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In this article, the main results are presented from a number concept test in which 538 
students from 24 randomly selected Finnish upper secondary schools took part. The 
test included identification, classification and construction problems in the domain 
of rational and real numbers. In addition, the students were asked to explain their 
answers and estimate their certainty about them. The theories of conceptual change 
and of mathematics concept formation were used to categorize students’ explana-
tions into different levels. The results indicate the clearly restricted nature of students’ 
prior thinking of whole numbers and of their everyday experiences of counting and 
continuity. On the basis of the results, we claim that the problems that students have 
with these difficult concepts are not only due to the complexity or abstract nature of 
the concepts to be learned, but also to the quality of their prior knowledge, which is 
not sufficiently taken into account in traditional teaching.

The notion of real numbers is one of the most complex and profound con-
cepts in mathematics. Mathematicians have various rigorous constructs 
for these numbers; the most familiar ones are those where the real num-
bers are presented as limits of a sequence or a cut on the number line. In 
this article, we deal with the problems upper secondary students have 
when they struggle to understand the basic components of real numbers: 
the concept of limit in the context of the number line and of the function. 
These concepts have a long and troubled history and they are difficult 
for students today (e.g. Boyer, 1949; Cornu, 1991; Fischbein, Jehiam & 
Cohen, 1995; Merenluoto & Lehtinen, 2002; Sierpinska, 1987; Szydlik, 
2000; Williams, 1991).
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The constructs of real numbers are, however, relatively new in the history 
of mathematics: the rigorous definition for real numbers was developed at 
the end of the 19th century. The core problem in this slow development 
of this concept was the dichotomy of discrete and continuous quantities; 
in the integration of two fundamentally different knowledge domains, 
the advanced thinking of numbers along with the domain in which the 
characteristic feature is continuity (Boyer, 1949). In upper secondary 
mathematics, the concept of continuity 1 is based on the limit of a func-
tion, and the limit in turn is explained as a function f having a limit y 
when x tends towards the value x0 , that is to say that the values taken by 
the expression f (x) get close to y when x gets close to x0 . In this definition 
the presumption of numbers as an everywhere dense set is embedded, 
and thus represents to the learner a fundamental cognitive conflict that 
is briefly explained in the following section.

Initial thinking of numbers based on discrete quantities
Many researchers (e.g. Carey & Spelke, 1994; Gallistel & Gelman, 1992; 
Spelke 1991; Starkey, Spelke & Gelman, 1990) argue that human rea-
soning is guided by a collection of innate domain-specific systems of 
knowledge. What is important in this article is the fact that, concerning 
the development of numbers, this ”mechanism” is based on the idea that 
quantities are separate, discrete. This separate nature of small quantities 
seems to be one of the basic ontological presumptions of the naive frame-
work theory of numbers. By the terms discrete and separate we mean the 
instinctive feeling connected with numbers and quantities that there is 
always the ”next number”, ”next quantity” and that there is some kind of 
space between them. This quality of numbers is also found in the writ-
ings of Aristotle (see Boyer, 1949). The notion of the next number or a 
successor is a basic feature in the set of natural numbers (Landau, 1951/
1960), and together with the principle of one to one correspondence 
with objects, they ”are woven into the very fabric of our number system” 
(Dantzig, 1954). In the domain of rational and real numbers the succes-
sor is not defined but infinite successive division is possible. At a second-
ary level, the rational numbers are defined as a relation of two integers, 
where the denominator is not zero, and the real numbers are defined as 
points of the number line where there are no gaps. Thus, the underlying 
but fundamental difference between the number domains is the discrete 
and dense nature of numbers resulting in different rules of order and op-
erations performed with these numbers. For mathematicians, the hierar-
chical construction of numbers is logical and coherent because they are 
already familiar with the structure. For students, however, it looks frag-
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mented and inconsistent because, at the stage of their learning, when they 
are dealing with continuity and limit, they do not have enough structural 
knowledge to recognize the logic of the hierarchical structure.

