
Computer support for diagnostic
teaching.

The case of decimal numbers.
Anne Berit Fuglestad

Computers with different kinds of software were used in mathematics teaching
during one school year with Norwegian students of age 10-14. The development
of students' understanding of decimal numbers was investigated, using computers
to support a diagnostic teaching approach. In particular some spreadsheet tasks
were used to stimulate mathematical investigations and to generate discussions
exhibiting conflict. An item analysis of pre-test data revealed a common pattern of
misconceptions on decimal numbers. As the students worked on the spreadsheet
tasks, their concepts seemingly were in conflict with what they observed. This led
the students into lively discussions. The test results indicated that the computer
group improved significantly by comparison with the control group on part of the
test, with the greatest improvement from the 'high' spreadsheet users in the
research group.

Introduction
The use of computers in mathematics classrooms, have been studied
within different settings and teaching approaches. There are claims
that the computer has a huge potential for improving students'
performance and understanding of mathematics (Bennett, 1991;
Watson, 1993; NCET, 1996; Phillips, Pead, & Gillespie, 1995). There
is a broad range of ways computers have been used in the classes,
including drill and practice, tutorials, problem solving tasks and open
ended tasks using the computer as a tool.

Looking at computer software we may be concerned about what
view of learning or what kind of learning theories lie behind the way
the software presents the tasks to the students. Perhaps, views of
learning have not been consciously considered in the software
development. Many small programs designed to teach number skills,
can be classified as drill and practice software. The behaviourist
thinking of stimulus and response seems to have a lot of unconscious
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support in this kind of software (Bigge & Shermis, 1992). From the
amount of drill and practice software available in Norway, it seems
that this kind of computer use is widespread. I will argue that it is
possible to use computers to support a constructivist approach to
teaching and learning. According to this view of learning, the students
construct their own knowledge. The teaching approach can
acknowledge this. According to this view, the classroom should
provide a learning environment; offering experiences richly endowed
with the concepts and properties to be studied. The students should
be challenged by the contradictions of their misconceptions and
provoked into further discussions (Davis, Maher & Noddings, 1990).
Diagnostic teaching is regarded as a practical implementation of a
constructivist view of learning (Bell, 1993a; Bell, Swan, Onslow,
Pratt & Purdy, 1985) and has provided a framework for this research.
The aim of the research project was to study the development of
students' understanding and performance with decimal numbers using
the computer as a support for diagnostic teaching.

I will suggest that a spreadsheet can provide an appropriately rich
environment for investigations, experiments and problem solving
activities. Although different kinds of software were used in the
research, the examples given in this paper will be of students using
spreadsheet tasks involving decimal numbers.

Previous research

Students' understanding and misconceptions of decimal numbers have
been investigated in some large scale projects in England (Foxman et
al., 1984; Brown, 1981), and further studies have been done to study in
detail students' incorrect patterns of thinking (Bell, Fischbein, & Greer,
1984; Bell, Greer, Grimson, & Mangan, 1989; Sackur-Grisvard &
Lèonard, 1985). The students often make mistakes by generalising too
much from the rules they know for whole numbers (Resnick, Leonard,
Omanson, & Peled, 1989). Similar results have been reported in other
recent Norwegian research (Brekke, 1996a; Brekke, 1996b). The students
need more experience of exploring and discovering for themselves the
new properties of decimal numbers, to accommodate and extend their
concept of number (Bell, Greer, Grimson, & Mangan, 1989).

Studies comparing diagnostic teaching with a traditional 'positive
only' teaching approach have shown that the students seem to benefit
from the discussion in which conflicts are faced. In positive only
teaching the students are only given positive responses, trying to avoid



misconceptions (Bell, 1993a, 1993b). In particular, the diagnostic
teaching approach was also used in a study utilising calculator-based
material for teaching decimal numbers (Swan, 1983a).

The use of spreadsheets in the teaching of mathematics has also
been explored in other contexts (Healy & Sutherland, 1991; Bissell,
1995; Breiteig & Fuglestad, 1997; Green, Armstrong & Bridges,
1993). But so far, only a few experimental research studies have
been reported, e.g. on the understanding of elementary algebra
(Rojano & Sutherland, 1991; Rojano, 1993; Beare, 1993).

Research methodology
In this study, computers were used regularly through the school year
1994/95, in different topics in mathematics and with a variety of
software. In this way the students became used to computers as a
natural part of the mathematics classroom, not just in connection to
the particular topic of the research. The class teacher was responsible
for the teaching and organisation of the work in class, including the
use of computers. Most of the 15 teachers taking part in the research,
had no experience of using computers in their classes before. The
teachers were given an introductory course lasting three days before
the start of the experiment. Different kinds of software were used.
Some gave drill and practice in numbers; some provided games for
problem solving, and there were tasks to solve on a spreadsheet.

