø & Skovs-
mose, 2004). It is crucial to recognize that elucidation serves students 
progressing towards the intended learning objectives of a task (Bybee et 
al., 2006). This notion aligns with Bybee et al.’s (2006) sequential instruc-
tional model (Engage, Explore, Explain, Elaborate and Evaluate), which 
has been adapted to fortify the framework under consideration. Within 
the realm of exploratory talk, it becomes evident that explanation and 
evaluation are integral components. This entails synthesizing acquired 
data to forge new knowledge and engaging in discussions that challenge 
or counterchallenge proposed ideas (Pedaste et al., 2015). Mercer (2005) 
advocates for making the reasoning process of the group explicit, thereby 
necessitating individuals to articulate their thoughts and subject them 
to scrutiny from their peers (Alrø & Skovsmose, 2004). These reflec-
tive activities have been shown to be instrumental in facilitating learn-
ing (Pedaste et al., 2015). Moreover, the outcome of the explanation and 
evaluation phases in exploratory talk can be transformative, moving the 
mathematical talk in new directions (Alrø & Skovsmose, 2004; Gellert, 
2014). This can culminate in a joint decision or agreement regarding the 
clarification of a given problem or a specific result. However, it is impera-
tive that such consensus be substantiated with a comprehensive account 
of how the group arrived at its conclusion (Drageset, 2014). In essence, 
agreement is like closing, signifying the conclusion of the ongoing  
discussion pertaining to a given problem (Gellert, 2014).

The exploratory talk the students engage in can be facilitated by the 
teacher, who can engage in a series of dialogic acts with the students such 
as challenging established knowledge (Alrø & Skovsmose, 2004). The 
MPPs were created to facilitate exploratory talk with minimal assistance 
from the teacher creating adidactical situations where challenging the 
established knowledge comes from the epistemological obstacles that 
can occur.
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Method
The MPPs investigated were implemented in a classroom as part of an 
advanced mathematics course for students (n = 28) aged 17 in the second 
to last year of secondary school. Three groups were chosen based on a 
combination of different genders and grades, and most importantly, on 
the individual students’ ability to sufficiently convey their ideas vocally 
during a lesson. The three groups consisted of four males, two females, 
and one male and one female, all of whom had collaborated well through-
out the year. The size of the groups and their composition was based on 
the students’ preferences with the approval of the teacher. The four males 
were working well together and as such they were allowed to remain in 
a group of four. The group size was not seen to have a significant effect 
on the discussion. The students were told to discuss the problems within 
their groups, allowing them to work on and discuss any adversities before 
receiving help from the teacher. The teacher was used as a ”last resort”, 
and as such the teacher’s role is not the focus in this work.

The data collection consisted of recording each student’s computer 
screen together with their voice. The screen and voice recordings for each 
member of the group were digitally combined to form one video file with 
two to four screens and an audio where all the students’ voice recordings 
were combined. This resulted in several advantages regarding the tran-
scription. First, viewing all the screens together provided a clear indica-
tion of where each student was in the process of building the program. 
Second, the combination of voice recordings made each student’s  
contribution clear, allowing for an accurate transcription. 

The analytical framework used consists of three layers of coding. The 
segment category divides the lesson into smaller sections, in which the 
students talk about one problem or challenge encountered. A segment 
is defined as one problem or one part of a problem, initialized by a problem 
separate from the previous one, and ending with either an agreement  
regarding the given problem or the change to a new problem. 

The subject category refers to the topic of the interaction. The first 
type is mathematical, in which the students talk about a mathemati-
cal object, such as the derivative or the number of solutions. The second 
is programming, in which the students talk about programming, for 
instance, how different commands work, the structure of a code segment 
or what caused a programming error. The final group is a combination of 
the two, including talks of how to combine programming with a mathe-
matical objective, for instance, ”How do we avoid the program dividing 
by zero?” or ”I want the program to do <a mathematical procedure>. How 
do I accomplish that?” 
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The interaction category consists of exploratory talk and adversity. Explo-
ratory talk consists of initiation, explanation, exploration and agreement. 
Initiation allows for the compartmentalization of the transcript into seg-
ments. Explanation, as defined by Mercer (2005), is a crucial aspect of 
students’ discourse, where they validate their approaches, critique sug-
gestions, and justify solutions. It also involves recalling prior knowledge, 
particularly in handling mathematical and combination challenges (Pirie 
& Martin, 2000).Exploration is pivotal in mathematical programming, 
aiding students in troubleshooting errors through collaborative discus-
sions (Benton et al., 2017). This entails applying mathematical principles 
and programming techniques to test different problem-solving strate-
gies. Such exploration may involve code testing, mathematical evalua-
tions, and probing the program’s capabilities. Through exploration, the 
students investigate the limits and possibilities of the program, leading 
to mathematical questions, such as ”why is the derivative of log (x) not 
showing for negative values?” and the mathematical evaluation of the 
results, such as ”why is the result of the calculation not as expected?” 
Agreement signifies collective consensus on specific answers or code 
snippets, marking a significant milestone in problem-solving. Disputed 
statements do not qualify as agreements, which can pertain to mathe-
matical, code-related, or hybrid aspects. Agreements can either conclude 
a problem or instigate further proposals, evaluations, or explorations. 
While not every segment reaches an immediate agreement, explanation 
and exploration often drive the process in new directions. If the students 
are unable to reach an agreement through their own interaction, they 
usually result to asking the teacher, who, through discussion with the 
students, assists them in reaching an agreement.