Moreover, small natural numbers and the concept of a successor are 
among those special concepts which have a high unconditional certainty 
attached to them. This kind of certainty seems to be derived from at least 
three different sources. Firstly, in several empirical studies, it has been 
found that even infants have an intuitive conception of small cardinalities 
as discrete objects (e.g. Starkey, Spelke & Gelman, 1990). The second 
source of the certainty comes from everyday experiences and linguistic 
operations (e.g. Wittgenstein, 1969) in counting objects. Later, in formal 
mathematical instruction, these prior conceptions are strengthened, and 
this is important in order to teach and learn the notion of natural num-
bers. Hence, the conception of numbers as discrete objects is based on 
innate cognitive mechanisms, powerful experiences of everyday count-
ing, and on formal mathematical instruction. Thus, we claim that the 
change from using the discrete numbers to the use of rational numbers, 
where the next number is not defined, means a radical conceptual change 
for the learner and requires metacognitive knowledge about strategies to 
be able to choose the rules of operation depending on the task at hand. 
Thus, every extension of the number concept demands new rules to be 
learned for operations and the use of a new kind of logic often leading to 
many different, but systematic problems and misconceptions in math-
ematics learning (c.f. The multiplier effect, see Verschaffel, DeCorte & 
Van Coillie, 1988). 

Initial thinking of continuity
As stated above, in the formal teaching of mathematics, the concept of 
limit, a central concept of real numbers, is first taught in the context of 
functions, where the continuity of a function is based on the concept of 
limit. It is significant to notice that the teaching of mathematical con-
tinuity to students occurs on a quite ”untouched” level. Their earlier 
experiences of continuity come from everyday life, where continuity is 
related to the continuity of time, motion or direction, not to numbers. 
The only ”mathematical” continuity so far has been the continuity based 
on the above described repetition of numbers, which comes first as the 
linguistic process when children learn to say number words. The funda-
mental feature of this continuity is its nature as the formation of discrete 
actions or objects. From a learner’s point of view this kind of continuity 
is totally different from what that is meant when speaking of everyday 
continuity, which is attached to the continuity caused by motion. In fact, 
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both the words ”continuity” and ”limit” have significance for the students 
before any lessons begin (e.g. Schwartzenberger & Tall, 1978) and stu-
dents continue to rely on those meanings even after the formal definitions 
have been taught to them (see Table 1). This kind of thinking is further 
strengthened in the practice where the continuity of function is described 
as the result of a continuous motion: ”the pencil never leaves the paper”. 
The general idea of the continuity of motion is one of the basic features of 
the physical world and even infants grasp it at some intuitive level (Spelke, 
1991). This idea is vague, dynamically and instinctively understood in the 
context of motion or time, but not with numbers (Cornu, 1991).

Thinking of the ”next” number or next object, continuity caused by 
motion, and limit as a bound seem to be a form of cognition which 
presents itself to a person as being self-evident. Self-evidence and cred-
ibility seem to be typical of the primitive intuition of ”truths” based on 
strong everyday experiences. Overconfidence plays an essential role in 
this intuition. It means that people are inclined to accept with a feeling 
of absoluteness those statements which are in line with their previous 
assumptions (Fischbein, 1987). 

The crucial role of prior knowledge
In this section we briefly summarize the theoretical framework used to 
explain the difficulties students have in their struggle to learn mathemat-

Table 1. Different meanings that students attach to the expressions ”tend towards”, 
”limit”, and ”continuity” 1

”Tend towards” ”Limit” ”Continuity”

- to approach (eventually 
staying away from it)
- to approach, without 
reaching it
- to approach, just reach-
ing it

- an impassible limit 
which is impossible to 
reach,
- a point which one ap-
proaches, without reach-
ing it,
- a point which one ap-
proaches and reaches,
- a maximum or mini-
mum,
- the end, the finish

- ”no breaks or jumps” 
(cf. ”it rained continu-
ously”)
- ”no gaps” (cf. ”the 
railway is continuously 
welded”)
- ”being in one piece” 
(confused with connect-
edness)