From the outset there were two sets of control classes. One set did
not use computers at all. Another used computers, but had no
information about the software and worksheets prepared for the
research classes. The purpose of this was to monitor the effect of the
computer use in the class. The research was performed in Norwegian
schools, at year levels 5, 6 and 7, that are students of age 10-14. The
sample consisted of 242 students in research classes, 297 in non-
computer control classes and 97 in computer-control classes.

All classes were given the same pre-test at the beginning of the
school year, the same post-test near the end of the school year, and
the same delayed post-test after the summer vacation. Some of the
students' work at the computers was observed, and information was
also collected by questionnaires and by interviewing students and
teachers. This article reports on results from the pre-test, some
observations from the classroom on students work using spreadsheet
tasks, and a review of the results from the post-tests of the study.



The problem of decimal numbers. Results from the
pre-test.
The aim of the test, administered as pre-, post-, and delayed post-
test, was partly to provide an instrument for measuring the
improvement in the students' performance and partly to give
information and reveal possible misconceptions in the students'
understanding of decimal numbers. For this purpose the test,
consisting of 74 single test items, was designed as a diagnostic test,
partly using test items from other research in this area (Hart, Brown,
Kerslake, Kuchemann & Ruddock, 1985; Swan, 1983b). It covered
a broad area of decimal numbers, e.g. ordering, density of numbers,
and simple calculations both with pure number work and in context.l

The students revealed a broad lack of understanding in the test,
with mean scores of 26%, 39% and 51% correct answers in the year
levels 5, 6 and 7 respectively. The most difficult area of the test
seemed to be the use of multiplication and division. A closer look at
some of the test items reveals typical mistakes.

5. a Draw a ring around the biggest of the three numbers:

0,62 0,236 0,4

b How do you know it is the biggest?

A common mistake was to give 0,236 as bigger than both 0,62 and
0,4 - explaining this as having most digits behind the comma. The
answer 0,4 and an explanation of the kind most decimal places giving
the least number, was less common than found in other research
(Swan, 1983b).

Task 5a Year 5 Year 6 Year 7
Correct 0,62 31 50 77
0,236 60 42 19
0,4 7 6 4
No answer 3 2 1_

Table 1: Answers to Task 5a. Frequences given in percentages

1 In what follows I use the Norwegian convention of using a decimal comma as decimal
point, a dot for multiplication and a colon for division.



Task 5b
Correct 20 33 60
Most digits behind comma 27 22 12
Most decimal places. Least number 1 0 1
Other/No answer 52 45 28

Table 2: Answers to Task 5b. Frequences given in percentages

A similar pattern occurred in task 6 where the students were asked to
order four given decimal numbers in increasing order.

6. Write the numbers in order, the smallest first:

a 0,3 0,7 0,6 0,1 Answer:
b 0,07 0,23 0,1 1,01 Answer:
c 0,62 0,25 0,5 0,375 Answer:

More than 90% solved 6a correctly, but table 3 reveals difficulties in
ordering numbers with different lengths of the decimal place.

Task 6c Year 5 Year 6 Year 7
Correct: 0,25 0,375 0,5 0,62 20 35 62
0,5 0,25 0,62 0,375 56 41 21
Others/No answer 23 24 16

Table 3: Answers to Task 6c: Ordering numbers

Results from Task 5 and Task 6 in the pre-test revealed that students
often think of the digits behind the comma as a separate number and
compare without taking account of the decimal comma.

Cross tabulating 5a by 6c reveales a consistent pattern in the
students' thinking. A total of 37% of the students gave correct answer
to the tasks, and 34% gave the corresponding wrong answers of 0,236
to 5a and 0,5 0,25 0,62 and 0,375 to 6c. Among students who
answered 5a correctly, 82% also gave the corresponding wrong
answer to 6c.

Students' explanations on these tasks confirmed their pattern of
thinking. In the cases where students gave the correct answer 0,62 to
Task 5b, 69% also gave a correct explanation. Of those students who
answered Task 5a correctly, gave 49% a corresponding explanation
categorised as 'most digits behind the comma'.



A few test items investigated the understanding of the infiniteness
and density of decimal numbers.

7. Write none if you think there is no answer to this task.
Write a number that is:

a bigger than 3,9 but smaller than 4:

d bigger than 0,63 but smaller than 0,64:

e How many different numbers can
you write that lie between 0,63 and 0,64?

Most students could not give any numbers between 3,9 and 4 or
between 0,63 and 0,64 and answered that there are none, or a finite
number like 8 or 10 numbers between.

Task 7d Year 5 Year 6 Year 7
Correct 16 28 45
None 45 49 34
Other/No answer 40 23 21

Task 7e
Correct: infinite 4 7 20
None 42 37 32
One number 9 15 8
Definite number, e.g. 8 or 10 16 21 22
Others/No answer 30 20 18

Table 4: Answers to Task 7d and 7e. Frequencies given in percentages

Task 10 investigates understanding of closeness.

