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Previous studies have highlighted the importance of primary school students’ adap-
tive number knowledge, which includes knowledge of numerical characteristics and 
relations. In this study, students from the second (aged 8), fourth (aged 10), and sixth 
(aged 12) grades (n = 205) answered a modified version of the Arithmetic production 
task, which has been used to measure primary school students’ adaptive number 
knowledge. Significant differences among grade levels were found. In addition, a 
latent profile analysis revealed four profiles based on the students’ answers, with 
profile membership being associated with grade level. Similar to previous research, 
the current study found evidence of both age-dependent and individual differences. 
Furthermore, an analysis of the strategies used by the students to produce solutions 
revealed differences among the profiles.

Fluency in arithmetic is one of various components of the arithmetic 
skills that students need to acquire. Apart from mastering calculations, 
arithmetic skills also include the ability to flexibly utilize multiple stra-
tegies and adapt one’s knowledge to a range of mathematical problems. 
Distinguishing and using relations between numbers and operations in 
various ways is an essential element of adaptivity in arithmetic, which 
McMullen et al. (2016) called adaptive number knowledge. In order to 
measure adaptive number knowledge, McMullen et al. (2016) created 
a test where students are asked to produce mathematical expressions, 
that is, they have to recognize and use the relations between numbers 
and operations in multiple ways in order to reach their solutions. This 
measure provides information about individual differences, and the 
results are associated with pre-algebra skills (McMullen et al., 2017). Thus 
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far, however, the focus has been more on older primary school students 
and the operations they use. More information is needed on how adap-
tive number knowledge develops with age. In addition, when students 
produce multiple solutions, one of them may be used as a template to 
create others, for example, by replacing addition with multiplication. 
Recognizing these kinds of strategies as a way of modifying solutions that 
are yet be studied may help us understand differences between students. 
The current study aims to narrow these research gaps.

Theoretical background

Flexible mathematical thinking
Flexible thinking plays a significant role in the application of a range of 
strategies in solving mathematical problems. Many studies have defined 
flexible mathematical thinking as competence in the use of various strat-
egies and being able to choose the most suitable one for the given situa-
tion (Blöte et al., 2000; Hästö & Palkki, 2019; Star & Newton, 2009; Threl-
fall, 2002; Verschaffel et al., 2009). In the literature, the terms flexibility 
and adaptivity are sometimes used synonymously, yet they tend to convey 
different meanings. Although the definition of flexible mathematical 
skills includes the ability to choose the most appropriate strategy, many 
studies (e.g. Heinze et al., 2009; Verschaffel et al., 2009) have defined flexi-
bility as the ability to use multiple strategies and adaptivity as the ability 
to choose the most appropriate strategy. Hatano (2003) defined adapti- 
vity as inclusive of flexibility and creativity, and as Selter (2009) described: 
“Adaptivity is the ability to creatively develop or to flexibly select and use 
an appropriate solution strategy in a (un)conscious way on a given mathe-
matical item or problem, for a given individual, in a given sociocultural 
context” (p. 624). Flexible thinking and adaptive use of various strategies 
have laid a strong foundation for mathematical skills due to the cumula-
tive nature of mathematics, and previous knowledge has often been used 
in multiple ways and modified to answer new kinds of problems.

Flexible mathematical thinking is related to the efficiency involved in 
obtaining solutions, making strategy-based choices, and the understand-
ing behind these actions. Generally, speed and accuracy are common indi-
cators of mathematical skills because they depict one’s efficiency. Hästö 
and Palkki (2019) determined whether students’ tendency to use stan-
dard or innovative strategies is related to their speed and accuracy. As a 
standard strategy, they referred to the mechanical strategies illustrated by 
the teacher. Conversely, innovative strategies do not follow specific steps 
and are adaptively formed from number relations and characteristics.  
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According to their results, students’ competence in using innovative 
strategies correlates with their speed and accuracy. Thus, choosing a 
suitable strategy can make a difference in response speed and accuracy.

If a student knows multiple strategies to similar problems, they have 
to choose which strategy to use every time a similar problem is encoun-
tered. When the student has learned to use a certain strategy to solve 
certain types of problems, their speed and accuracy evolve even though 
the strategy does not (Lemaire & Siegler, 1995). However, learning to use 
only one strategy for one problem type may lead to unconnected know-
ledge, that is, knowledge that cannot be flexibly deployed for a larger 
variety of problems (Gravemeijer et al., 2016). Furthermore, a student’s 
age is related to their strategy usage; when solving missing-value prob-
lems, younger students tend to use more additive strategies, but as they 
grow older, their use of additive thinking decreases, and they begin to 
deploy multiplicative strategies (Van Dooren et al., 2010).

