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Mathematical problem solving is a complex activity that necessitates thoughtful
consideration about the best ways to teach it, since any two individuals can arrive
at the same solution to a problem using different, but correct methods.

An identification of common traits that expert problem solvers possess, instruc-
tion related problem solving research, the contribution of cognition, meta-cognition
and belief systems, are presented in this research review in an effort to weave a
coherent picture of the state of the art of problem solving in mathematics today.

Some unrepresented and underrepresented issues are also considered, in or-
der to provide evidence of the diversity and multiplicity of issues concerning mathe-
matical problem solving research and the need for collaboration between researchers
in this field of study.

The acquisition of mathematical problem solving skills is very im-
portant because it is an ability people need throughout life. Students
face many problems with varying degrees of complexity. Problems
for students arise when they attempt to understand concepts, rela-
tionships and acquire skills. That problem solving is considered im-
portant, can be confirmed by the fact that it has been the subject of
research by mathematics educators, mathematics teachers, mathe-
maticians, educational psychologists, cognitive scientists and philo-
sophers since the turn of the century.

Recently, "The Curriculum and Evaluation Standards for School
Mathematics" (N. C. T. M., 1989), recommended that:

Problem solving should be the central focus of the mathematics curri-
culum. As such, it is a primary goal of all mathematics instruction and
an integral part of all mathematical activity (p.23).

These sentiments are echoed in other national mathematics state-
ments such as the Cockcroft Report (Cockcroft, 1982), and the Aus-
tralian National Mathematics Statement (A. E. C , 1991).
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Problem solving has also been a primary stated goal of mathematics
instruction since, at least, the 1930's. Schaaf (1979) cited the report
of the Committee on the Function on Secondary School Curriculum,
published in 1938. That Committee stated that:

the study of mathematics is of educational value because mathematics
can be made to throw the problem solving process into sharp relief, and
so offers opportunity to improve students' thinking in all fields (p.1).

Evidence has accumulated over the years and has demonstrated to
mathematics educators (see for example Taplin, 1992; Siemon 1988,
1992; Stacey 1987) that there is a genuine need for developing pro-
blem solving programs, instructional packages for primary and se-
condary schools, and research studies in Australia for improving the
problem solving abilities of students at all levels of their education
through systematic problem solving instruction. According to Tap-
lin (1992) problem solving is an important component of mathema-
tics education since it enables students to achieve mathematical com-
petence through three values: functional, logical and aesthetic. Tap-
lin (1992) further claimed that:

Approaching mathematics through problem solving can create a con-
text which stimulates real life and therefore justifies the mathematics
rather than regarding it as an end in itself (p. 6).

Stacey (1987) shared a similar view by stating that:

Developing the problem solving performance of students is now recogni-
sed as a major goal of mathematics courses throughout Australia (p. 21).

Definition of terms

Before further proceeding, two key terms—problem, and problem
solving—will be defined.

A careful examination of many research papers (Schoenfeld, 1992;
Lester, 1980; Bourke and Stacey, 1988; Davis, 1992; Sweller and
Low, 1992) reveals the fact that there is no agreement among re-
searchers as to what is a "problem" and even more disagreement is
evident when trying to determine the nature of problem solving. Lack
of agreement seems mainly due to the fact that mathematical pro-
blem solving appears to a certain extent to be so complex and subtle,
as to defy definition and description.

Some researchers have defined problem solving as "a chaotic area of
investigation" (Lester, 1980; Schaaf, 1979). Lester (1980) proposed that:

A problem is a situation in which an individual or group is called upon
to perform a task for which there is no readily accessible algorithm
which determines completely the method of solution (p.287).



Sowder (1985) articulated a distinction between routine and genuine
problems, based on schema training. In this model, if a schema is
found then the problem becomes a routine exercise. If a schema is
not found then the problem is classified as a genuine problem and
more search is necessary. What remains unresolved is which schemata
should be taught.