Adversity is defined here as situations where the students display 
uncertainty regarding how to proceed with the MPP they are working 
on. From a mathematical perspective, these are the instances where the 
students encounter obstacles (Brousseau, 1997), and from a programming 
viewpoint, barriers (Ko et al., 2004). These can be observed as frustra-
tion, and commonly occur when executing the program and receiving 
an error message, but also appear in terms of difficulties distinguishing 
between commands, sequencing challenges, uncertainty regarding how 
to proceed and a general sense of a negative premonition. This feedback 
can lead to discouraging self-relevant interpretations (Fyfe & Brown, 
2020), which make the students give up and link their frustrations to 
mathematics. Adversity by itself does not distinguish between different 
”types” of obstacles. Only when viewing adversities in relation to explora-
tory talk does the difference between an epistemological and another 
type of obstacle become clear. 
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Within each segment, the transcription was coded for both subject and 
interaction, enabling an analysis of the relationship between explora-
tory talk and adversity and their relation to mathematics, programming, 
or a combination of the two. When a student engages in a mathemati-
cal explanation, they use their mathematical knowledge and vocabulary 
to present their reasoning. In a combination explanation, they include 
either the code itself or the output from the program to assist their rea-
soning, and in a programming explanation, they use the different com-
mands and programming structures for their reasoning and do not apply  
mathematical vocabulary. To ensure intercoder reliability, a transcript 
containing 58 utterances was coded by two additional researchers. Of the 
58 utte-rances, there was a deviation from one of the coders on 7 utte-
rances, and a deviation from both coders on 1 utterance. For subject, all 
instances of deviation came from one coder selecting combination, and 
the other selecting either mathematics or programming. For interaction, 
the deviances occurred when a statement from a student contained both  
exploration and adversity, and one was favored over the other. 

The first MPP concerns the bisectional method (see the example 
described above in the design of the MPP). To illustrate a problem con-
taining an adversity that intends to facilitate exploratory talk from the 
MPP concerning the bisectional method, see figure 2. 

The second MPP asks the students to build a program implementing 
Newton’s method for approximating the zero-point 2. The MPP starts 
with a recollection of the derivative and its application within func-
tion analysis. The MPP facilitates the students in building visual and  

Code for interaction Description

Exploratory talk Engagement within the group consisting of ideas,  
suggestions, challenges and justifications 

Initiation Start of a segment

Explanation Explaining and arguing for a solution  
Presenting criticism and suggestions  
Validating a solution

Exploration Testing a code  
Running the program

Agreement Reaching common ground

Adversity The group displays uncertainty regarding how to proceed

Positive Leading to or facilitating exploratory talk (epistemological 
obstacles)

Negative Leading to frustration and a ”this is not going to work”- 
mentality (didactical and/or ontogenic obstacles)

Table 1. Coding scheme for the analysis of the transcripts
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algorithmic proof for the method, followed by implementing the method 
into a program. When the students have built the mathematical argu-
ment for Newton’s method, they are asked to evaluate it (see figures 2 
and 3). When the students have finished building their programs, they 
are asked to complete another similar problem (see figure 4). 

Results

Bisectional method
Prior to this lesson, the students completed programming tasks involving 
building programs covering graph plotting, calculating areas and circum-
ferences of geometric shapes, and solving linear and quadratic equations. 

Figure 2. One problem from the first MPP covering the bisectional method

Figure 3. One problem from the second MPP covering Newton’s method

Figure 4. One problem from the second MPP covering Newton’s method
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This MPP consisted of the students building a program to find the zero-
point for a function that crosses the x-axis using the bisectional method. 
The students were familiar with different methods for finding the zero-
point of functions but had not previously used a numerical method to 
find the zero-point.