Being flexible in mathematics requires conceptual and procedural 
knowledge of numbers and operations as well as the competence to shift 
among multiple strategies (Siegler & Lemaire, 1997). The ability to use a 
certain procedure or strategy is not the only factor that relates to one’s 
mathematical skills; being able to understand the underlying idea behind 
the procedure or strategy is also fundamental. Hatano (2003) pointed to 
two kinds of expertise: routine and adaptive. Routine expertise is memo-
rized knowledge wherein one can mechanically use familiar strategies 
in familiar situations. Adaptive expertise is knowledge of procedures 
and concepts and the ability to recognize the relations between them, 
thereby enabling the use of novel strategies in new situations. When 
solving arithmetic problems, adaptive expertise manifests as the adap-
tive and flexible use of strategies in number calculations (Brezovszky et 
al., 2015).

Adaptive number knowledge
Students’ adaptive use of numbers can be measured through adaptive 
number knowledge, which focuses on students’ competence in handling 
a range of number characteristics. It is defined as the ability to distinguish 
and use the relations between numbers and operations in the most advan-
tageous way for the given situation (Brezovszky et al., 2015; McMullen et 
al., 2016). According to McMullen et al. (2016, 2017, 2019), adaptive number 
knowledge forms the foundation for the development of one’s mathemati-
cal thinking and is a valid descriptor of one’s mathematical competence 
since it is associated with arithmetical fluency and pre-algebra skills.
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Adaptive number knowledge can be measured with the Arithmetic pro-
duction task (APT) (Brezovszky et al., 2015, 2019; McMullen et al., 2016, 
2017, 2019). The premise behind the test is to produce as many solutions 
of a given value as one can in the given time by using only the given 
numbers. The items are divided into dense and sparse categories accord-
ing to the arithmetic relations between the numbers in them. In the dense 
items, the given and target number are selected so that there are many 
common factors and multiples, and therefore, more straightforward solu-
tions can be produced. In the sparse items, however, there are only a few 
or no common factors or multiples. McMullen and colleagues (2017, 2019) 
analyzed students’ solutions by differentiating between simple solutions 
containing only additive operations (e.g. 3 + 4 – 1), or only multiplicative 
operations (e.g. 2 · 3), or complex solutions containing both (e.g. 2 · 4 – 2). 
Thus, the students’ solutions could be categorized as follows: simple solu-
tions in the dense items, simple solutions in the sparse items, complex 
solutions in the dense items, and complex solutions in the sparse items. 
Since complex solutions require connecting operations with different 
characteristics, they are considered more adaptive.

A few studies have examined and compared adaptive number know-
ledge of primary school students of various ages (McMullen et al., 2016, 
2017). These studies employed the same methods and definitions but 
slightly different analyses, and there was some variation between the 
results. McMullen et al. (2017) divided the solutions of fourth to sixth 
graders into simple and complex solutions and studied these solutions in 
the dense and sparse items. They found significant grade-level differences 
in the simple solutions in the dense items and in the complex solutions 
in both item types. A study by McMullen et al. (2016) showed no signifi-
cant differences among third to fifth graders when the variables in the 
analysis were the total number of correct solutions, the total number of 
complex solutions, and the proportion of complex solutions per correct 
solutions. The varying results regarding grade-level differences raise the 
question of whether adaptive number knowledge develops through-
out primary school and can be detected in students who are novices at  
arithmetic operations.

While the number of simple and complex solutions performed relates 
to students’ adaptive number knowledge, the focus has hitherto been on 
how students recognize and use the relations between the given numbers 
and connect them with basic operations to produce the target number. 
There has been some discussion about the different solution strategies 
that students employ (McMullen et al., 2017), but observations have only 
focused on the number of simple and complex solutions. In this study, we 
focus on the strategies that students use to modify their solutions, that is, 
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how they recognize relations between different solutions and use them 
to produce more solutions. For example, after a student has produced a 
solution 6 + 6 – 1, they may relate 6 + 6 to 2 · 6 and produce 2 · 6 – 1. This 
way, they produce two related solutions. Related solutions in the APT 
have not been studied but they add another layer of relations that play 
a role in the APT and partly explain how students can create solutions.

Research questions
To study students’ adaptive number knowledge, the age range was 
expanded to include differences among second, fourth, and sixth graders. 
Since the test has not previously been used on second graders, who are 
just learning multiplication, we had to modify it. The modified version 
of the APT (Brezovszky et al., 2015, 2019; McMullen et al., 2016, 2017, 
2019) is called the Small number arithmetic production task (s-APT). Our 
modification raises the question of whether the modified test can detect 
individual differences as in the original test (McMullen et al., 2017). In 
addition, we conducted a new analysis for the students’ solutions in order 
to study how these students produced solutions by utilizing the relations 
between them. The research questions are as follows.

1 What differences exist among second, fourth, and sixth grade  
students in their simple and complex solutions in the dense and 
sparse items?

2 What latent profiles describe second, fourth, and sixth grade stu-
dents’ adaptive number knowledge?

3 What are the related solutions in the students’ answers, and how 
are these related to the differences between the latent profiles?

