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introduction
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The genetic method of O. Toeplitz is a structuring of conventional instructional
material using historical insights and historical problems, not for a history course,
but for the better understanding of modern mathematics by students today. The
paper which follows describes an introduction to integration suitable for a first
course in analysis, in the style of Toeplitz. After two examples of the Greek method
of exhaustion (intended for lecturers rather than students), historical developments
from the 17th and 19th centuries pinpoint the conceptual steps which a student
must take in a conventional first course in analysis up to the Riemann integral.

Because of previous misunderstandings exposed by the rigour of
Weierstrassian analysis, university lecturers in analysis today
generally try to keep to a deductive sequence for fear of creating the
old misconceptions. However, a logical development may not
coincide with a psychological or intuitive development. Logic prefers
generality; intuition needs special cases.

Teaching experience, or psychological research, may well provide
the appropriate examples for an intuitive development; but there are
cases where the difficulties of a deductive sequence are well-known
and seemingly perennial. A typical modern student, for example,
comes to analysis knowing that integration is "anti-differentiation",
and having used integration for practical purposes. From the student's
perspective, the definition of the Riemann integral is not the obvious
next step. In such cases, an examination of how mathematicians in
the past have come to new understandings may well suggest a clearer
developmental sequence and effective exercises for today's students.

In relation to the development of the theory of integration there
are both progressive developments (from geometry to algebra, from
curves to functions) and there are fluctuating methods (equal or
unequal partitions, upper and lower sums or limits). If students
experience these changes step by step, the development seems
reasonable. If the changes come all at once, they may be indigestible.
Using history to locate steps in development is the 'genetic method'.

Robert P. Burn is professor of Mathematics Education at Høgskolen i Agder,
Kristiansand, Norway.



The 'genetic' method was so-termed by Otto Toeplitz in a lecture
in 1926 in which he said

Regarding all these basic topics in infinitesimal calculus which we teach
today as canonical requisites, e.g., the mean-value theorem, Taylor series,
the concept of convergence, the definite integral, and the differential
quotient itself, the question is never raised 'Why so?' or 'How does one
arrive at them?' Yet all these matters must at one time have been goals of
an urgent quest, answers to burning questions, at the time, namely, when
they were created. If we were to go back to the origins of these ideas, they
would lose that dead appearance of cut and dried facts and instead take
on fresh and vibrant life again.
(Jahresbericht der deutschen mathematischen Vereinigung, XXXVI (192 7),
88-100, reprinted in the preface to the German edition of Toeplitz (1963).)

The question which Toeplitz was addressing was the question of
how to remain rigorous in one's mathematical exposition and teaching
structure while at the same time unpacking a deductive presentation
far enough to let a learner meet the ideas in a developmental sequence
and not just a logical sequence. While the genetic method depends
on careful historical scholarship it is not itself the study of history.
For it is selective in its choice of history, and it uses modern
symbolism and terminology (which of course have their own genesis)
without restraint. Characteristically the history chosen is of special
cases which did in the past and can for students today suggest fruitful
generalisation. Those familiar with The Calculus, a genetic approach,
by Toeplitz (1963) will recognise, in what follows, a reworking and
extension of parts of chapters 1, 2 and 3 of that book. Many details
have been modified, but the central idea belongs to Toeplitz. The
outline here will repeatedly show mathematics developing from a
special case to a generalisation. The development is presented for
the most part in historical sequence. But since the prime intention is
to provide a learning sequence, not to teach history, anachronisms,
historical inversions and 'rational reconstructions' are to be found in
all the sections except D12. An appropriate attention to historical
development in any part of mathematics will give clues as to how
knowledge has been and can be formed. Some of the history here
has been retold many times with varying degrees of precision. To try
to make the history that is used as accurate as possible I have cited
primary sources wherever possible.