10.

a Ring the number nearest in size to 0,16

0,1 0,2 15 0,21 10

b Ring the number nearest in size to 2,08

209 2,9 2,05 2,1 20,9



Table 5 shows the most common wrong answers.

Task 10a Year5 Year 6 Year 7
Correct: 0,2 16 37 38
0,21 65 54 53
15 12 5 3
Others/No answer 7 5 6

Task 10b
Correct: 2,1 7 20 32
2,9 16 6 11
2,05 67 69 52
Others/No answer 12 5 6

Table 5: Answers to task 10. Frequences given in percentages

The understanding of place value and meaning of neighbouring
digits is crucial for answering these tasks correctly. The students
giving the typical wrong answer, seem to think that the closest number
should have the same number of decimal places as the one given.

In many cases the mistakes can be explained by the students just
ignoring the decimal comma, or looking at the decimal number as
consisting of two separate numbers, one before and one after the
decimal comma. This was also revealed in extending number sequences
in Task 11 and in tasks of simple adding and subtraction of decimal
numbers.

11. Write the next two numbers in each sequence:
a 0,3 0,6 0,9
b 0,92 0,94 0,96
c 1,13 1,12 1,11

At first the results from the three items in Task 11 were surprising.
Task 11a appeared to be more difficult than the two next. 35%, 36%
and 40% of the students gave the most typical wrong answer of 0,12
and 0,15 as the next two numbers, and only 17%, 34% and 36%
answered correctly in the years five, six and seven respectively. Task
11a looks easy and the next two more difficult. A possible explanation
could be that the students can easily count in threes, giving 3, 6, 9, 12,
15 and so on. Therefore the result here by using similar routine becomes
0,12 and 0,15 for the next two numbers. Some of the incorrect responses
to 11a could therefore be viewed as a slip rather than a misconception.



Task 11a Year 5 Year 6 Year 7
Correct; 1,2 and 1,5 17 34 36
0,12 and 0,15 35 36 40
Others/Noanswe 49 30 24

Task 11b
Correct: 0,98 and 1,00 45 63 72
0,98 and 0,100 8 9 7
Others/No answer 47 28 21

Task 11c
Correct: 1,1 and 1,09 31 50 48
1,10 and 1,9 25 22 27
Others/No answer 44 28 25
Table 6: Answers to Task 11 a-c. Frequences given, in percentages

Looking at the next two items, the corresponding routine for counting is
weaker; the students seemingly had to concentrate more. This explanation
was also confirmed later by looking at students working on this kind of
task in short interviews. When prompted to have a closer look at the
task, the students in most cases discovered the error and corrected it.

Considering decimals as number pairs was also revealed in Task
13, adding 0,1 to 4,256 and 6,98 giving the most common incorrect
answers of 4,257 and 6,99 instead of the correct answers 4,356 and
7,08 and similar answers occurred in the subtraction problems:

13. Add 0,1 to: 14. Take away 0,1 from:
a 4,256 Answer: a 15,863 Answer:
b 6,98 Answer: b 1,06 Answer:

Task 13a Year 5 Year 6 Year 7
Correct: 4,356 40 56 70
4,257 44 34 19
Others/No answer 16 10 11

Task 13b
Correct: 7,08 24 41 59
6,99 44 35 21
Others/No answer 32 24 20

Task 14a
Correct: 15,763 35 55 71
15,862 41 32 18
Others/No answer 24 13 11_



Task 14b
Correct: 0,96 18 35 50
1,05 47 39 26
Others/No answer 35 26 24
Table 7: Answes to Tasks 13 and 14. Frequences are given in percentages

The belief that multiplication always makes the answer bigger, and
that division makes it smaller, was revealed both in some pure
numerical test items, in word problems and in the explanations given
by the students. For example, comparing three calculations, the
students belive that 5 • 0,9 gives a larger answer than either 5 : 0,9
or 5 • 0,89, giving the explanation that it has the biggest numbers or
it is a multiplication. Another task asked students to give the correct
expression to calculate the price of pork chops: "1 kg pork chops
costs 65,50 kr. What will 0,76 kg cost? " Of the year 6 and 7 students,
only 10% and 20% answered this task correctly, with 65,50 : 0,76 as
the most common wrong answer. 26% and 40% respectively of the
students gave this answer. A similar task, buying 1,7 kg of sausages,
was answered correctly by 54% and 61% respectively of year 6 and
year 7 students. On challenging students who were discussing a
similar problem, the students answered: "It has to be smaller, so we
must divide ". The view of multiplication as making numbers bigger
and of division making numbers smaller was also revealed in the
observations, and is well known from other research (Bell, Fischbein,
& Greer, 1984; Swan, 1983b; Bell, Greer, Grimson, & Mangan,
1989).