Methods

Participants
The participants were 205 students from the second (n = 74, girls = 35), 
fourth (n = 59, girls = 26), and sixth (n = 72, girls = 38) grades. The mean 
ages of the second, fourth, and sixth graders were eight years and five 
months (SD = 4.0 months), 10 years and four months (SD = 3.6 months), 
and 12 years and five months (SD = 3.6 months), respectively. The partici-
pating classes were from three suburban schools in Finland. Four classes 
from each grade participated, so there were 12 classes in total. We made 
sure that all the classes were at least familiar with multiplication since 
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the order of contents in the lessons varied depending on the materials 
used by the teachers. The teachers volunteered their classes for the study, 
and informed consent forms were obtained from the students’ legal guar-
dians. All students participated in the test, but for those who did not want 
to be involved in the study, the results relating to them were not analyzed, 
and their data were destroyed.

Procedures
The data were collected at the end of the fall term of 2019. The test 
was performed in a paper–pencil format in a classroom environment 
administered by a researcher. Before starting the test, the administra-
tor explained the assignment without any prompts about what kinds of 
solutions were expected, and the students got to practice with a sample 
item. Before working with the actual research items, the students were 
allowed to ask questions. For each item, the administrator turned on a 
timed presentation that gave a voice signal when the time was up. The 
test administrator was the same for all classes; thus, the assignment was 
equal for everyone.

Measures
The students’ adaptive number knowledge was measured with the s-APT. 
The same test was used for all the participants in order to obtain compa-
rable data. The numbers in the items had to be small enough, and there 
was a chance in every item for the second graders to produce multipli-
cations (given that the second graders’ curriculum only contained mul-
tiplication with the numbers one to five and 10 (Opetushallitus, 2016)).

The test contained four items, each item with a 90-second time limit. 
Each item included four or five given numbers that the students were 
supposed to use in their solutions as many times as they wanted and a 
target number that had to be the value of every solution. The permis-
sible operations were addition, subtraction, multiplication, and division, 
which could be used as many times as the students wanted. The goal was 
to create as many solutions as possible within the 90 seconds. Cronbach’s 
alpha reliability for the total number of correct solutions across the four 
items was .86.

The items can be categorized into two types according to the number 
of multiples and common factors that can be found among the given 
numbers and the target number. Given the higher number of these charac- 
teristics between the numbers in the dense items, it is possible to find 
many straightforward solutions. In the sparse items, the number of these 
characteristics is significantly lower. Thus, in the sparse items, only three 
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or two one-step solutions can be found. Meanwhile, in the dense items, 
five or seven one-step solutions can be found (see table 1). However, there 
are infinitely many solutions when using more than one step.

The dense items used in this study were the same as those used in McMul-
len et al. (2017, 2019), but the sparse items had to be modified into more 
suitable items for the second graders. One item that could be used as 
a sparse item for the second graders was taken from Brezovszky et al. 
(2019). The second sparse item was composed of small numbers and a 
few one-step solutions. Table 1 shows both the given and target numbers 
from the original version of the APT (Brezovszky et al., 2019; McMul-
len et al., 2017) and the given and target numbers of the modified s-APT. 
The item types and the number of one-step solutions in the APT and 
s-APT are also shown.

Figure 1 illustrates all the one- and two-step solutions in a sparse item 
in the APT and a sparse item in the s-APT using the same representation 
as in McMullen et al. (2016). It shows that the sparse item in the s-APT 
was a bit easier since there were two one-step solutions and some two-
step solutions with only additive operations; the other two-step solu-
tions included both additive and multiplicative operations. However, 
there were no one-step solutions in the sparse item of the APT, and 
the two-step solutions included only multiplicative operations or both  
additive and multiplicative operations.

Analysis
In the test results, only the correct solutions were analyzed. Correct solu-
tions were defined as expressions wherein the given numbers were used 
and the value was the target number. Therefore, commutative solutions 
(e.g. 2 + 4 and 4 + 2) were accepted as different solutions. In addition, the 
expressions where brackets had to be used (for example 2 + 4 · 2 = 12) were 
considered as correct solutions because brackets are not taught in the 

Item Given numbers 
in the APT

Target 
numbers 
in the 
APT

Given 
numbers in 
the s-APT

Target 
numbers 
in the 
s-APT

Type Number 
of 1-step 
solutions 
in the 
APT

Number 
of 1-step 
solutions 
in the 
s-APT

example 1, 2, 3, 4 6 1, 2, 3, 4 6 dense 5 5

1 2, 4, 8, 12, 32 16 2, 4, 8, 12, 32 16 dense 7 7

2 1, 2, 3, 5, 30 59 1, 2, 6, 14, 42 8 sparse 0 3

3 2, 4, 6, 16, 24 12 2, 4, 6, 16, 24 12 dense 5 5

4 3, 5, 30, 120, 180 12 2, 3, 4, 17 5 sparse 0 2

Table 1. Given numbers, target numbers, item types, and number of one-step  
solutions in the APT and s-APT
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second grade. The correct solutions were coded as simple solutions or 
complex solutions; simple solutions contain only additive or only multi-
plicative operations, while complex solutions contain both (McMullen 
et al., 2017, 2019).