The initial motivation for most of the early development of
integration was the measurement of areas bounded by curves. From
Fermat onwards, the methods were algebraic. With the indefinite



integrals of Newton and Leibniz the content of integration itself took
on an algebraic character, and with the definitions of Cauchy and
Riemann, the geometric nature of integration was reduced still further.
As our story begins, area is a primitive notion, and areas may be
compared only with other areas, with all measurements being
essentially positive. With the Fundamental theorem the signing of
areas becomes necessary, and with Riemann the definition of the
integral is a formal one. But Riemann's definition results from
stretching and consolidating the notion of area.

Alongside the shift from geometry to algebra was the increasing
generality of the functions under discussion. With Fermat, powers of
x (other than -1, but including radicals) and hence polynomials could
be integrated. The functions which Newton integrated could all be
expressed as power series. But in the nineteenth century, Fourier
series provided a wider class still, and this was the context which
provoked Riemann's widening of the notion of integrability.

A learning sequence could consist of sections B, C and D,
restructured as a sequence of problems. Section A is background
material for the lecturer; it is not for every student. It must be said
that the 'genetic method' does not presuppose any particular teaching
style or form of classroom organisation. It can be the basis of
conventional lectures, or better, a course structured in the form of a
sequence of problems to be solved. The point of the method is that
students should work with a developmental sequence of ideas, not
just follow the logic.

A. Ancient Greek mathematics - two special cases, the
circle and the parabola. Approximation by triangles.

1. The areas of two circles

EuclidBookXn.2 (c. 300 BC). Translated in Fauvel and Gray (1987), p.136.
The areas of two squares are in the ratio of the squares of their sides.
This comparison extends to rectangles, parallelograms and triangles
and hence to polygons. Does the proportion extend to circles? That
is, is the ratio of the areas of two circles with radii r and R r2: R2?
The result is so familiar to us that it may seem hardly worth proving,
but to doubt it and to address the possibility of a proof is to engage in
an activity which is characteristic of any real analysis course. Euclid
approached this problem by studying the areas of regular polygons
inscribed in and circumscribed about a circle (a foretaste of the lower
sums and upper sums in the later development of integration).



Figure 1

Consider a circle with radius r. Let the area of a regular polygon
with n sides inscribed in the circle be p, and let the area of a regular
polygon with n sides circumscribed about the circle be qn. The
geometric affect of doubling the number of sides of these polygons
is to reduce the area between the polygons and the circle by more
than 1/2, that is a-p2n< 1/2 (a -pn) and q2n-a< 1/2(qn - a), where a is
the area of the circle. This ensures that if n = 1, 2, 4, 8, 16, ..., the area
qn - pn eventually becomes as small as one might wish.

Now consider another circle with radius i?, area A, and the areas
of regular n-gons inscribed and circumscribed about the circle being
P and Q .



arbitrarily small as n = 2k increases, so the two numbers R2a and r2 A
are sandwiched between the same diminishing bounds. Thus either
inequality (R2a > r2A and R2a < r2A ) is denied and we have R2a = r2A

2. A segment of a parabola

Archimedes (c. 250 BC). Tranlated in Fauvel and Gray (1987), p. 153.
Archimedes was able to show that the area of a segment of a parabola
was 4/3 times the area of the largest triangle which could be drawn
in the segment. This was called the 'quadrature' of the parabola
because it determined a square with area equal to the required
parabolic segment. We can understand Archimedes' limiting
argument, by dressing it in modern notation.

Figure 2

On the parabola y = x2, let 5 be the point (s, s2) and T be the point
(t, t2). If U is the point (1/2(s + t), (1/2(s + f))2), then the area of the
triangle STU is:



(The tangent at U is in fact parallel to the chord ST.) Because the
triangle STU is exactly half the area of the parallelogram illustrated,
triangle STU takes up more than half of the segment standing on ST.
What it does not take up are the segments standing on SU and UT

Since the area of triangle STU is proportional to the cube of the
difference of the parameters at S and T, the area of each of the triangles
constructed similarly in the two segments standing on SU and UT
respectively is 1/8 of the area of STU. If we denote the area of triangle
STU by A, then the two further triangles have a combined area of A/
4. The portion of the area of the segment standing on ST not covered
by the area A +A/4 now appears as four smaller segments. Triangles
fitted in these four segments have a combined area of A/16.