The extract in table 2 illustrates the development of a strategy by 
asking one student from each group to simulate the machine (see step 3 
of the example described above in the design of the MPP). The machine-
simulation student is A and the zero-searching students are B and C. 
The group have read the problem, and A has agreed to simulate the 
machine. The transcript starts with student A expressing initial uncer-
tainty about what to do (101). This is quickly resolved by the other 
members of the group through explanation and an example (102–104). 
After a short pause, where student A studies the graphs, the students start 
enquiring about the function values for a couple of x-values (105–108). 
Drawing on the information gathered, a mathematical evaluation and 
suggestion is made (109) and swiftly agreed upon by the rest of the group 
(110). This agreement also encompasses verification since the machine-
simulating student confirms the suggestion. Finally, student C develops 
the idea further with both a suggestion and an explanation for the pro-
posal. The segment contains combination adversity, and combination 
and mathematics exploratory talk.

Student Transcript Code

101 A What am I supposed to do now? [referring to the 
task in figure 2]

Combination –  
Adversity

102 B You are now python [the programming language]
Combination –  
Explanation103 C You are going to say …

104 B For example, what is y when x is …?

<short pause while A looks at the graphs given>

105 B What is y when x equals zero?

Combination –  
Exploration

106 A Then it [the y-value] is minus one

107 B But then we take x equals one, right?

108 A x equals one … that is ehm … yes, that is approxi-
mately, approximately zero point eight

109 B ahh, but then we have at least got a zero-point in 
between there

Mathematics –  
Explanation 

110 A and C that is so true Mathematics –  
Agreement 

111 C We can actually make it even more accurate 
and say that since we know there is a zero-point 
between these numbers …

Combination –  
Explanation 

Table 2. Transcript of students working on the MPP covering the bisectional method
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The MPP elicited both success and frustration: success in terms of pro-
gress towards building a better method for guessing, and frustration in 
that the function could have more than one zero-point, both contribut-
ing to an adidactical situation. There were some adversities in the imple-
mentation of the method they uncovered in the first part, but they were 
mostly able to build the program. There were several instances where the 
students explored the program by inputting different types of functions. 
The interaction between the students consisted of discussing the code 
and the mathematical verification of the result based on the output of 
the program. The overall impression obtained from the lesson was that 
the students understood the bisectional method. 

The students’ work on the bisectional method is visualized in the 
graph (figure 5), where almost every single transcript segment related 
to mathematics. Since the program did not demand any overly compli-
cated code, the students were observed as having fewer problems with 
the coding part of the MPP, hence the low incidents of programming 
dialogue. Additionally, since the MPP was focused on revisiting previous 
knowledge and games at the start, there were few instances of adversity. 
Each exploratory talk, especially regarding mathematics and combina-
tion, involved several steps and outnumbered the incidents of adversities 
in the lesson. A typical occurrence to check the validity of the program 
involved finding a suitable function and solving it mathematically by 
hand, followed by inputting the function and an initial guess into the 
program. When the program produced a result, they compared the output 
to the exact answer and evaluated whether the numerical method was 
close enough. The few instances of adversity consisted of designed tasks 
within the MPP, such as, ”what is a quick way to check whether numbers 

Figure 5. Graph showing instances of the categories in the transcript
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have the same or different signs?”; this effectively created adversity in the 
design to be solved through exploratory talk. 

Newton’s method
In between the two classes, the students completed a lesson covering the 
numerical derivative. The second MPP introduced the students to the 
combination of both learning a new formula (Newton’s method) and 
implementing the formula into a program. The students had never seen 
a formula that included both a function and its derivative. Combining all 
these elements is difficult, but the students had now used programming 
throughout the school year and were expected to be more confident as 
a result. The MPP started by explaining the origin of Newton’s method 
and why it, in most cases, will yield a good x-value for the zero-point after 
only a few iterations. 

In this transcript (see table 3), the students are working on a code that 
calls on a function and have just executed the program and received an 
error. 