The number of simple and complex solutions was counted from the 
students’ answers. The simple and complex solutions were first com-
pared between grade levels on an item-by-item basis, by using a one-way 
ANOVA, to confirm that no items were either too easy or difficult for 
the students. Thereafter, one-way ANOVAs were used to compare the 
simple and complex solutions between the grade levels in the dense and 
sparse items separately. A latent profile analysis (LPA), which is the same 
as latent class analysis (LCA), except that the variables are continuous 
instead of binary, was conducted to understand the way in which the stu-
dents were divided into profiles based on their test performance. The LPA 
divides a heterogeneous group of participants into homogeneous groups 
based on the continuous variables (Berlin et al., 2014; Muthén & Muthén, 
2017). Several statistical indicators were observed to estimate the models: 
the Aikake information criterion (AIC), the Bayesian information crite-
rion (BIC), entropy, and a p-value for the bootstrapped likelihood ratio 
test (BLRT p-value). The students were assigned to profiles based on the 
most likely class membership. The variables in the LPA were simple solu-
tions in the dense items, simple solutions in the sparse items, complex 
solutions in the dense items, and complex solutions in the sparse items.

After dividing the students into profiles, we compared their answers 
and searched for related solutions that might explain their strategies to 
modify solutions. By related solutions, we mean a pair of solutions where 
the second solution could be produced by chancing a term or terms from 

Figure 1.  A sparse item from the APT (left) and a sparse item from the s-APT 
(right) are presented as numerical networks 
Note. The number in the middle is the target number, which is surrounded by the given 
numbers. The one-step solutions are circled, while the two-step solutions are in rectangles.
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the first solution. Otherwise, these solutions must be identical. If a rela-
tion requires two or more terms, these terms must be situated next to 
each other so that the change is noticeable. For instance, when a student 
uses decomposition, the decomposed numbers should be next to each 
other (12 + 4 and 12 + 2 + 2 is acceptable but 12 + 4 and 2 + 12 + 2 is not). It 
matters not the order in which these solutions are presented on the paper 
or whether there are other solutions between the pair. In addition, one 
solution can be related to different solutions by different relations. For 
example, the solution 2 · 6 is related to 6 · 2 by commutative law, but 2 · 6 
is also related to 6 + 6 by repeated addition.

The first author analyzed all the solutions and defined the relations 
found. Another researcher coded 10 % of the data and sought to iden-
tify new possible relations. Their codes were compared, which led to an 
adjustment of some definitions and the addition of a new relation. There-
after, another round of coding was conducted, and inter-rater reliability 
was evaluated with Krippendorff’s alpha (α = .91), which suggested high 
agreement among the raters since the value exceeded .80 (Krippendorff, 
2004). Next, a one-way ANOVA was conducted to compare the related 
solutions among the profiles. 

Results

Item-by-item differences between grade levels
The means and standard deviations for the simple and complex solutions 
for each item for the second, fourth, and sixth graders are presented in 
table 2. For the simple solutions, one-way ANOVA (see table 2) indi-
cated statistically significant differences between grade levels in the first 
(p < .001), second (p = .002), and third (p < .001) items. However, there 
were no significant differences in the fourth item (p = .463). The Tukey 
post-hoc test results are presented via indexes in table 2, and they indi-
cate significant differences between the fourth and sixth graders only in 
the first item. In summary, in the first item, there were significant dif-
ferences among all grade levels, while in the second and third items, the 
second graders had significantly fewer simple solutions than the other 
students. In the fourth item, no significant differences were found. For 
the complex solutions, the results from the one-way ANOVA (see table 
2) indicate statistically significant differences in all the items (I1: p < .001; 
I2: p < .001; I3: p < .001; and I4: p < .001). However, according to the Tukey 
post-hoc test (see table 2), the sixth graders outperformed the second 
and fourth graders in the first three items, and there were significant  
differences among all grades in the fourth item.
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Differences in the dense and sparse items between grade levels
When the dense (I1 & I3) and sparse (I2 & I4) items were taken into 
account, there were four variables: simple solutions in the dense items 
(DS), simple solutions in the sparse items (SS), complex solutions in the 
dense items (DC), and complex solutions in the sparse items (SC). Table 
3 presents the means and standard deviations and the statistical indica-
tors from the one-way ANOVAs for these variables. There were statisti-
cally significant differences among the grade levels in all variables (DS: 
p < .001; SS: p = .022; DC: p < .001; and SC: p < .001). A multiple compari-
son test was run, and the Tukey post-hoc test results are presented via 
indexes in table 3. They indicate that the second graders had significantly 
lower means than the sixth graders in every variable. However, the fourth 
graders’ simple solutions in the sparse items did not differ significantly 
from those of either the second or sixth graders’. In other variables (i.e. 
DS, DC, and SC), there were significant differences among all grades. We 