Continuing in this way, triangles within the parabolic segment ST
may give a combined area of A +A/4 +A/16 +... + A14n. This can be
made as close to 44/3 as we wish, so the area of the parabolic segment
is not less than 44/3. Moreover each step, for geometric reasons,
measures more than half of the area remaining, so if P is the area of
the parabolic segment,

Each of these sums is greater than 44/3. But if the parabolic
segment had area greater than 44/3, eventually one of these sums
would be less than that supposed area.

Equality is the only remaining option so the parabolic segment
has area 44/3.



B. Parallel rectangular strips of equal width

3. Fermat and Roberval find areas between the curves y = x2

and y = x3 and the x-axis.(1636)

Translated in Mahoney (1994), pp. 220-1.
Having invented coordinate geometry about the same time as
Descartes, Fermat tried a new method for solving an old problem to
which he already knew the answer. This method was to dominate
thinking about these problems for more than 200 years. He sought
the area bounded by the x-axis, the line x = a and the curve y = x2.
Computing from Archimedes' results (A2, above) would have
enabled Fermat to determine this area to be a3/3 (= area of the triangle
(0, 0)(a, 0)(a, a2) less the area of the parabolic segment standing on
(0, 0)(a, a2) = 1/2a·a2 - (4/3)(a/2)3). We interpret the methods which
Fermat and Roberval used, from their correspondence, in which the
following seems to be implicit.

Figure 3

The area has been divided into n rectangular strips, parallel to the y-
axis, each of width a/n. With the longest strips which could be inside
the area, these together had area

Calculating with the shortest strips



which just covered the area, these together had area

Using the formula 12 + 22 + 32 + ...+ n2 = n(n + l)(2n + l)/6,
simplifying, and denoting the area to be found by A,

Now these inequalities hold for all values of n, and this leaves a3/3
as the only possible value for A. This exclusion of impossible answers
by inequalities closely echoes the Greek method of exhaustion.
Neither Fermat nor Roberval gave details of how they considered
the limiting process, but in C6 Fermat refers to Archimedes' method
of inscribed and circumscribed polygons.

The application of this method to show using

follows quite naturally. Both
Fermat and Roberval, in their correspondence, recognised that their

method could be extended to give for any positive

integer k, provided they had sufficient information about the sum

Such a result leads also to the value of the integral since
the graph of y is the mirror image of the graph of y = xk about

the line y = x.

4.The logarithmic property of areas under y = 1/x.

Gregory of St. Vincent (1647) interpreted by Antonio de Sarasa (1649)
and translated in Katz (1993), p. 449-450. The use of rectangles of
equal width here is a suggestion of Toeplitz (1963, p. 55-57). Gregory
of St. Vincent used indivisibles.

Neither the algebra of Fermat used in B3 above nor that which he
used in C6 below can be extended to k = -1.



Figure 4

Without knowing the value of it is possible to compare

by dividing both the intervals [a, b] and [ta, tb]

on the x-axis into the same number, n, of equal parts at a,

respectively.

If rectangular strips are constructed on these intervals just covering
the curve, the corresponding rectangles for the two integrals are equal
in area. The areas of matching strips being

Corresponding rectangles just inside the curve are also equal in area.
Letting n tend to infinity we have

which is the logarithmic property.



5. Generalisation of B3 and B4 to monotonic functions

The graphs of discontinuous functions do not appear to bound an area,
so their integration was not considered until they appeared as the limits
of Fourier series in the nineteenth century. The analytic definition of the
Riemann integral (1854, but published 1867, see D11 below) opened
up this possibility, and Darboux (1875) and others determined necessary
and sufficient conditions for integrability in Riemann's sense (see D12
below). For one particular class of functions, Newton's (1687)
generalisation of the method of Fermat and Roberval, translated in Fauvel
and Gray (1987), p.391, lemma II) is adequate to establish the integrability
of any real monotonic function, f, whether continuous or not, because it
establishes the arbitrary closeness of upper and lower sums.