The overall results from the pre-test confirmed results from other
studies in this area, with the same misconceptions revealed, only
with some differences in the frequencies that could possibly be
explained by differences in age levels or curriculum plans (Brown,
1981; Foxman et al., 1984). Studies in the KIM project2 in Norway
recently gave similar results (Brekke, 1995; Brekke, 1996a; 1996b).
Further details of the test results can be found in my PhD thesis
(Fuglestad, 1996).

The test results reveal that students generally have consistent
patterns of thinking, but with some misconceptions, possibly arising
from generalising too far from well known properties of the whole
numbers. How can a computer help to improve the teaching of

2 KIM projct web pages: http://www.ils.uio.no/kim/kim.htm



decimal numbers? As the students appear to use their rules in a
consistent way, they need experience to reveal where their incorrect
rules fail on decimal numbers and to construct their new knowledge.
The use of computers may give instant feedback to help the students
discover their mistakes, provide a conflict situation and provoke
discussion to support a diagnostic teaching method. Some spreadsheet
tasks were designed with this approach to teaching in mind.

The spreadsheet as a tool for teaching - examples
from the classroom
A collection of worksheets was produced for the research, some
providing tasks on pure number work and some using decimal
numbers in context, e.g. a shopping list, calculating interest for money
savings. The idea was that students should meet decimal numbers in
several lessons, not just in a few lessons particularly aimed at teaching
this topic, and get used to interpreting decimal numbers in various
contexts and with different numbers of decimal places. Decimal
numbers should not be avoided, but utilised whenever appropriate to
challenge the students' understanding. With a spreadsheet to perform
calculations this is easily accessible, and more emphasis can be put
on interpretation and meaning of the results. The worksheets prepared
are available in a Norwegian version, together with other teaching
material for computers (Breiteig & Fuglestad, 1997).

NUMBER SEQUENCES WITH DECIMAL NUMBERS

Work in small groups of 2 or 3:

a Write the number 1 in cell A1 and the formula =A1 + 1 in A2. The next formula
in A3 is going to be A2 + 1. Copy the last formula down. Look at the result.
Then put another number in A1 and look at the result.

Then put the number 0,3 in B1 and write a formula in B2 so that the number in
that cell is 0,5. Copy the formula down and study the result.



b Study these number sequences and write in the next four numbers in each
column:
0,10,2 0,01 0,12 7,6 1,17
0,20,4 0,03 0,135 6,3 1,15
0,3 0,6 0,05 0,15 5,0 1,13
0,4

Make the same number sequences on a spreadsheet and compare your results.

c Here you can see some more number sequences. Find the pattern and write
down some more numbers in each column. Then make the sequences on a
spreadsheet:

1 1 4 2 4 24 7
2 3 10 3 2 6 2,8
4 9 25 4,5 1 1,5 1,12
8 27 62,5

Compare your formulas with those of your neighbouring groups. Are your formulas
the same? Could these number sequences be made in different ways?

Figure 1: Worksheet 5.

Some tasks for the spreadsheet were pure number work, planned in
particular to challenge the students' incorrect conceptions of decimal
numbers and provoke discussions and further investigation. For
example, after writing on a piece of paper what the students expected
the answer to be, they used the spreadsheet to perform calculations
and compare the result. Worksheet 5 (figure 1), exploring number
sequences, gives an example of this. Other tasks stimulate estimation
and mental calculations as students experiment with numbers to hit
a given target.

Before using this worksheet the students had used the computers
for a few weeks, and used the spreadsheet in a few lessons before.
They knew how to express a simple formula on the spreadsheet and
how to copy it to generate a number sequence using only whole
numbers. The challenge in Worksheet 5 was the use of decimal
numbers.

At first the students (of year seven) worked away from the
computers, writing the next numbers in the first three or four
sequences and suggested a formula to use on the spreadsheet to make
the same number sequence. Then they turned to the computers to try
out their suggestions and compare the results. By doing this, the
students discovered mistakes and explored further connections



between numbers. I observed several groups of students making
similar mistakes to those Lisa and Mary did in this example:

Figure 2: Lisa and Mary's work. Showing mistakes that were later corrected by
crossing out in columns D and E (column two and three in the table).

Their error is similar to the common mistake in the pre-test Task 11.
The students were asked not to wipe out their errors, but just to cross
out and write their corrections.

The students gave the correct formula in D2, = D1 + 0,2 but wrote
=E1 + 0,01 for the sequence in the E column. Then, at the computers
they discovered their errors and corrected them. I observed what they
were doing, and asked why this was wrong, referring to their numbers
0,6, 0,8, 0,10. "Oh yes, 0,10 is less than 0,8 and it has to be bigger. "
the students replied and got on with their work correcting their mistakes.