2nd Grade 4th Grade 6th Grade Total

M (SD) M (SD) M (SD) M (SD) F(2, 202) p η2

I1 Simple 2.12a (1.20) 3.29b (1.59) 4.49c (1.77) 3.29 (1.82) 43.48 < .001 .30

I2 Simple 2.31a (.98) 2.90b (1.14) 3.01b (1.58) 2.73 (1.30) 6.42 .002 .06

I3 Simple 2.70a (1.51) 4.02b (1.44) 4.40b (1.78) 3.68 (1.75) 22.69 < .001 .19

I4 Simple 1.91a (1.04) 2.02a (1.12) 2.15a (1.41) 2.02 (1.20) .77 .463 .01

I1 Complex .00a (.00) .20a (.45) .46b (.75) .22 (.54) 15.10 < .001 .13

I2 Complex .04a (.26) .22a (.49) .74b (1.11) .34 (.79) 17.72 < .001 .14

I3 Complex .03a (.16) .20a (.45) .69b (.87) .31 (.64) 26.07 < .001 .21

I4 Complex .03a (.16) .47b (.73) .89c (1.12) .46 (.85) 22.50 < .001 .18

Table 2. Descriptive statistics and values from one-way ANOVAs and post-hoc 
tests of simple and complex solutions for Items 1, 2, 3 and 4

Note. There are statistical differences only between the profiles that do not have the 
same letter in the index

2nd Grade 4th Grade 6th Grade Total

M (SD) M (SD) M (SD) M (SD) F(2, 202) p η2

Dense Simple 4.82a (2.39) 7.31b (2.55) 8.89c (3.04) 6.97 (3.18) 42.65 < .001 .30

Sparse Simple 4.22a (1.75) 4.92a, b (1.92) 5.17b (2.57) 4.75 (2.15) 3.91 .022 .04

Dense Complex .03a (.16) .41b (.70) 1.15c (1.40) .53 (1.03) 28.33 < .001 .22

Sparse Complex .07a (.38) .69b (1.04) 1.63c (2.05) .80 (1.50) 24.39 < .001 .19

Note. There are statistical differences only between the profiles that do not have the 
same letter in the index

Table 3. Descriptive statistics and values from one-way ANOVAs and post-hoc 
tests of simple solutions in the dense and sparse items and complex solutions in the 
dense and sparse items by grade level
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also checked whether the students’ gender or class had an influence on 
their performance, but no notable effects were found.

Student profiles
Previous studies regarding students’ adaptive number knowledge 
(McMullen et al., 2017, 2019) have included a narrower age range and 
older students. Thus, we did not use existing study profiles to conduct a 
confirmatory LPA. Instead, an LPA was run to determine the kinds of 
profiles formed when second graders are also included. After the first 
round of the LPA, one sixth grade student had to be excluded because 
of superior performance on the test. The student had their own profile 
wherein no other student was included, and therefore, the LPA was run 
again without them.

When observing entropy values, the higher the value is on a scale from 
0 to 1, the better. When the value exceeds .80, the classes are sufficiently 
discriminatory (Tein et al., 2013). The BIC is considered a better indica-
tor than other IC indicators (Nylund et al., 2007), and the value should 
be as small as possible. The BLRT yields a p-value, that is, the result is 
significant if the value is < .05. It is not frequently used as an indicator, 
but it has been shown to be the best likelihood-based indicator even 
more precise than the BIC (Nylund et al., 2007). Therefore, the number 
of classes wherein the BIC is as low as possible, entropy is as high as  
possible, and BLRT p-values under .05 are considered best.

The statistical indicators from the LPA are presented in table 4, with 
the chosen four-class model bolded. Although the BIC value was the 
lowest and the BLRT p-value was significant in the seven-class model, 
the entropy value did not exceed .80. According to Nylund et al. (2007), 
when the BLRT p-value is nonsignificant, it remains nonsignificant after 
increasing the number of classes. According to table 4, this does not seem 

Number of 
classes  

AIC BIC Entropy BLRT 

2 2928.87 2972.01 .95  .01

3 2875.16 2934.89 .92  .01

4 2848.20 2924.52 .80  .01

5 2852.55 2945.46 .70  .60

6 2862.47 2971.97 .58  .99

7 2744.39 2870.48 .73  .01

8 2754.00 2896.68 .65  .97

Table 4. Statistical Indicators from the LPA
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to be the case, but Nylund et al. also pointed out that with a likelihood-
based test, one should stop increasing the number of classes after the 
first nonsignificant p-value. The three-class model would also have been 
a good choice, but in this case, over two-thirds of the students would have 
been in the same profile. 
The four-class model contains four profiles: Basic, Average, High-Simple, 
and High-Complex. The mean values of each variable for all the pro-
files are presented in figure 2. For the students in the Basic profile, the 
mean values of each variable were lower than the average. In addition, 
the number of complex solutions was very low in both item types. For the 
students in the Average profile (which would have been integrated into 
the Basic profile in the three-class model), the number of simple solutions 
was somewhat above average, but the number of complex solutions is 
somewhat below average in both the dense and sparse items. In addition, 
the Average profile was the only profile wherein the students indicated 
more complex solutions in the dense items than in the sparse items. For 
the students in the High-Simple profile, the number of simple solutions 
was substantially higher than the average (higher than in all other pro-
files), and the number of complex solutions was around average in both 
the dense and sparse items. Finally, for the students in the High-Complex 
profile, the number of complex solutions was considerably high. In addi-
tion, the number of solutions in all the variables was above average, but 
the number of simple solutions in the sparse items was still lower than 
in the Average and High-Simple profiles.