In an attempt to develop a "typology" of problem solving Shulman
(1985) borrowed a model firstly proposed by Schwab (cited in
Shulman, 1985, p. 440). According to this model there are three com-
ponents to a problem: the statement of the problem, ways and means
for dealing with it, and a solution. Shulman identified three types of
problem solving: exposition, where the problem, ways and means,
and the solution are all given, guided discovery, where the problem
and ways and means are given but not the solution, and pure inquiry,
where neither the problem, ways and means, nor the solution are
given. Sweller and Low (1992) proposed a different conceptualisa-
tion of what a problem is:

No task can be classed as either an exercise or a problem simply by
referring to its structure and components. Alone, the structure of a task
cannot reveal its "problem" status. Its status is revealed fully by the
novice-expert distinction (p. 84).

Davis (1992) went further to define the notion of "universal" problems
as "those problems that are known not to have been solved at a parti-
cular time (p. 183)". Problems of that kind are therefore problems to
every person to whom they are posed.

We define a mathematical problem as a task posed to an individual or
group, who will attempt to decipher the task and obtain a mathemati-
cally acceptable solution by not initially having access to a method
which completely determines the solution. The extent to which the task
would be a problem or not for a particular individual or group is a
function of mathematical knowledge (general and task specific), exe-
cutive control mechanisms, memory capacity, automation of appro-
priate skills, mathematical ability, utilisation of potential heuristics,
and the mathematical maturity and creativity of the given individual
or group. Problem solving can therefore be defined as the set of actions
taken to perform a task, assuming that there exists a desire on the part
of the individual or group to perform the task

It is also important to clarify what is meant by a solution to a problem.
Most researchers, with very few exemptions (Polya, 1957; Schoen-
feld, 1985a; Holton, Spicer & Thomas, 1995), endeavour to define
what constitutes a problem for the purposes of their study but not
what constitutes a solution to a problem. In an attempt to decipher



what solution and more than one solution mean in mathematics educa-
tion, Holton, Spicer and Thomas (1995) formulated a typology of
solutions a problem may have in increasing order of sophistication:

(1) Answer incorrect; method incorrect;

(2) no answer or answer incorrect; method unclear;

(3) answer correct; method inadequately described;

(4) answer incorrect; method correct;

(5) answer correct; method correct but elementary or laborious;

(6) answer correct; method correct using standard mathematics;

(7) answer correct using sophisticated ideals; and

(8) generalisation or extension provided to the original problem (p. 347).

An underrepresented issue in research studies is the issue of what is
acceptable as successful problem solving. Lester (1985) adopted
Mayer's (1982) suggestion that at least four types of knowledge are
involved in successful problem solving in mathematics: (i) linguist-
ic and factual, (ii) schematic, (iii) algorithmic and (iv) strategic. Lester
(1985) added that the problem solver's "belief system" is important
in successful problem solving and that:

successful problem solving depends also upon knowing when and how
to utilise such knowledge and upon having the ability to monitor and
evaluate the application of this knowledge both during and after imple-
mentation (p. 43).

Dimensions of mathematical thinking and problem
solving
During the past thirty years, the mathematics research community has
become interested in instructional implications of cognitive theory and
research on the learning of mathematics conducted by cognitive psycho-
logists. Cognitive psychologists are seeking to explore and validate
theories of human problem solving while mathematics educators are
seeking to understand the nature of the cognitive and meta-cognitive
interaction between learners, the subject matter of mathematics and
the problems they solve. The implications from such research efforts
for the practitioner carry significant gravity. These implications should
be used as a guide in the design of mathematics curricula and instruc-
tion that will result in training students to be better problem solvers
and to use their mathematical knowledge more effectively.



One of the goals of the mathematics curriculum should be to teach
students to be mathematicians at their own level (Schoenfeld, 1985;
1992), rather than teaching them to just learn to perform routine
mathematical operations. That means to guide the students in learn-
ing to think mathematically and discover the mathematical truths
and relationships rather than teaching them some "techniques" to
solve problems. These techniques are most of the time applicable to
exercises, and not real problems, namely situations in which an indi-
vidual or group is called upon to perform a task for which there is no
readily accessible algorithm which determines completely the method
of solution. Schoenfeld (1987), advocated that the:

coupling of mathematics and cognitive science is essential to effective
curricular and instructional reform (p. 9).