Other students extended the first two number sequences without
conflict, but met a more challenging situation when they arrived at the
sequence starting 0,12, 0,135, 0,15 ... so they just dropped it. Two
boys tried to add 122, but then - "it should be nought comma
...something" they said. They tried to add 0,112 and they tried 0,12
but it did not work. Later the one boy found he could add 0,015 but his
partner still felt unsure about this and they got into a lot of discussion
trying different solutions. Similar observations were made in other
groups. In most cases the students had no problem writing the correct
spreadsheet formula for their trials, but interpreting and comparing
decimals with different numbers of decimal places appeared to be quite
difficult. In this context it is important to use the standard format, not
a fixed number of decimal places, in the spreadsheet set-up, in order to
display different numbers of decimal places.



Next week the class moved on to work on Worksheet 8 on more
number sequences dealing with addition, multiplication and division.
Using a fixed reference, by naming a cell, it is possible to explore
many number sequences by changing just the starting number and
the number added or multiplied in the named cell.

The teacher instructed the students to give the cell B1 a name, diff,
using the appropriate spreadsheet menus. Then he put a number in
B3, the formula = B3 + diff in B4 and copied to get the number
sequence. This worked out fine for the students and they were then
challenged to make other sequences by just changing the numbers in
B1 and B3.

Figure 3: Showing the set-up used in Worksheet 8 part c, adding sequence in column B

Two girls, Sue and Ingrid, were working on part c of this worksheet,
making the same mistakes as observed with other students in writing
down number sequences, discussing and correcting their work. They
needed some hints from the teacher. I observed them several times
during the lesson. They worked well and were quite engaged in their
work. After some hesitation, following the instructions from the
teacher on Worksheet 8, they were able to try out other sequences
using the same set-up.

In part d in the worksheet they were challenged to make sequences
by multiplication in a similar way. The two girls did this fairly easily
by giving cell D1 the name daff and using formula =D3* daff in D4
and copying further down the column.

Then the girls decided they also wanted to make a number sequence
using division in a similar way. I observed their work, and they made
this also quite easily, only briefly asking if they needed to give cell
Dl a name similar to the names used before. They invented new
names duff and tuff"for the next cells they needed as divisors in the
next two number sequences. After they had been playing around a
little with their new number sequences using multiplication and



division, I challenged them to try using decimal numbers as the
number factor and divisor in the cells C1 and D1. At this stage I also
said I wanted to listen to them discussing, put on the tape recorder
and left it there for the rest of the lesson.

Figure 4: The set-up Sue and Ingrid made on the spreadsheet so far.

AB (the observer): What happens now, if you divide by a decimal
number? Have you tried it at all?
Sue: Dividing by a decimal number? No, we have not tried that.

They put in 4,0 in cell F1 and looked at the result. They tried 4 just
before.

Sue: No, that is the same, it was not a decimal number.

AB: Yes, 4,0 is just the same as 4. But what then if you try to divide by...?

The students tried a decimal number bigger than one, probably 1,2.

AB: If you divide by 0,5 then, how will it go?

The student using the keyboard, put in the number 0,5 in Fl

Sue: Oh???
Ingrid: 5, 10, but it is ..
Sue: Oh!. But it is ... but this is not divided by.
AB: Is it not divided by?
Ingrid: Oh, yes...
AB: Is it not divided by? You made the formula yourself so that is should
be dividing.
Sue: Yes, yes it has to be that.
Sue: It became just bigger! This is quite funny, it is going bigger, 5, 10,
... but, .... but it should be OK.

The bell rang for break, but the teacher delayed the break till later.
He was aware of interesting discussions going on in the class amoung
several groups and wanted them to continue.



Sue: but, yes it has to be right... ( she is trusting the computer)
Ingrid: It is really quite funny that it is going higher.
Sue: Why, is it like that?
AB: Yes, - why is it like that?

AB pointed at the number sequence using multiplication in column
C, and suggested they should try 0,3. The students put in 0,3 and
looked at the result a little hesitating:

Sue: Hm...
AB: How was that?
Sue: First.... it goes down ...
AB: Have you not seen this before??
Ingrid: And so it goes down .... (sounds a little doubting)
Sue: And this one goes upwards ...
Ingrid: It should really been the opposite way ...
Sue: Yes.
AB: Should it been the opposite way? Are you sure of that?
Sue & Ingrid (simultaneously): It should not...
Sue: It should not, but we feel it should have been the opposite way.
Ingrid: Funny this!
Sue: Yes, it really is. It is going down ....
Ingrid: It really was funny this.
Sue: Yeah, but you times, and then it must go bigger.

The students were looking at the result, murmuring a bit were still
thinking of what they had seen, commenting a little. They got so
excited they called their teacher to tell him about this.