Figure 2. Student profiles and the mean values and standard deviations for each 
variable in the profiles 
Note. Error bars = ± 1 SD
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The number of students per profile is presented in table 5. Most second 
and fourth graders belonged to the Basic (79.7 % and 47.5 %, respectively) 
and Average (17.5 % and 40.7 %, respectively) profiles. The sixth graders 
were spread evenly into the Basic, Average, and High-Complex profiles 
(31.0 % in each). The High-Simple profile was very small and included 
only 3.9 % of the participants. Due to the small number of students in 
the High-Simple profile, a chi-squared test could not be conducted, but 
Fisher’s exact test indicated a significant positive association (p < .001) 
between grade level and profile membership. 

Related solutions
We found eight relations from the students’ answers: decomposition, 
using a difference, commutative law, repeated addition, adding a zero, 
multiplying by one, factorization and using a quotient. The definitions 
and examples of these relations are presented in table 6. The average 
number of relations in the test was 1.19 (SD = .97) for the students in 
the Basic profile. The mean values for the Average, High-Simple, and 
High-Complex profiles were 2.64 (SD = 1.01), 3.50 (SD = .76), and 3.71 

Profiles
Grades Basic (%) Average (%) High-Simple (%) High-Complex (%) Total (%)

2 59 (79.7) 13 (17.5) 1 (1.4) 1 (1.4) 74 (100.0)
4 28 (47.5) 24 (40.7) 2 (3.4) 5 (8.4) 59 (100.0)
6 22 (31.0) 22 (31.0) 5 (7.0) 22 (31.0) 71 (100.0)

Total 109 (53.5) 59 (28.9) 8 (3.9) 28 (13.7) 204 (100.0)

Table 5. Number of students and percentage share per profile for each grade

Relation Definition Example
Decomposition A number is decomposed into smaller numbers 

that are then added up. It can also be used in  
subtraction.

6 + 2, 2 + 4 + 2 and  
14 – 6, 14 – 2 – 2 – 2

Using a difference A number is presented as the difference of other 
numbers. 

2 + 3 and 4 – 2 + 3

Commutative law The order of the operands is changed, but the 
terms stay the same.

6 · 2 and 2 · 6

Repeated addition A multiplication is presented as a repeated  
addition

4 · 4 and 4 + 4 + 4 + 4

Adding a zero The same number has been added and then  
subtracted or vice versa. 

2 + 3 and 17 – 17 + 2 + 3

Multiplying by one A solution includes a multiplication by one. Dif-
ferent forms of one are accepted, e.g. multiplying 
and dividing by the same number.

6 + 2 and 1 · 6 + 2

Factorization A number is presented as a multiplication, i.e. the 
number has been factorized.

8 + 4 and 2 · 4 + 4

Using a quotient A number is presented as a division. 8 + 4 and 16 : 2 + 4

Table 6. Definitions and examples of the relations
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(SD = 1.31), respectively. One-way ANOVAs showed that these diffe-
rences were significant (F(3, 200) = 61.36, p < .001, η2 = .48). Apart from 
these results, figure 3 presents the results from Tuckey’s post-hoc test 
via indexes, which indicate that the students in the Basic profile had sig-
nificantly fewer related solutions than those in the other profiles. There 
were also significant differences between the students in the Average 
and High-Complex profiles.

To determine whether the students changed their strategies to modify 
their solutions in different items or whether they used the same strategy 
throughout the test, we counted the number of items in which each rela-
tion appeared. Therefore, the value for each relation could range from 
0 to 4. For instance, if a student used decomposition in every item, the 
value of the decomposition would be 4. Table 7 presents the mean values 
and standard deviations of every relation in each profile. Furthermore, 
the ANOVA test values are included in table 7, and the Tuckey’s post-hoc 
test results are presented via indexes. As presented, for the students in 
the Basic profile, decomposition, using a difference, and repeated addition 
appeared significantly less frequently in the answers than in the other 
students’ answers. Conversely, the students in the High-Simple profile 
had significantly higher mean values for decomposition and commuta-
tive law, compared to other students. For the High-Complex profile, there 
were significant differences with the Average profile in repeated addition 
and with the Basic profile in adding a zero. In addition, the students in the 
High-Complex profile had significantly higher mean values in factoriza-
tion and using a quotient. However, there were no significant differences 
among the profiles in multiplying by one.