Schooling should try to demystify mathematics by creating appropri-
ate classroom environments where students perceive mathematics
as a sense - making activity, participate intentionally (desirably) in
the activities and leave the classroom having understood the connec-
tions that tie together the procedures that they have studied. Current
classroom practices indicate that students gain a fragmented sense
of the mathematical subject matter, even if they master some proce-
dures and skills. Recently, Lester (1994) claimed that:

Although acceptance of the notion that problem solving should play a
prominent role in the curriculum has been widespread, there has been
anything but widespread acceptance of how to make it an integral part
of the curriculum. To date, no mathematics program has been developed
that adequately addresses the issue of making problem solving the central
focus of the curriculum (p. 661).

Another central issue of research in mathematical problem solving is
the emphasis being placed, by contemporary mathematics educators
and cognitive researchers, on process rather than product. The main
focus should be on how and why a student did what she did, while
solving a mathematical problem, (or trying to solve the problem), and
not just the correctness of the answer that the student produces.

Obviously, the correctness of the approach a student finally settles upon
is vital and important. What contributed to the ultimate success or failure
of one particular search for a solution, or another, what knowledge did
the student use, how and why, are vitally important too. Perhaps they
are more important for remediation purposes, for gifted and talented
instruction, for mathematical competitions training and for a fuller under-
standing of processes that govern problem solving.

Schoenfeld (1985b) has developed a useful categorisation of dimen-
sions of mathematical behaviours which we will modify slightly in



this article to characterise mathematical thinking and problem solv-
ing. Four categories of knowledge and behaviour necessary for an
adequate characterisation of mathematical problem solving perform-
ance are:

• Cognitive resources, including intuitions and informal knowledge
regarding the domain, facts, algorithmic procedures, routine non-
algorithmic procedures, and understandings about agreed-upon
rules for working in the mathematical domain.

• Control and metacognition, including planning, monitoring and
assessment, decision making, and conscious metacognitive acts.

• Belief systems—Affect: One's mathematical world view, the set
of (not necessarily conscious) determinants of an individual's
behaviour, including beliefs about oneself, about the environment,
about the topic, and about mathematics.

• Heuristics, including drawing figures, introducing suitable nota-
tion, exploiting related problems, reformulating problems; work-
ing backwards, testing and verification procedures.

Schoenfeld (1992) broadened his framework by enlisting a fifth cate-
gory—practices. The practices of schooling—an anthropological
perspective—and classroom environments play a facilitative or
debilitating role in the students' mathematical problem solving per-
formance. The first three categories will be reviewed in this paper.

Cognitive Resources

Cognitive processes when applied to problem solving, include all
thinking done to solve a problem. Process factors include deduction,
solving equations, and looking for patterns. A substantial amount of
study has been directed throughout the 70s and the 80s toward link-
ing problem solvers to the cognitive processes they employ. As Lester
(1980) noted:

the preponderance of research into problem solving can be classified as
the "process tracing" variety. Process tracing approaches....attempt to
describe the intellectual processes used by subjects as they render judge-
ments and make decisions or solve problems (p. 301).

Highly competent performance in any complex domain is based on
having at one's disposal a large pool of knowledge, experience in
problem solving, and a large number of pieces of immediately
accessible knowledge. These pieces have been referred to as chunks
(Simon, 1980).



Chunks are said to be collections of related items of information
represented by a single symbol or concept. Simon (1980) estimated
that experts in complex domains have "vocabularies" consisting of
about 50,000 chunks of knowledge. A large part of their expertise
depends on the large number of chunking taking place while solving
a problem and almost automatic responses to familiar situations.
Research evidence has accumulated (Marshall, 1988, 1989; Sweller,
1988, 1990; Sweller and Cooper, 1985) indicating that competent
problem solvers have almost automatic access—using appropriate
memory routes—to the appropriate procedures and methods, once
they recognise a stereotypical situation in the assigned problem.