Ingrid: Please, Mr. ST, come here a little, here you can see something
quite funny, as you probably have seen before ...

The teacher arrived, and the students pointed at the screen:

Sue: This is times - and this is dividing... So, this goes, it goes down and
this goes upwards. Why does it do this?
ST: Yes, why does it go like this?
Sue: (laughing) Yes, that's what we asked you about...
ST: Does it go down when you times?
Sue: Yes, can't you see it?

The teacher challenged the students further, trying to provoke the
students on this point by asking again:

ST: Is it going less.... But it will be more when you times .... something
must be wrong here, it cannot possibly be less when you times, can it?
Sue & Ingrid: Yes, yes it is doing that!
ST: Oh no, it is going to be more .. you can see it (putting a number
bigger than 1 in D1)
E: Yes, but if we use 0,3 then it goes down.



ST: Yes, you can decide that. But I can decide that it is going to be
more. (Again putting in a bigger number as factor).
Sue: It has nothing to say because ...
Ingrid: We take, - we take - like nought point...
ST: Can it probably have anything to do with that, that it will be nought
point something? Can it have something to do with that?
Ingrid: It has to do with that!
Sue: Yes, just look, here, this is also going to be less ...
Ingrid: Oh, how funny this is!

While saying this, Sue put in a new number less than one as factor.

Sue: Yes, but if you times by a number below nought then it is going to
be less.
ST: Yes, if you times by a number less than 1 then is it just going less?
Can't you find a number bigger than one that makes the numbers less?
Sue: No, I don't think so.
ST: Could it possibly, if it is just a little bit bigger than 1?

The students moved on trying different numbers slightly bigger than
one and commented: «Look here it is going bigger». Then they tried
numbers less than one, like 0,9 0,09 0,009 and similar. The students
mumbled a little, commenting on what they saw, quietly bursting
out with exclamations of surprise.

The students' discussion continued for a while and they also
showed their results to the neighbouring groups of students. They
discovered numbers with several decimal places, and numbers written
in scientific notation, which they had never seen before. The
discussion of division continued for a while comparing number
sequences made by dividing by whole numbers and decimal numbers.
Later they investigated multiplication in the same way - and found
similar surprises multiplying with numbers less than one, e.g. 0,2
and 0,5.

The discussions in the class engaged the students. There were a
lot of lively arguments going on during the students' work at the
computers. The work on the spreadsheet tasks gave the students the
opportunity to discover their mistakes, discuss and explain to each
other what they did wrong. The students work gave the teacher starting
points for further discussion and explanations in the class.

The students seemed to use the spreadsheet with confidence,
writing in their numbers and formulas, and copying. Although, there
had been a few problems in a previous lesson of the understanding



of a formula in the spreadsheet, the work on number sequences moved
on without problems connected to the software. Apparently the
students were able to utilise the computer in their thinking. The
mathematics in itself caused bigger problems and made the students
discuss and experiment. The same was seen in other classes, and
with use of different spreadsheet packages.

A few more worksheets dealt with multiplication of decimal
numbers. The target game of hitting a number by multiplication,
appeared to be quite revealing for the students knowledge of
estimation using decimals. In the illustration (Figure 4) the target
was 100, and starting number was 17. It was therefore necessary to
use decimal numbers, also less than one, to hit the target.

Figure 5: The spreadsheet task TARGET.

The students in year seven worked in small groups on the Target
task. In judging what number to try next, they revealed problems
estimating results of multiplying by 1,1 or 1,2. In particular, estimates
involving 0,9 and similar were difficult. It turned out that to some
students, multiplying by a decimal number less than one was a new
experience. It turned out they did not discover this for themselves
using Worksheet 8, they just heard their peers talk about it. It was
apparently necessary to experience this repeatedly, and their own
experience counts more than just listening to others.



Steven tried at first to multiply by 0,9, but the result was too small,
so he decided to "undo" the result by multiplying. He thought 1,1
would do this. To his surprise this did not work.

Many of the groups did manage after a struggle to get closer to the
target, but the problem had to be discussed in the class to help students
understand the connections.

Worksheet 12 also dealt with estimating the products of decimal
numbers. The problem was to experiment with the sum and product
of four numbers, given the sum of 11; can the product of 13,5 be
obtained? What is the biggest possible product? What if the sum is
one - can the product be bigger than one?

Figure 6: The set-up in Worksheet 12, showing Fred and Henry's solution

Fairly soon Fred and Henry found 6, 3, 1,5 and 0,5 would do. Then
they tried to find the biggest possible product from four numbers
giving the sum 11. Henry. "Then, we need a small number on the
top in B1 and a big one at the bottom in B4 " They discussed whether
the position of the number really mattered, Fred thought not, but
Henry thought that it did matter. They tried it out by interchanging
numbers, and eventually found it did not matter.