Figure 3. Mean values and standard deviations on the number of relations found in 
the students’ answers for each profile 
Note. Error bars = ± 1 SD. Statistically significant differences among the profiles are 
presented via indexes.
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Discussion
In this study, we found that students’ adaptive number knowledge 
improved with grade level. This result supports the findings of previous  
studies (McMullen et al., 2017). Significant differences were found both 
in the simple and complex solutions; however, in the simple solutions 
in the sparse items, the differences were only between the second and 
sixth graders. In the complex solutions, there were significant differences 
among all grades in both the dense and sparse items. This validates the 
differences between dense and sparse items since there were not many 
easy simple solutions in the sparse items. Therefore, in order to have 
more solutions in the sparse items, the students had to produce complex 
solutions. 

The grade-level differences arguably reveal the development of adap-
tive number knowledge throughout primary school. According to Blöte 
et al. (2000), the more a student gains experience and expertise in dealing 
with numbers, the more flexible their mental calculation becomes, and 
the easier it is for them to recognize relations between the numbers and 
apply strategies. Due to the lack of experience among second graders, the 
use of multiplication and division might be difficult for them because 
of the novelty of these operations to them (Opetushallitus, 2016). This 
might explain the large difference between the grades when analyzing 
the complex solutions in both item types. In addition, as students get 
older, they tend to prefer multiplication to addition (Van Dooren et al., 
2010), so older students have a better chance of coming up with complex 
solutions. Another challenge for younger students is the time limit of 
the test; older students are able to perform addition faster and more  
accurately (Siegler & Shipley, 1995).

Relation Basic Average High-Simple High-Complex

M (SD) M (SD) M (SD) M (SD) F(3, 200) p η2

Decomposition .51a (.74) 1.66b (.99) 2.75c (.89) 1.15b (1.06) 33.34 < .001 .33

Using a difference .15a (.40) .47b (.68) .75b (.71) .67b (.83) 9.09 < .001 .12

Commutative law .62a (1.07) 1.00a (1.35) 2.38b (1.51) .78a (1.19) 6.11 .001 .08

Repeated addition .24a (.43) .73b (.81) 1.00b, c (.93) 1.22c (1.05) 19.67 < .001 .23

Adding a zero .04a (.19) .17a, b (.46) .50a, b (1.41) .44b (.84) 6.22 < .001 .09

Multiplying by one .04a (.19) .03a (.18) .00a (.00) .15a (.36) 2.14 .10 .03

Factorization .03a (.16) .19a (.47) .25a (.46) .96b (.81) 34.31 < .001 .34

Using a quotient .03a (.16) .07a (.25) .00a (.00) .59b (.69) 23.60 < .001 .26

Table 7. Means and standard deviations of the number of items in which each  
relation appeared, statistical values from one-way ANOVAs, and results from  
post-hoc tests for the profiles

Note. There are statistical differences only between the profiles that do not have the 
same letter in the index
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We found four latent profiles describing the students’ adaptive number 
knowledge: Basic, Average, High-Simple, and High-Complex. In com-
parison to previous studies, there were some similarities and some dif-
ferences between the profiles. McMullen et al. (2017) found five profiles 
for fourth to sixth graders: Basic, Simple, Complex, Strategic, and High. 
The Basic profiles in both studies are quite similar. In addition, the Simple 
profile in the study of McMullen et al. (2017) is similar to our High-Sim-
ple profile. The High-Complex profile in this study is a combination of 
the Complex profile, wherein students had many complex solutions and 
few simple solutions, especially in the sparse items, and the High profile, 
wherein all variables had high values. However, none of our profiles 
matched the Strategic profile of McMullen et al. (2017), wherein there 
were more simple solutions in the dense items and more complex solu-
tions in the sparse items. Instead, we found the Average profile, wherein 
the students’ solutions were rather close to the average (simple solutions 
above and complex solutions below). This may have resulted from the test 
modification. In the s-APT, the sparse items contained small numbers, 
which might have affected the students’ solutions. Another reason for 
the differences between this and previous studies could be the larger age 
range and younger participants in the present study.

The eight relations emerging from the students’ answers helped 
describe the differences among the profiles. An analysis of the number 
of relations and the number of items in which the relations appeared 
revealed significant differences among the profiles. Therefore, the related 
solutions elaborated the characteristics of the profiles and showed the 
various strategies used by the students to modify their solutions. Accord-
ing to previous studies (Heinze et al., 2009; Siegler & Lemaire, 1997; 
Verschaffel et al., 2009), students with flexible mathematical skills will 
choose their strategies in a versatile manner based on the problem. 
Therefore, as adaptive number knowledge is related to other mathema-
tical skills such as arithmetic fluency (McMullen et al., 2017), we could 
presume that students with higher adaptive number knowledge will have 
various related solutions and might use different strategies in different 
tasks. The most common relation for the students in the Basic profile 
was commutative law, whereas for the Average and High-Simple pro-
files, the most common relation was decomposition. Furthermore, the 
students in the High-Complex profile favored repeated addition. It can 
be deduced from the high number of simple solutions, that the students 
frequently focused on the same number characteristics when producing 
their solutions (McMullen et al., 2017). The analysis of the related solu-
tions supports this conclusion as the students in the High-Simple profile 
had substantially high mean values in decomposition and commutative 
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law but rather low values in other relations, which means that they relied 
only on these two strategies and made no changes to their thinking in 
the various tasks.