There is a significant difference, in this domain, between "expert"
problem solvers and "novices" in their characterisation of problems.
Novices (students) often perceive only superficial or surface charact-
eristics of the problem, while experts (mathematicians) perceive the
deep structure of the problem and they use their working memory more
efficiently. Research in this area includes studies on the role subject
variables (characteristics of the individual) play in mathematical pro-
blem solving and concerns attempts to identify characteristics of good
problem solvers (experts), in order to formulate testable hypotheses
about what constitutes essential problem-solving skills and how good
problem solvers differ from poor problem solvers (novices).

Stacey (1988) studied the influence some subject variables have
on various aspects of the problem solving process. Stacey devised a
model that portrayed the significance two subject factors were found
to have, on the students' problem solving process. The problem
solvers' mathematical knowledge dominated all aspects of their
problem solving process while the confidence demonstrated by the
students in attempting to explain their solutions, was reportedly evid-
ent throughout the problem solving process. Stacey (1988) concluded
that her model has important instructional implications despite the
non-inclusion of process and metacognitive variables in the study.

Suydam (1980) compiled a list of characteristics and relevant clues
for teaching. Characteristics of good problem solvers are:

(i) The ability to understand mathematical concepts and terms

(ii) The ability to note likenesses, differences and analogies

(iii) The ability to identify critical elements and to select correct
procedures and data

(iv) The ability to note irrelevant detail

(v) The ability to estimate and analyse



(vi) The ability to visualise and interpret qualitative or spatial facts
and relationships

(vii) The ability to generalise on the basis of few examples

(viii)The ability to switch methods readily

(ix) Higher scores for self-esteem and confidence, with good rela-
tionships with other children

(x) Lower scores for test anxiety (Suydam, 1980, p.36).

One of the most cited researchers of individual mathematical problem
solving abilities is Soviet psychologist V. A. Krutetskii. Krutetskii
(1976) spent more than twelve years investigating the relationship
between problem solving ability and perceptions of problem structure.
He found that one major difference between good and poor problem
solvers was in their perception of what constituted the most important
aspects of the problem. This factor is important for studies on instruc-
tional aspects of mathematical problem solving since it presents the
researcher with a factor open to improvement through instruction. For
Krutetskii, good problem solvers are quicker to see a problem's struc-
ture and more able to generalise to problems having a similar structu-
re. Kruteskii also found that good problem solvers are able to skip
steps easily, are aware of rational quickest solution paths, and are able
to retrace steps more easily than poor problem solvers.

According to Simon (1980) differences in problem solving suc-
cess may be partly attributable to differences in the problem solvers'
knowledge organisation. Simon (1980) postulated that there is no
such thing as expertness without domain specific knowledge—ex-
tensive and accessible knowledge.

The idea of a memory schema has recently helped explain many
aspects of human knowledge organisation and recall. Silver (1987)
borrowed a description of schema from Thorndyke and Yelcovich
(1980), as representing a prototypical abstraction of a complex and
frequently encountered concept or phenomenon. As such, a schema is
usually derived from past experience with numerous exemplars of the
concept involved. Elaborating on the theory of problem solving sche-
mata, Marshall (1988) hypothesised that a problem solving schema
can have four distinct components. The first is a body of facts of know-
ledge that describes the general situation to which the schema applies.
Some researchers have proposed the idea of developing schema-ba-
sed interpretations of common problem solving phenomena and tried
to explain observations of Einstellung (mental set) in terms of diffi-
culties encountered in shifting from one schema to another:



"Locked into a particular approach, the student lacks the flexibility to
adapt to new circumstances" (Silver, 1987, p.48).

A second component is a set of conditions that must be satisfied for a
schema to be instantiated. A third feature of schematic knowledge has
to do with the mechanisms for setting goals related to its instantiation.
The fourth is the collection of procedural rules that can be applied as the
schema is implemented. As a consequence of the perceived importance
of schema representations, the development of a new model of testing
by using schema assessment has been proposed by Marshall (1988).

In elaborating on mathematical problem solving research mainly
concerned with the cognitive domain, Sweller and his colleagues,
(Owen and Sweller 1989; Sweller 1988, 1990; Sweller and Cooper
1985) conjectured that skilled problem solving in mathematics is de-
termined by the students' acquisition of problem solving schemata,
and the automation of rules, the latter being important in transfer per-
formance. Cooper (1988) further claimed that novice problem solvers:

need to solve problems using means-ends analysis and this imposes
heavy constraints on cognitive processing capacity and misdirects
attention away from aspects of problem structure that may be necessary
to facilitate schema acquisition and rule automation (p. 56).