Teacher: "Why is that so?"
Fred: "It doesn't matter with the order in sum and times ".

The teacher discussed with Jane and Ann the effect of increasing
one of the numbers. Their spreadsheet showed the four numbers 6,75,
1, 1 and 2 giving the product 13,5. They increased a number from 1
to 1,25 and got very surprised by the effect on the product. But,
increasing from 6,75 to 7 gave only a small effect on the product.
Why? They expressed their findings: "Add to the biggest number,
then the product doesn't increase that much ".



Another group tried to make the sum equal to one and the product
bigger than one. Sally thought it should be possible, but wanted help
to find the 'clever number' for a start. Several groups worked on
this, but they could not solve it. All products they found were fairly
small. Then Siri found a solution, arguing the question was
impossible: "it has to be one that is bigger than one since we start
out by less than one ". After discovering the product had to be less
than one, they started hunting for the biggest product, and several
groups ended up with four equal factors of 0,25.

The classroom experience revealed that the worksheet tasks were
quite time consuming. Indeed, more than one lesson was needed for
this.

Results from the tests
In order to compare results for the research and control groups from
the pre-test, post-test and delayed post-test, four variables were
created: The test was split into four groups of items and the sum of
correct answers calculated. On basis of these variables a regression
was performed to calculate residual variables which were then used
in the analysis of variance.

Two sets of control classes were assigned from the beginning.
The purpose of this was to monitor the effect of the computer use in
the classes. At the end, reports from the classes revealed the computer
control classes made very little or no use of computers. The test results
also revealed only small differences between the two sets of control
classes.

Generally, nearly all groups of students improved from the pre-test
to the post-test and improved further on the delayed post-test, with the
research group showing biggest improvement. The scores on the four
different parts of the test showed that the overall improvement was
biggest in the first part of the test summarised in the variables Des1
and Des2. The variable Des1 summarises questions about place value,
ordering, closeness and density of numbers, and Des2 summarises
items of addition and subtraction using decimal numbers.

Statistically significant differences were found in years 5 and 6 on
Des1 and in year 6 on Des2, with students in research classes
performing better than the corresponding control group. An analysis
of variance was used adopting a significance level of p < 0,05.



All classes in the experimental group used computers regularly,
but observations in the classes and reports from the teachers of what
software and what spreadsheet tasks had been used, revealed
differences in the way the classes had used computers. For further
analysis I therefore found it appropriate to spilt the research group
into two parts, based on this information about computer use. The
'High' group were high users of spreadsheets whilst the 'Low' gave
little or no attention to the spreadsheet tasks.

Des1 means year 5

Pre and post tests
Fiure 7: Test result - concept of decimal numbers

This post hoc analysis revealed that the differences in performance
between research and control classes were due to the 'High' group
improving significantly more than the other groups in years 5 and 6
in the first part of the test. Table 8 gives details of the Des1 and Des2
variables. Particularly striking is the strong improvement of the 'High'
group of year five as can be seen easily from the diagram Figure 7.
Further details of the analysis can be found in (Fuglestad, 1996).

Des1 pre Des1 post Des1 del

High

Low

ConC

ConN



Year Status4 Des1 Des1 Des1 Des2 Des2 Des2 N
pre post del pre post del

High
Low
ConC
ConN
High
Low
ConC
ConN
High
Low
ConC
ConN

Table 8: Test results, mean score in percent for the variables Des1 and Des2 on the pre-,
post-, and delayed post test. The sample in four parts.

Looking at single test items, I found that the 'High' group showed
particularly strong gains in the first part of the test, on tasks involving:

• density and infiniteness of decimal numbers
• closeness or rounding off
• place value
• ordering numbers, biggest and smallest
• simple addition and subtraction involving decimal numbers

All year levels of the 'High' group improved substantially more than
the other groups in these areas. Year 5 students in 'High' also
improved strongly in questions of biggest number, (Table 9) ordering
(Table 10) and some simple multiplication tasks. Year 5 and 6
improved strongly on reading scales. Year 6 and 7 also improved
substantially more on the particular tasks involving division by 0,5
and tasks comparing multiplication and division involving 0,9.

The following tables present the test results on Task 5a, biggest
number, Task 7e, numbers between 0,63 and 0,64 and Task 10a,
nearest number to 0,16.



Answer "High"-gr n= 39 Others n = 181 Total n = 220
Pre Post Del. Pre Post Del. Pre Post Del.

Year Correct 0,62 |
5 0,236

0,4
No answer

6 Correct 0,62
0,236

No answer
7 Correct 0,62

0,236

0,4
No answer

Table 9: Summary of result of Task 5 a: Ring around the biggest number. Comparing
'High', with others and the total sample on pre- and post tests. Frequencies as

percentages.