Since the High-Complex profile had the highest number of complex 
solutions, it was not surprising that it contained significantly more solu-
tions related by factorization and using a quotient, which require the 
use of multiplicative operations. Furthermore, the students in the High-
Complex profile recorded the highest number of relations compared to 
all other profiles. In addition, their mean values in some relations were 
lower than in High-Simple profile, but overall, there was minimal variety 
in the mean values, which meant a diverse use of strategies. In other 
words, combining the results from figure 3 and table 7, we see that the 
students from the High-Complex profile used a range of strategies in a 
more versatile manner than other students. This supports the conclu-
sion of previous studies (McMullen et al., 2017) that students in the High 
profile alternate their strategies in different items. Students’ competence 
in choosing a suitable strategy helps them solve mathematical problems 
rapidly and accurately, but the converse does not apply (Hästö & Palkki, 
2019). Therefore, students who used the most strategies might produce 
more solutions in a test, but a high number of correct solutions does not 
necessarily mean that the students have proficiently mastered different 
strategies. Nevertheless, not all pairs of solutions, even complex solutions, 
can be explained by any of the relations. Thus, some highly adaptive  
solutions might not be recognized through the relations.

The idea of the test is to use only a few numbers and basic arithmetic 
operations to reach the same target number. When performing calcula-
tions, it is also important to understand the characteristics of the opera-
tions used. According to Hatano (2003), adaptive expertise is the ability 
to understand the contents of the procedures and use their relations. This 
can be seen in students’ answers, for example, if they produce solutions 
related by repeated addition, as 2 · 3 = 6 and 3 + 3 = 6. Although repeated 
addition is considered a simple and primitive strategy (Van Dooren et 
al., 2010), answering these expressions can show that the student not 
only knows how to use the strategy, but also understands the relation 
between addition and multiplication. However, since the numbers that 
can be used are limited, the possible solutions are somewhat restricted. 
Therefore, as the number of correct solutions increases, the possibi-
lity of related solutions also increases even though the student may not  
consciously try to use them.

The item-by-item inspection of the answers showed that although 
we modified the sparse items to make them easier, the students still pro-
duced fewer correct solutions in the sparse than in the dense items. In 
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addition, in the dense items, the students mainly produced more simple 
solutions and fewer complex solutions than in the sparse items, which 
is compatible with the results in previous studies (McMullen et al., 2017, 
2019). This indicates that the modifications were reasonable and that the 
sparse items were not overly easy. However, if the students’ solutions in 
the dense and sparse items were compared to those in previous studies, 
there would be a difference in the simple solutions in the sparse items. 
In McMullen et al. (2017), students from grades four to six produced sub-
stantially fewer simple solutions in the sparse items than those in this 
study, but the same phenomenon was not noted with complex solutions in 
the sparse items, neither with simple and complex solutions in the dense 
items. This explicit difference may be attributed to the modification 
made in the sparse items for the second graders. Overall, we found the 
same characteristics between the dense and sparse items as in previous  
studies (McMullen et al., 2017, 2019). Furthermore, similar characteris-
tics between the profiles were found in our study as those from previous 
studies (McMullen et al., 2017, 2019). While a majority of the second and 
fourth graders were in the Basic profile, almost one-third of the sixth 
graders were also included. This and the significant differences among 
the grade levels suggest that adaptive number knowledge develops with 
age but that there is more variation among older students.

As the s-APT can identify individual differences by dividing the stu-
dents into profiles, it can be used as a pre-test to distinguish the mathe-
matical skills of primary school students of various ages. In the future, 
research on the associations between adaptive number knowledge and 
other mathematical or non-mathematical skills could be conducted 
with even younger students. In addition, the analysis of related solutions 
presents a new perspective to study how students recognize relations 
between numbers and solutions. The conscious use of these relations and 
their associations with other flexible mathematical skills could provide 
more insights into students’ mathematical thinking.

Conclusion
We found significant differences between grade levels in both the quan-
tity and quality of the students’ answers. In addition, the students could 
be divided into four profiles based on their adaptive number knowledge. 
A new analysis of related solutions where the students’ solutions were 
studied more thoroughly gave a better idea about the differences between 
the profiles. Related solutions provide indications about the strategies 
that students use to produce their solutions. This kind of analysis could 
be further developed and used to study other characteristics in students’ 
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solutions. For instance, including incorrect solutions in the analysis 
might also provide information about students’ misconceptions in arith-
metic. The results support previous studies, in that, there were both age-
dependent and individual differences in the students’ adaptive number 
knowledge. In addition, the findings suggest that the Arithmetic Pro-
duction Task could be modified for use with younger students and that 
the modified version can identify differences in the students’ adaptive 
number knowledge.
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