Figure 5

If the domain of such a function [a, b] is divided into n equal segments,
the difference between an upper sum (of areas of minimal
circumscribing rectangles) and a lower sum (of areas of maximal

inscribed rectangles) is This difference tends to 0

as n tends to infinity, as in the Greek method of exhaustion. The upper
sums are evidently greater than the area being sought and the lower
sums less than the area being sought. Since the upper and lower sums
are arbitrarily close, they define a Dedekind cut, and the integral is
well defined.

Unlike sections A2 and B3, where the rational numbers suffice,
the argument here, as also in A1 and B4, presumes the completeness
of the real numbers, and indeed such a proof belongs properly within
Weierstrassian analysis.



C. Parallel rectangular strips of unequal width

6. A geometrical dissection to find

Fermat (c. 1640), translated i Struik (1969), p. 219-222, and Mahoney
(1994), p. 244-254.
Fermat acknowledges at the end of his correspondence with Roberval
in 1636 that the method of section B3 could not be used to obtain

, unless k were a positive integer or its reciprocal. In Fermat's

unpublished Treatise on Quadrature (1658), he exhibited a new
method to tackle the other possibilities.

FIGURE 6

Taking r > 1, and circumscribing the curve y = 1/x2 with rectangles
based on the x-axis on the segments [a, ar], [ar, ar2], [ar2, ar3],... ,

the upper sum =

Now let r tend to 1 and the area under the curve is 1/a.
Fermat recognised that this method could be applied to any integral

of the form when k is a rational number greater than 1, and

(using r < 1) to any integral of the form when k is a positive
rational number.



7. A geometrical dissection applied to

At the end of chapter VII on logarithms and exponentials in
Introductio ad analysin infinitorum (1748) Euler obtained the limit

In a as n tends to infinity by inverting the limit

In Gregory of St. Vincent's study of y = 1/x (1647) he had shown
that if the area between the curve and the x-axis is divided by lines
parallel to the y-axis, but spaced out on the x-axis in a geometric
progression, the areas marked off are equal. (Boyer, (1949) p 160)
This is justified in B4 above.

Area of upper rectangle

Upper sum

Area of lower rectangle:

Lower sum

Figure 7

If the segment [ 1, a] is partitioned into n pieces in this way we obtain:

lower sum upper sum,

which gives the logarithmic limit as This
particular derivation is not old.



8. The fundamental theorem of calculus, with Newton/Leibniz
assumptions

Before Newton's period away from Cambridge (1665-1666),
independent methods of computing the slopes of tangents and areas
under curves had revealed that, for polynomials, these two kinds of
computation were algebraic inverses of each other. Newton, with
his dynamic view of curves formed by a moving point, found a reason
why, which he described in an unpublished tract of 1666, translated
in Whiteside (1968), p. 427 and 430. Newton saw that the rate of
change of the area under a curve was given by the y-coordinate at the
point of change. If o is a small amount of time, and the rate of change
of x denoted by x, then, as in figure 8, oA = y • ox, and, in the limit,
A/x = y. More obviously the slope of the tangent is y / x , and so
the relationship between area and the y-coordinate is matched by
relationship between the y-coordinate and the tangent slope. This is
the fundamental theorem.

Figure 8

Newton illustrated rather than proved this, in 1669, (translated in

Whiteside, 1968, p 207) by taking and obtaining

He then claimed the converse.



The (implied) intermediate steps are

2) an expansion by the binomial theorem,

3) division by o,

4) regarding o as negligible.

These are exactly the same algebraic steps as when finding slopes.

Leibniz came to the same conclusion after examining how sums
and differences combined with each other. Our integral sign is
Leibniz' drawn out S for sum, and the d in our dx is Leibniz' initial
for difference.

Both Newton's and Leibniz's notation were geared to indefinite
integrals and the generality of their claims made it necessary to treat
areas as having a sign (±). Both of these steps are steps away from a
purely geometric notion of integral.

All Newton's functions were (at least locally) both continuous
and monotonic, though that is not the way either Newton or Leibniz
would have referred to them. But it is just such conditions on functions
which makes it natural to view them as curves, and this in turn makes
the fundamental theorem easily accessible.