After receiving a syntax error, L expresses frustration and cannot ini-
tially recognize why the program is at fault (201–203). M recognizes that 
a syntax error often occurs from a misuse of parentheses (204) before 
they together locate the line of code containing the error (205–206). By 
applying an evaluation of both the code and the mathematics, a correc-
tion is then made (207) before they run the program again. After the 
program executes and displays the graph, they agree on the correction  

Student Transcript Code

201 L but yes, I have something wrong here

Programming – 
Adversity

202 M return d y <reading the code>

203 L I do not understand what is wrong, but there is 
something wrong. It says invalid syntax

204 M Oh, then you have a wrong parenthesis
Programming – 
Explanation205 L … in this one?

206 M In that one <points to the code on the screen>

207 L Oh yes, it is missing a bracket here … there 
<moves the cursor to point at it and inserts a 
bracket>

Combination – 
Explanation 

<runs the program>

208 L Now it works Combination – 
Agreement 209 M Yeah

Table 3. Transcript of students facing an adversity when working on an MPP
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made (208–209). The extract contains programming adversity and  
programming and combination exploratory talk.

The students’ conversations were dominated by adversity relating to 
how to construct the program rather than mathematical exploratory talk 
of how the formula worked. At the end of the lesson, the impression was 
that the students had constructed a program but had limited knowledge 
of how the mathematics behind the code worked. 

The graph (figure 6) illustrates the prominence of both adversity and 
exploratory talk concerning programming and the combination of pro-
gramming and mathematics. It is important to highlight that the com-
bination dialogue, where there is mathematical talk, consisted primarily 
of the implementation of the formula into the code rather than actual 
discussion of Newton’s formula. The MPP contained exploratory prob-
lems, which in the previous lesson had aided the students in discussing 
the mathematical formula applied, but here, the students ended the dis-
cussion quickly to instrumentally program Newton’s formula. As a result, 
the adversities started out as combination adversity and deteriorated 
into relating only to programming. Most of the programming adversi-
ties resulted from errors, which was followed by the students trying to 
locate the error, often through combination knowledge, before either 
succeeding or failing at correcting the error. There were instances where 
the students completed several iterations of receiving an error, making a 
correction, running the program and receiving a new or identical error. 
Every single segment contained programming in one form or another, 
and the mathematics, although present in the combination dialogue, was 
lacking. 

Figure 6. Graph showing instances of the categories in the transcript
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Discussion
Exploratory talk is consistently represented related to either mathema-
tics or the combination of programming and mathematics, indicating 
that it is possible to implement programming into mathematics class-
rooms and facilitate exploratory talk. In both lessons presented, explora-
tory talk is present in almost every communication between students, 
and each lesson reveals a significant number of interactions between the 
students.

The amount of exploratory talk versus adversity is different in the 
two lessons. The bisectional method lesson contains several instances 
of adversity, but with the significant amount of exploratory talk that 
takes place, the adversities are resolved and become an epistemological  
obstacle (Brousseau, 1997). The low representation of programming 
issues is likely due to the familiarity with the mathematical foundation 
and the low complexity of the programming required. This lesson indi-
cates how it is possible to introduce a new subject using programming 
when students have a strong foundation. When students are learning to 
apply programming in mathematics, it is beneficial that they are familiar 
with the mathematical concepts involved so that they are not met with 
two complexities at the same time (Kirschner et al., 2018; Ko et al., 2004; 
Reiser, 2004). Applying programming to a well-known mathematical 
method alleviates one part of this two-sided challenge. In the Newton’s 
method lesson, adversity features more prominently. The expectation 
was that there would be some discussion regarding the mathematical 
properties of Newton’s formula and its implementation into the program, 
but only the latter occurred. The lack of mathematical exploratory talk 
suggests that the MPP did not manage to create a link between students’ 
previous knowledge of the derivative, the tangent of the derivative and 
the zero-point of the function. This lesson indicates that when using 
programming to introduce a new method in mathematics, care must 
be taken that the programming does not overshadow the mathemati-
cal content of the lesson. The difference is that every mathematical step 
of the bisectional method was already known to the students. In New-
ton’s method, while they had been taught the derivative and application 
of the tangent, using the derivative to find a zero-point was new. This 
created an increased amount of adversity for the students, leading to less  
mathematical exploratory talk. 

The bisectional method lesson facilitated exploratory talk indicating 
that students are better prepared to learn from building a program when 
there is less adversity and when more support structures are in place  
(Drijvers, 2012; Kirschner et al., 2018; Reiser, 2004). This is not to say that 
situations do not exist where both learning a mathematical concept and 
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build a program can occur, but accomplishing both during one lesson is 
challenging. Designing problems that apply known mathematical con-
cepts together with programming yields opportunities to facilitate a 
deeper understanding of the underlying mathematics for the learner. 