Note. 1 Cornu, 1991, 155-158.
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ics. According to the theory of reification (Sfard, 1991; Sfard & Linchevski, 
1994), students first learn new mathematical concepts in operations and 
the difficulties in the learning are then explained as resulting from a cog-
nitive gap in the structural understanding of the concepts. The problem-
atic difference between operational and structural understanding is that 
the structural is clearly more abstract than the operational stage. At the 
operational stage, the concept is understood as an operation, where its 
nature is seen as potential but not actual, whereas to be able to understand 
something as structural means being able to refer to it as a fully-fledged 
object where various representations of the concept become semantically 
unified by this abstract, purely imaginary construct: being both opera-
tional and structural. In this theory, however, not very much attention 
is paid to the role of students’ prior knowledge, and thus we combine it 
with the theories of conceptual change (see Table 2) where the process 
of learning is examined starting from the learners’ perspective and pro-
gressing towards the scientifically accepted conceptualizations. 

A three-phased theory of reification
The theory of mathematical concept formation, the theory of reification 
(Sfard 1991; Sfard & Linchevski, 1994) is based on three presumptions: 
first, the mathematical objects are understood as dualities; both opera-
tional and structural; and in the learning process the operational phase 
comes first and the structural later. Several researchers have also ex-
plained mathematical concepts either as processes or products, opera-
tional or structural, where this two-sided nature is seen as a dichotomy 
(e.g. Piaget, 1980/1974; Dubinsky, 1991). The theory of reification, in 
contrast, is based on considering this two-sided nature as a duality, which 
is also the point of departure from Piagets’ three-phased model of learn-
ing, where the first two phases had the same name. For example, the 
number +2 can be understood as an operation ‘add two’ or as a structural 
concept where it represents a natural number, an integer and rational 
number in the hierarchy of real numbers. The second presumption of 
the theory is that the concepts are first learned in operations (operational 
understanding), while the structural understanding demands a surpass-
ing of an ontological gap. The third presumption in the theory is that the 
learning proceeds through a three-phased process of interiorization, con-
densation and reification, understood as degrees of structuralization. In 
this process, the first two phases mean operational understanding (Sfard, 
1991; Sfard & Linchevski, 1994).
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Viewpoint of theories of conceptual change
Theories of conceptual change (e.g. Carey, 1985; Carey & Spelke, 1994; 
Chi, Slotta, & de Leeuw, 1994; Karmiloff-Smith, 1995; Vosniadou, 
1994; 1999) focus on the role of prior knowledge in learning. The term 
”conceptual change” in this frame of reference means a radical change 
or a clear reorganization of prior knowledge. Hence, we speak about the 
problems of conceptual change, when the learners’ prior knowledge is in-
compatible with the new conceptualization, and where they are disposed 
to make systematic errors or build misconceptions, suggesting that prior 
knowledge interferes with the acquisition of the new concept. This kind 
of knowledge acquisition is typical in specific domains of science (Posner, 
Strike, Hewson & Gertzog, 1982).

Researchers (e.g. Vosniadou, 1994; 1999; Hatano 1996) make a dis-
tinction between different qualities of learning processes targeted at 
conceptual change: continuous growth and discontinuous change. The 
easier level of learning is called enrichment, suggesting continuous growth, 
improving the existing knowledge structure. Discontinuity of learning 
occurs typically in a situation where prior knowledge is incompatible 
with the new information and needs reconstruction; where significant 
reorganization – not merely enrichment – of existing knowledge struc-
tures is needed. In the theory presented by Vosniadou (1994; 1999), 
the concept formation from naive assumptions to scientific understand-
ing of the concepts is described as a progress through different levels of 
synthetic models. There, the synthetic mental model refers to situations 
where students attempt to synthesize the currently accepted scientific 
information with the system of their initial concept, without making any 
radical changes in the prior thinking. Synthetic models are constructed 
when students are presented with scientific explanations which are highly 
inconsistent with the intuitive explanations they have constructed on the 
basis of their everyday experience (Vosniadou, 1999). For example, a 
student’s number concept could be called synthetic, if he/she is working 
reasonably well with rational numbers on the operational level (see Sfard 
1991), while her/his explanations of numbers are still based on discrete 
natural numbers (e.g. Merenluoto & Lehtinen, 2002; Neuman, 1998).