Answer "High"-gr n = 39 Others n = 181 Total n = 220
i Pre Post Del. \ Pre Post Del. Pre Post Del.

Year Correct
5 None

One number
Definite n.
Others/NA

6 Correct
None
One number
Definite n.

Oothers/NA
7 Correct

None
One number
Definite n.
Others/NA

Table 10: Summary of result of Task 7e. Numbers between 0,63 and 0,64? Comparing
the total sample and the 'High' group on pre- and post tests. Frequencies as percentages.



Answer "High"-gr n = 39 Others n = 181 Total n = 220
Pre Post Del. Pre Post Del. Pre Post Del.

Year Correct 0,2 i
"5 0,21

Others/NA
6 Correct 0,2

0,21
Others/NA

7 Correct 0,2
0,21
Others/NA

Table 11: Summary of result of Task 10a Number nearest in size to 0,16 Comparing
'High', Others and the total sample on pre- and post tests. Frequencies as percentages.

The performance of the 'High' group did not differ very much from
the other group in word problems and most problems of multiplication
and division.

Combining results from tests and observations
The classes in the 'High' group were the high users of spreadsheets,
and in years 6 and 7 these classes used the worksheets on number
sequences and the students discussed the problems. In year 5 there
was less use of these particular tasks, but they used spreadsheet tasks
on shopping lists and similar problems. Can we attribute the
differences in test results to the spreadsheet tasks or to use of other
software in the 'High' classes?

Looking at the test items and the content of the spreadsheet tasks,
there seems to be some connection. The strong results for the 'High'
group on the test items dealing with ordering numbers, density, adding
and subtracting could be explained by their use of the computers and
spreadsheet tasks which dealt with similar tasks. However, other
factors may also influence the results, and have to be taken into
account in further discussion and investigations.

A constructivist approach?
A constructivist view of learning may be implemented in different
ways (Davis, Maher & Noddings, 1990). In this research the intention
was to use a diagnostic teaching approach.

Looking back at what happened in the classes, the observations
clearly indicate that crucial points in a diagnostic teaching approach



were implemented. Students working on the spreadsheet tasks had
experiences of cognitive conflict and discussions. The conflicts were
resolved, partly during students' group discussions and partly in the
class discussions that followed. Further experiments using the
spreadsheet helped the students consolidate their knowledge.

The teachers' role seems to be crucial in utilising the computers in
the mathematics classroom and in particular with diagnostic teaching.
Episodes described here clearly indicate that the teacher's or
observer's intervention, asking questions or giving suggestions for
further trial, was of major importance for further development. Also,
apparently, students need more than one relevant experience in order
to change an incorrect pattern of thinking. There was need to follow
up, by summarise findings and provide further discussion in the class.

However, some limitations to the research have to be noted: more
than half of the teachers in the research had never used computers in
their mathematics classroom and had no experience of using a
spreadsheet before. Also, it is worth noticing that in interviews at
the end of the research the teachers appeared to be less aware of
diagnostic teaching than expected. Although they were given an
introductory course before the school year, and some support during
the year, the teachers will probably benefit from more experience of
using computers in the classroom. As the teachers become more
conscious of their teaching approach, we may expect stronger results.

Conclusions
An important strategy in diagnostic teaching is to set up teaching
activities that force students to confront their own misconceptions.
Observations suggest that a very effective way of doing this is to ask
students to try a number activity first on paper and then repeat this on
a spreadsheet. The students' awareness of their problems and shift in
understanding observed in the classrooms, is supported by the test
data for a larger sample of students. In this way, the combination of
test results and observations confirm the potential of a diagnostic
teaching approach for the students' learning. The potential of the
computers as support for diagnostic teaching appears to be considerable.
Taking the limitations of the research into account we may expect
even stronger results from a more conscious implementation of the
diagnostic teaching approach supported by suitable computer software.

There is need for further investigations, developments of methods
and research to clarify the findings.
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Abstract (in Norwegian)
Datamaskiner med ulike typer programvare ble brukt i matematikk-
undervisning gjennom et skoleår med 10 - 14 år gamle elever i Norge.
Dette forsknigsprosjektet hadde som målsetting å studere elevenes
forståelse av desimaltall, med en diagnostisk undervisningsmetoder der
oppgaver på regneark ble brukt for å stimulere utforsking og konflikt
diakusjoner. En analyse av oppgavebesvarelser fra førtesten viste et
vanlig mønster av misoppfatninger om desimaltall. Observasjoner i
klasserom bekreftet at studentenes misoppfatninger ble avslørt under
arbeid med regnearkoppgavene. Test resultatene indikerer at de
elevgruppene som bruke regneark hadde signifikant større framgang
enn kontollgruppa, med størs effekt fra de 'største' regnearkbrukerne.
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