This theorem was so fruitful that throughout the eighteenth century
integration became synonymous with anti-differentiation. Integrals
were habitually taken to be indefinite integrals, and definite integrals
were evaluated by finding the difference between two values of an
anti-derivative. Leibniz's account is given in Struik (1969), (p. 282).

D. From geometry to algebra

9. Cauchy's definition of the integral (1823)

Throughout the eighteenth century, the power of the fundamental
theorem meant that integration was regarded as the opposite of
differentiation. The functions Cauchy considered (and it must be said
that Cauchy looked at functions rather than curves) included sin (1/x)
(Cauchy 1821, p. 14) which, though continuous away from the origin,
had no familiar anti-derivative and was not monotonic in any
neighbourhood of the origin. In his Résumé des Leçons sur le Calcul
Infinitésimal, (Cauchy 1823), Cauchy says that his first concern is to
establish the existence of integrals before studying their properties,



and it was he who insisted on the primary status of the definite integral.
So in Leçon 21, he considered a function f continuous on a closed
interval [a, b] and worked from an arbitrary dissection of the interval
into n pieces: a = x0 < x1 < x2 < ... < xn = b.

He examined the sum

(Look and see the connection between this sum and the terms in the
computations in B3, B4, B5, C6 and C7 above, to see how Cauchy's
definition is a generalisation of earlier ideas.) He then conceived a limit
of S as the dissection becomes finer and the greatest of the (x.i+1 - x.)
tends to 0.

Cauchy did not distinguish between 'continuity' and 'uniform
continuity' in the modern sense, so he was able to show that when the
dissection was fine enough the different possible values of S were close
together, but the proof of the existence of a limit for S depended on a
clearer notion of the completeness of the real numbers than Cauchy had.

10. Cauchy's version of the fundamental theorem (1823)

We will illustrate the novelty and precision in Cauchy's version of
the fundamental theorem of the calculus in two steps, firstly with
continuous and monotonic functions (Newton's curves) and then as
Cauchy did, with arbitrary continuous bounded functions.

In was only from 1820 that Fourier proposed the notation

for a definite integral, and it is this notation which assists in the
definition of the integral as a function of x



whether there is an algebraic formula for F or not. We then have

Figure 10

To see the structure of Cauchy's argument, we will first see it working
in Newton's context of a continuous and monotonic increasing
function f.

Now let

continuous, and so

Figure 11



Cauchy's argument, in Cauchy (1823), of course requires that the
function/is continuous, but not necessarily monotonic. The definition
of the integral, as a function of x, given above, still holds.

between 0 and 1, appealing to his Intermediate Value Theorem for
continuous functions, since the value of the integral lies between the
greatest and least values of h·f(t) for x < t < x + h.

This proof appears in Leçon 26 of Cauchy (1823), and this, or
something very similar to it, appears in every first course in real
analysis, today.

11. The Riemann integral (1854)

Translated in Birkhoff (1973), p.21-23.
In attempting to characterise those functions which are the limits of
their own Fourier series, Riemann (1854) found that Dirichlet's (1829)
condition of piecewise continuity could be replaced by a condition
of integrability. This raised the question of what functions might be
integrable, in a new way. Cauchy had defined infinite integrals with

a definition such as

Riemann recognised that Cauchy's definition of the integral (which
had only been stated for continuous functions) might accomodate
fix) becoming infinitely large at a point, b, by defining

He used this example to prepare his readers for something more general.
Riemann, like Cauchy, examined functions which were defined

on a closed interval [a, b], but, unlike Cauchy, without continuity as
a precondition. He considerd an arbitrary dissection of the interval
into n pieces: a = x0 < x1 < x2 < ... < xn = b. He examined the sum



where x < t < x and said that the function/was integrable when S
has a limit as max (x+- x.) -> 0. Riemann constructed a function
which was integrable in this sense but which was discontinuous on a
dense set of points. He proved its integrability by controlling the
size of the intervals on which the function oscillates finitely. Riemann
had taken the sum S, which Cauchy had constructed to prove that
continuous functions on closed intervals were integrable, and used it
to define integrability itself. Freed from Cauchy's condition of
continuity, Cauchy's and Riemann's definitions are equivalent. But
with Riemann, the notion of area under a curve had become algebraic,
with the function f integrable on [0, 1] defined by f (irrational) = 0,
f(p/q) = 1/q. (This example is due to Thomæ (1875), page 14.)