There is plenty of empirical research from the point of view of concep-
tual change in the field of biology (e.g. Carey, 1985; Hatano & Inagaki, 
1998), physics (e.g. Ioannides & Vosniadou, 2002; Vosniadou, 1994) and 
also to some extent of mathematics (e.g. Merenluoto & Lehtinen, 2002; 
Vamvakoussi & Vosniadou, 2002). In the majority of these empirical 
studies, the large cross-sectional empirical data have been categorized 
into different levels representing the development of the conceptualiza-
tion of understanding, starting from the very initial ones.
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Table 2. The theoretical framework combined from the theory of reification and theories 
of conceptual change in explaining the different levels of understanding in the process 
from discrete numbers to the concept of limit at the secondary level

Theories of conceptual 
change 1

Theory of reification 2 Description of the level

Initial models totally based on 
naïve thinking.

Primitive level
The students’ written answer 
is totally based on the rules of 
(”add one”) natural numbers or 
everyday experiences.

Different level of synthetic 
models where the student has 
enriched his/her prior think-
ing with aspects of the scien-
tific concept

Interiorization
Familiarizing with the object 
through operations, recognition 
of some characteristic feature in 
different representations.

Partial identification
The student identifies at least 
one substantial feature of the 
concept – the prior thinking of 
whole numbers and everyday 
experiences still dominates the 
explanations.

Generalization of a general 
feature
Transfer between different rep-
resentations.
Transitional stage from prior 
thinking to a more theoretical 
description.

Operational understanding
The student explains his/her 
answer with operational ex-
planations, such as adding 
decimals.

Condensation
Complicated processes are con-
densed for easier manipulation
Recognition of the relations 
between objects – paying at-
tention to the structure of the 
concept. 

Beginning of structural under-
standing
Identification of some struc-
tural feature of the concept, 
such as that there is infinity 
of numbers between any two 
rational numbers.

Understanding/explaining a 
scientific concept as a result of 
conceptual change (revision).

Transition level from the level of 
condensation to reification 
The concept is detached from 
the operations that gave rise 
to it.
The new concept is ”officially” 
born.
Identification of the relations 
between the objects and gen-
eralization.

Level of structural awareness
Indication of the structure of 
the number domains and of 
comparing them.
Continuity is based on the con-
cept of limit 
Real numbers represent the 
points of the number line, 
where there are no gaps.

Notes. 1 Vosniadou, 1994; 1999. 2 Sfard, 1991; Sfard & Linchevski, 1994; Goodson-Espy, 
1998.
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In this article, we use the theoretical framework described above to ex-
plain the difficulties students have in learning the density of numbers on 
the number line and the concept of limit. Further, our aim is to point 
out the most difficult transitions where support in teaching is particu-
larly needed.

Method

Participants

A number concept questionnaire was given to 538 students (mean age 
17.2 years, boys 62.4% and girls 37.6%) of advanced mathematics from 
24 randomly selected Finnish upper secondary schools after their first 
calculus course.

Procedure
In the questionnaire students’ preliminary conceptions of real numbers 
were tested, such as: (1) the hierarchical nature of real numbers, where 
irrational and rational numbers, integers and natural numbers are un-
derstood as sub sets; (2) the density of rational and real numbers on the 
number line, and (3) the concepts of limit and continuity, which are tra-
ditionally taught in the context of functions. The students were asked to 
estimate their certainty while answering the questions using a scale from 
1 to 5, where 1 meant that their answer was a wild guess, and 5 that they 
were absolutely sure, as sure as they know that 1+1=2.

Qualitative analysis and scoring of answers
In the critical questions, where students were asked to explain their an-
swers in their own words, the qualitative analysis of students’ written 
answers and explanations was based on the theories of conceptual change 
together with the theory of mathematical concept formation as explained 
in Table 2. Twenty-two percent of the qualitative data (students’ explana-
tions on number line, continuity and limit of a function) was independ-
ently analyzed by a teacher of mathematics, teaching upper secondary 
courses, and 92.2% unanimity with the researcher was reached. After 
the qualitative analysis, the answers were scored from 1 to 5 so that the 
lowest level of answers, which was totally based on thinking of whole 
numbers, scored 1 and the highest level of answers 5. Further combined 
variables were calculated to represent the domains measured in the test: 
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the hierarchy of number domains, density of numbers on the number 
line, and continuity and limit of a function (Table 3).