The design idea was that programming can be a tool for learning  
mathematics. In the bisectional method MPP, the tasks facilitated the 
students in uncovering the bisectional method themselves before having 
to create a program using this method, generating a good support system 
(Drijvers, 2012), contributing to building an adidactical situation (Brous-
seau, 1997) and facilitating exploratory talk (Mercer, 2005). Numerous 
mathematical exploratory talks occurred, probably due to the introduc-
tion and application of well-known methods, together with the fact that 
the program did not contain any procedures that the students were unfa-
miliar with. This allowed the students to focus on understanding the 
mathematics behind the method instead of meandering through pro-
gramming code, in which didactical and ontological obstacles (Brous-
seau, 1997) are more likely. In the Newton’s method MPP, the balance 
was skewed towards programming, and the exploration suffered because 
the students focused extensively on getting the program to work, rather 
than understanding the mathematical principles behind the method. 
The investigation shows that the creation of a program together with 
a relatively new mathematical method created ontogenic and didacti-
cal obstacles for the students, resulting in them focusing more on the 
instrumental creation of the program. 

The main adversity hindering exploratory talk that students encoun-
ter when working with programming is the building of the program 
through writing code segments. An argument can be made that with 
time students will have more programming knowledge and MPPs such 
as Newton’s method could work, but until that time it is worthwhile to 
consider the role and design of the task. The hindrance is twofold, where 
the first obstacle is the coding itself. The implementation of digital tools 
in the classroom has been researched previously (Drijvers, 2012), but 
most digital tools used in schools are designed to assist the students using 
them. They often make use of methods, such as graphical interfaces with 
buttons that perform certain procedures which are hidden from the user, 
creating a ”black box” (Buchberger, 1990). Text-based programming is 
much less lenient and requires consideration of both the structure and 
the commands used to build a program. It is more difficult to build a 
program that solves a quadratic equation than use a solve command in 
another digital tool. The combination of understanding the different 
commands, what they do and how they interact together with under-
standing the structure of a program is demanding (Munthe, 2022a). The 
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second hindrance is the translation of mathematics into a programming 
code. The mathematical knowledge students possess of how to find the 
zero-point(s) of a polynomial function is often methodical and different 
from applying numerical methods. This translation from mathematics 
to the building of a program requires careful design, where the transition 
between the two are clear (Munthe, 2022a). The two lessons are exam-
ples of a ”good” and ”less good” implementation of programming into a 
mathematical classroom. A ”good” implementation is recognized as con-
taining more mathematical exploratory talk compared to adversity. A 
successful MPP design uses pre-existing knowledge and builds on that to 
facilitate the students’ building of the program. Unsuccessful implemen-
tation comprises more adversity and less mathematical exploratory talk. 
Generally adversities are related to the syntax and structure of program-
ming, which creates complexity and can hinder mathematical learning 
(Kirschner et al., 2018; Reiser, 2004). Difficulties such as syntax errors 
can be alleviated through an active teacher. When the MPP requires 
mathematics that the students are less familiar with, the complexity 
entails both programming and mathematics and can potentially create 
a double hurdle for the students to overcome (Kirschner et al., 2018; Ko 
et al., 2004; Reiser, 2004). 

Concluding thoughts
From the discussion above, three main findings can be identified affect-
ing the relevance of MPPs (1), the structure of the design (2, 3) and the 
choice of the mathematical area represented (2, 3).

1 When implementing programming into mathematics classrooms, 
it can facilitate mathematical exploratory talk.

2 Programming is best implemented to facilitate the in-depth  
learning of already-known mathematical concepts as this initiate 
exploratory talk, and care is needed when utilizing programming 
to learn new mathematical concepts.

3 Adversity is important and challenging when implementing  
programming into mathematics classrooms. It is important in that 
it can facilitate mathematical adidactical situations but challenging 
in that programming adds another layer of complexity. 

The data show that programming can facilitate mathematical explora-
tory talk, but further research is needed to investigate whether program-
ming can facilitate mathematical learning. This work investigated a small 
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number of student groups from one school, and research with a larger 
number of student groups from different schools is needed. Additionally, 
the role of the teacher was in not investigated. 
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Notes

1 The bisectional method is a root-finding method applicable to any con-
tinuous function for which two values with opposite signs are known. The 
method consists of repeatedly bisecting the interval defined by the two 
values and then selecting the subinterval in which the function changes 
sign and that therefore contains the root (intermediate value theorem).

2 Also known as the Newton-Raphson method. It is a root-finding method 
with an initial guess (xn) followed by the finding of the tangent line of the 
function at this point. The next estimate is where the tangent line crosses 
the x-axis. Algebraically, the estimate calculated can be expressed as 
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