A function which is Riemann-integrable on [0, 1],
discontinuous on a dense set

Figure 12

Riemann's own example in 1854 was S((nx))/n2, where ((nx)) = 0
when nx - [nx] = 1/2, and ((nx)) = nx - [nx + 1/2] otherwise. This is hard
to graph but can be computed.



12. Upper and lower sums

Translated in Darboux (1875).
What was the difference between Riemann's discontinuous but
integrable function, and Dirichlet's non-integrable f given by
/(rational) = 1, f(irrational) = 0? Riemann described the difference
in terms of the intervals on which finite oscillations take place.
Another description was proposed in 1875 by both Darboux and Du
Bois Reymond which has since become standard. It builds on the
clearer understanding of the completeness of the real numbers which
had come with Dedekind and others by 1872.

With completeness, a function which is bounded on an interval
has both a least upper bound and greatest lower bound on that interval.
So, if f{x) is bounded on [xi, xi+1] it has a least upper bound M on that
interval and a greatest lower bound mi, and

Figure 13

Adding the n inequalities relating to the parts of S as in D11 above, we get

When the dissection gets finer, the lower sum increases and the
upper sum diminishes. But any lower sum can be shown to be less
than any upper sum by uniting their two dissections. If the lower
sums and upper sums can get arbitrarily close, they belong to the
two sides of a Dedekind cut and define a unique limit, which is the
integral. With Dirichlet's non-integrable function, the least upper
bounds are all 1 and the greatest lower bounds are all 0. With Thomæ's
integrable function the greatest lower bounds are again 0, and
although none of the least upper bounds are 0, there are arbitrarily
close upper and lower sums.



With completeness, a continuous function on a closed interval
attains its bounds and can be shown to be uniformly continuous. So
for a given positive /(b - a) we can choose 8 such that

(X i+1 - xi) < 8 implies (Mi - mi) < /(b - a), and then
max(xi+1 - xi) < 8 implies (upper sum - lower sum) < 8, making f
integrable. At last we have a full proof that continuous functions are
integrable.

Toeplitz (1963) considered his 'genetic' introduction as the content
of a lecture course. In Freudenthal's language, Freudenthal (1983)
(p.ix), Toeplitz confronts and reverses the 'didactical inversion' that
so commonly follows any major mathematical achievement (in this
case, the definition of the Riemann integral). If the steps described
here, in B, C and D, are problematised, and used to form a sequence
of exercises it may well be that the last step, to what Freudenthal
calls a 'genetic' structure may be taken, Freudenthal (1983), p. 10. I
suggest that the material here should not be lectured except to an
audience already familiar with the theory. It can be broken down
into exercise-sized chunks for study, as has been partly effected in
Burn (1997).

An excellent account of the history of integration during the 19th
century is given in Hawkins (1975).
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Abstract (in Norwegian)

Den genetiske metoden til O.Toeplitz går ut på en strukturering av
det fastsatte pensum ut fra historisk innsikt og historiske problem-
stillinger, ikke som et historiekurs, men for å styrke forståelsen av
moderne matematikk hos dagens studenter. Denne artikkelen
beskriver hvordan Toeplitz' methode kan brukes til å gi en passende
innforing i integrasjon for et grunnkurs i analyse. Etter to eksempler
på den greske utfyllingsmethoden (beregnet mer på lærere enn
studenter) blir den historiske utviklingen i 17. og 19. århundre brukt
til å belyse de begrepsmessige trinnene en student må ta i et
tradisjonelt grunnkurs i analyse fram til Riemann-integralet.
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