Table 3. Combined variables of the different aspects of real numbers measured in 
the test.

Combined 
variables

Number
of items Examples of the items

Alpha

Scores Certainty

Numbers 
and hier-
archy

6 Write the names of all the domains of 
numbers the given number belongs to 
(like the numbers -5; 8√3; 12; 22/7)
Write an example of an irrational number 
in a decimal form
How many real numbers of form a√2 are 
there on the number line between -4 and 
10, where a is an integer?

.640 .791

The den-
sity of 
numbers
on the 
number 
line

4 How many fractions are there between 
numbers 3/5 and 5/6 on the number 
line?
Which fraction is the ”next” after 3/5 
and which real number is the closest to 
1.00?

.761 .792

Function, 
limit and 
continu-
ity

5 Identify the functions (in picture) which 
are continuous/ have a limit at x = 1.
Sketch a function which is discontinuous 
at x=1 and has a limit f(x) = 0.
Explain in your own words what is meant 
by the continuity and limit of a function.

.684 .790

Results

It was typical of the students’ answers that the answers were better in 
the domain of numbers than on the density of number line (Table 4); and 
that only a few (fewer than 10 of the high achieving students) found any 
connections between the density of numbers on the number line and the 
concept of limit. Further, there was a significant association with gender 
both in the scores, F (1, 535) = 4.82; p = .029, and in the certainty es-
timations, F (1, 535) = 23.57; p = .000; the boys had both better scores 
and higher certainty estimations than the girls. The scores and certainty 
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estimations were highest on the domain of numbers and the lowest on the 
domain of functions, in the ANOVA for repeated measures there were 
significant difference in the scores, F (1, 522) = 5.06; p = .025, which 
had an interaction with the achievement level of students in mathemat-
ics, F (1, 522) =5.06; p = .025, and to the gender F (1, 522) = 1. 522) = 
0.49; p = .002. All the students had the lowest scores in the questions 
pertaining to the density of numbers, where also the differences between 
the different levels of achievers were the smallest. This tendency was 
most obvious in the girls’ scores, where there were no statistical differ-
ence between the high and low achieving girls (Table 4). Respectively in 
the certainty in the ANOVA for repeated measures, F (1, 524) = 128.5; 
p = .000, and a significant interaction with achievement level, F (1, 524) 
= 6.43; p = .002, but no interaction with gender. Both the boys and the 
girls gave the highest certainty estimations in questions pertaining to the 
numbers, and the high achieving girls gave their lowest certainty estima-
tions on questions about the density of numbers.

It is important to notice the general tendency to overestimate the cer-
tainty in the domains of numbers and density of number line, and under 
estimate it in the domain of the function. The rather high scores on the 
tasks pertaining to the functions come mainly from the identification 
tasks, where the continuity was identified mostly correctly (no gaps).

In the qualitative analysis of students’ answers (see Table 5), the dis-
crete nature of the students’ explanations of the number line was obvious 

Table 4. The means and standard deviations of scores and certainty estimations, 
where these are calculated as per cents of maximum.

Achieve-
ment
level in 
mathe-
matics n

NUMBERS DENSITY FUNCTION

Scores 1 Certainty 
estim. 1

Scores 1 Certainty 
estim. 1

Scores 1 Certainty 
estim. 1

Boys Low 106 38 (18) 45 (21) 27 (18) 36 (24) 36 (16) 39 (21)

Average 135 44 (16) 52 (19) 35 (20) 46 (28) 42 (17) 41 (22)
High 88 55 (17) 62 (20) 42 (22) 53 (31) 48 (20) 44 (24)

Girls Low 45 37 (15) 40 (19) 21 (16) 31 (24) 38 (14) 31 (17)

Average 114 42 (18) 47 (20) 27 (20) 33 (26) 41 (16) 35 (17)

High 40 53 (17) 57 (22) 25 (19) 27 (24) 50 (17) 39 (21)

Note. 1 Mean (Std.)
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in the primitive level of answers, where they used the spontaneous logic of 
whole numbers, such as that there are six or seven numbers between the 
numbers 3/5 and 5/6. The answers classified on the partial identification 
level were indefinite, such as ”many”, ”infinite” without any explanations. 
However, a clear difference was seen on the operational understanding 
level, where students clearly referred to the use of operations for adding 
the density or explained their answer by stating that it is not possible to 
define the next number with arguments such as ”... because it is always 
possible to make them more exact”, ”... add decimals”. These answers in-
dicate operational kind of understanding. Very few of the students gave 
any signs of structural abstraction of the number line in their explana-
tions, for example, ”It is not possible to define the next one, because the 
principle of the next number is valid only in the domain of natural num-
bers or integers”.

In the respective analysis of the answers and explanations in the 
domain of functions, the answers classified as being on the primitive 
level described the continuity as a cause of something that ”does not 
stop” or ”continues pretty long and terribly far”. In the respective expla-
nations of the limit, the students gave explanations where the continuity 
was bounded by the limit ”it’s the place where the graph ends”, or they 
described it as the maximum or minimum of a function where ”it is the 
value where the function has its maximum or minimum”, or even a poetic 
answer ”the place of the hills and valleys of a function”. The explanations 
classified on the partial identification level were clearly based on the dy-
namic of continuity caused by motion ”the function does not jump over 
the numbers”, by the operation of drawing, ”it is possible to draw without 
lifting the pen”. In all these answers there was either a clear intuition of 
motion as a cause of continuity.

Although the explanations were clearly based on an everyday intui-
tion of continuity, in these answers there was a different dimension of 
continuity compared to the previous level. These answers were closer to 
the mathematical continuity that is defined at one point. In the case of 
the concept of limit these were the answers where the students identified 
the abstraction of successive division of the limit concept, and explained 
this abstraction as dynamic approaching. These answers were still very 
indefinite, and vague, but there were a clear change compared to the 
previous level; ”... it approaches a value ”, ”the graphs approach the point 
but do not hit it”, ”the value the function approaches but never reaches”. 
Although the students had recognized the abstraction of successive divi-
sion, the answers were tied to the dynamics of motion. The intuition of a 
limit as a boundary (see Figure 1) was still there, but instead of explain-
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ing the limit as a ‘stop’ sign, the boundary was explained as something 
that is forever possible to get closer, but never reach.

The answers classified on operational understanding levels were those 
where the students had got away from motion as the cause of continu-
ity and tried to get closer to the mathematical continuity. They tried to 
describe the unbroken continuity as a graph; ”a function has a value y for 
every value of x”, ”a function is continuous everywhere and can have all 
the values of the number line”. The responses of these students were not 
mathematically correct, although, the change of explanations from the 
dynamics of motion to a more mathematical description of the continu-
ity at one point was seen.

From a concept change perspective, this level represents a transition 
level for the student. At this level the students still seem to be relying 
on their primitive intuition of continuity, but not of motion, rather of an 
unbroken line, but dynamics of motion are no more there. In the case of 
the concept of limit, in students’ answers it was explained in more exact 
terms, the operation of approaching was described as dependence be-
tween a variable and the function; ”A function approaches a value while 
x gets closer some value”.

It is only on the level of beginning structural abstraction, when the 
students begin to explain the continuity based on the limit conception, 
that we can see an essential conceptual change occur or is beginning to 
occur. These were the few answers in which the students explain ”a func-
tion is continuous if it has at that point a left hand and right hand limit 
and they are the same and the same as the value of the function” or that 
”the limit is the value that the value of the function gets closer to when 

Figure 1. Limit of a function as a bound; the most popular drawings (42 %) of the stu-
dents in the task where the students were asked to sketch a function which is discontinu-
ous at x = 1 and has a limit f(0)=0.
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Table 5. The quality of the conceptual change in learning the basic concepts of real numbers 
and the percentages of different levels of answers 

Numbers

Number line Limit of the function

Density Limit Continuity Limit

Starting level Natural numbers Discrete number 
line or natural 
numbers, no last 
numbers

”Next” number, a 
successor

Continuity caused 
by motion

Limit stops the 
continuity

1. Primitive 
level- coherent 
use of the rules of 
discrete natural 
numbers

There are deci-
mal numbers, 
fractions, whole 
numbers, square 
numbers …

15.2 %

You can count the 
numbers between 
two fractions if 
you multiply the 
fractions so that 
the denominators 
are the same 

45.2 %

You get to the 
next by adding 
one… 4

71.9 %

Continuous if 
there is no end

50.9 %

Limit as a bound-
ary to continuity 
or a maximum or 
minimum value

74.2 %

2. Level of partial 
identification – 
enriched model- 
wavering use of 
rules

Identification 
of some of the 
number domains, 
crucial mistakes 1

51.9 %

There is infinity of 
numbers between 
any two numbers3

32.2 %

There is no ”next” 
number / there is 
infinity of num-
bers

16.9 %

Continuous if 
there are no jumps 
or if the func-
tions continues its 
motion

22.3 %

Getting closer but 
never reaching

16.0 %

3. Level of 
operational 
understanding – 
enriched model- 
wavering use of 
rules

Systematic models 
of the hierarchy: 
domain of rational 
numbers is miss-
ing, problems 
with representa-
tions of irrational 
numbers2

28.4 %

Explanations of 
the density of the 
numbers on the 
number line is 
based on potential 
repetition, making 
numbers more 
exact or adding 
decimals
 

20.6 %

The successor is 
not defined be-
cause of potential 
infinite divisibility 
or infinite adding 
of decimals

9.1 %

A function is 
continuous if 
there are no gaps 
in the graph / if 
it is defined at 
every point (based 
on continuity as 
something with-
out gaps or as an 
unbroken line)

24.0 %

Value of a func-
tion gets closer 
when the value of 
the variable gets 
closer

7.8 %

4. Level of be-
ginning structural 
understanding – 
enriched model- 
coherent use of 
rules of compact 
numbers

Correct presen-
tation of hierarchy 
of numbers

4.5 %

Explanations of 
the density of the 
numbers on the 
number line is 
based on explana-
tions of the limit 

2.0 %

The successor 
is not defined 
–always possible 
to find a number 
which is closer/ 
a limit 

2.0 %

Continuous at the 
point where the 
limit of the func-
tion is the same 
as the value of the 
function at the 
point

2.8 %

A function has a 
limit when the 
left and right hand 
limits are the same

2.0 %

Total 100 % 100 % 100 % 100 % 100 %

Notes. 1By crucial misconceptions we mean for example identifying irrational numbers as rational 

numbers or treating integers and rational numbers as sub sets of natural numbers 
2 Presenting irrational numbers as rational numbers, complex or negative numbers 
3 Answers where the students only wrote that there are infinity of numbers between the two given 

ones, but did not explain their answer.
4 For example, that the ”next number” after 3/5 is 4/5.
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the variable approaches a certain value”. What is noteworthy from the 
conceptual point of view is that, in the case of continuity, the students 
are able to give mathematically rather high level of answers just by rely-
ing on their primitive intuition of continuity as something that does not 
have ”gaps”. In the case of limit, there were also only a few students who 
showed some structural intuition of the limit concept in their answers.

Altogether, the quality of students’ knowledge in written answers 
seemed to be composed of fragmented pieces of knowledge with hardly 
any connections or relations between the components. In the Table 5 this 
lack of connection is represented in the table as an unbroken line sepa-
rating the different components and levels. A double line represents the 
places of more difficult change where a special support for the learning is 
needed (also indicated by the percentages of different kind of answers).

The table does not suggest that for all the different components the 
developments of changes occur simultaneously. Instead the results sug-
gest that it is possible that the development of different components is 
possible independently of the other components. A dotted line in the 
model represents the places where there seems to be a transition stage 
to the next level.

Discussion
The results of this study indicate that the majority of students had not 
restructured their prior system of beliefs to understand these concepts 
even at the preliminary level. Their real number concept seems to be a 
mixture of fragmented pieces of advanced logic and of powerful pieces of 
primitive logic based on finite processes and everyday experiences. The 
fundamental presumption of always having a next number is one of the 
basic experiences students have about numbers, and it is hard for them to 
imagine a situation where it can not be determined. Because the partici-
pants were students of advanced mathematics courses in upper secondary 
school they had a lot of experience with rational numbers and operations. 
It is therefore likely that most of them would have remembered that it 
is possible to divide the fractions infinitely if they had been reminded of 
it. The results, however, indicate a situation, in which this knowledge of 
fractions constitutes an isolated piece of knowledge. When the students 
read the word ”next” they spontaneously used the logic with which they 
had more experience.

Adding to the density of the number line requires the enrichment of 
prior knowledge, and the students seem to be able to give correct opera-
tional level answers, although their thinking of numbers is still based on 
the discrete nature of numbers. Accepting the logic that it is impossible 
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to define the ”next” number demands a radical but most of all a conscious 
reconstruction of one’s prior thinking. This difficulty was clearly seen in 
some of the answers, where the students on one hand wrote ”it is not pos-
sible to define the next” but, on the other hand, continued to believe in 
the actual existence of this kind of number, ”... but it is the one which is 
the closest”, ”... the one which has most of the 9:s”, ”... I do not know but 
it has a lot of nines” (Merenluoto & Lehtinen, 2002, p.249).

From a conceptual change point of view, it seems that as long as the 
continuity is thought of as something without gaps, and the limit as some-
thing that it is possible to dynamically get closer but never reach, the en-
richment of the prior knowledge is sufficient. Although the answers of the 
students are close to the mathematical continuity, the everyday intuition 
of an unbroken line supports the students but leads to restriction of un-
derstanding. Respectively, in all the answers where the students referred 
to approaching and not reaching, there remains the primitive based in-
tuition of a restrictive nature of the limit. Therefore, these explanations 
still seem somewhat ”synthetic”. The student has preserved the essential 
feature of his/her prior thinking and enriched it with specific pieces of 
scientific knowledge.

The difference in students’ certainty estimations in the domain of 
number line compared to the one in the context of function suggest that 
it would probably be wise to teach the difficult concept and abstraction 
of limit first in the context of the numbers on the number line. Later, the 
abstraction of limit could be transferred to the context of functions, for 
example, using a meta-concept of ”density” in the points of the graph. 
Although according to the mathematical viewpoint, it is logical first to 
teach the concept of limit in the context of discontinuous functions, this 
teaching order seems to strengthen students’ everyday conceptions of 
limit as a boundary. The highly resistant nature of prior knowledge was 
very obvious in the students’ answers, suggesting the necessity of explic-
itly highlighting the difference between prior thinking and the new con-
cept in the teaching of these concepts. Moreover, it would be wise then 
to discuss the limit of function in the context of continuous functions 
where the function has a limit at every point where it is defined, and only 
later introduce the context of discontinuous functions.
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1 A function is continuous at a point x0 if the right and left hand limits are 

the same as the value of the function at the same point x0.
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Sammanfattning
I denna artikel beskrivs de viktigaste resultaten från en studie, där elevers 
förmåga att uppfatta matematiska tal testades. 538 elever (i medeltal 
17,2 år) från 24 slumpmässigt valda finska gymnasier deltog i studien. 
Eleverna svarade på frågor som innehöll identifierings-, klassificerings- 
och konstruktionsproblem inom området för rationella och reella tal. 
Eleverna ombads också förklara sina problemlösningar med egna ord 
och uppskatta svarens säkerhet. Teorier om begreppsförändring (Vosnia-
dou, 1999) och matematisk begreppsutveckling (Sfard, 1991) användes 
för att klassificera studenters förklaringar. Majoriteten av eleverna hade 
stora svårigheter med begreppen. Resultatet indikerar att elevernas tidi-
gare föreställningar begränsade deras insikter. Utgående från resultatet 
hävdar vi att de problem som elever har med de svåra begreppen inte 
bara förorsakas av begreppens komplexa natur, utan också av kvaliteten 
på deras tidigare kunskap. Detta har inte tillräckligt beaktats inom den 
traditionella undervisningen.
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