Sweller's work has received considerable attention from the mat-
hematics education community, as an ongoing work that according
to Putt and Isaacs (1992):

continues to challenge one conventional mode of mathematics teaching
which relies on presentation of new material followed by worked examples
and a large number of practice problems or exercises" (p. 215).

Not all mathematics educators have embraced Sweller's work, how-
ever. A recent example is Lawson (1990) who juxtaposed his view
that although the research evidence at that time (1990), was appa-
rently not strong enough to support the thesis that instruction in
general problems solving heuristics could enhance the problem solv-
ing ability of students, research evidence cited by Lawson (1990)
justified the inclusion of general problem solving heuristics in the
mathematics curriculum.

Control and Metacognition (Meta-processes)

Metacognition and metacognitive functions such as managerial func-
tions, control processes, executive functions, executive schemes and
reflective intelligence have received increased emphasis from re-
searchers during the 80s and the 90s (Lester 1985; Silver 1987;
Siemon 1988, 1992; Schoenfeld 1985a, 1985b, 1987, 1992). One of



the problems about metacognition is that it means different things to
different people, resulting in a confusion on what is and what is not
metacognitive. Flavell's (1976) definition seems to be generally
accepted, having incorporated two important aspects of metacogni-
tion, monitoring and regulation of ones own cognitive processes:

Metacognition refers to one's knowledge concerning one's own cogni-
tive processes and products or anything related to them, e.g., the lear-
ning-relevant properties of information or data. Metacognition refers,
among other things, to the active monitoring and consequent regulation
and orchestration of these processes in relation to the cognitive objects
on which they bear, usually in the service of some concrete goal or
objective (p. 232).

Another reason for confusion is that it is not always easy to distin-
guish what is cognitive from what is metacognitive. Lester (1985)
offered a simple explanation on how to distinguish between cogni-
tion and metacognition: Cognition is involved in doing, whereas
metacognition is involved in choosing and planning what to do and
monitoring what is being done.

It has already been claimed in this paper that extensive domain-
specific knowledge is vital to success in problem solving. Teachers of
mathematics need extensive training in using metacognition to regul-
ate, monitor and evaluate their own problem solving representations
and activities, if they are going to model mathematical problem solv-
ing behaviours in their classrooms. Another difficulty in using the
domain specific knowledge potential at their disposal effectively is
that individuals, while engaged in a problem solving task of some
intellectual complexity, may be subconsiously or unconsciously moni-
toring and evaluating progress and feel that things are going fine. They
may decide to do something different if they have evaluated the curr-
ent state of affairs and found that the current approach must be aban-
doned for another. Keeping track of current state, or using a different
approach if it is feasible, are both aspects of self regulation.

A critical issue not adequately researched is how we control or
regulate subconscious processes embedded in our decisions about
mathematical problem solving. Krutetskii (1976) in his seminal work
on the investigation of mathematical abilities of talented high school
children, attempted to clarify the problem of a sudden solution in
mathematics. Krutetskii reported that:

Often underlying incidents of sudden guessing or 'inspiration' was
generalisation: the unconscious application of general methods of opera-
tion (or of an individual device) or general principles of an approach to
the solution, based on the common (but at times very remote) proper-
ties of various mathematical objects, schemes, or problems (p. 306).



P. Sevarev (cited in Krutetskii, 1976), noted that:

when solving complex problems the examinee usually tries to subsume
a problem under a type he already knows, but he is not aware that this
device is being implemented, and is not conscious of the general principle
by which he is operating (p. 306).

It seems that there is in some way, an unconscious (or subconscious)
activation during complex problem solving, still not well understood
by mathematics educators and researchers. Research on metacognition
indicates that successful problem solvers can reflect on their problem
solving activities, have available powerful strategies for dealing with
complex and unknown problems, and regulate (even subconsciously)
powerful strategies efficiently. Novices, in contrast, have acquired fe-
wer problem solving strategies, are less aware of the utility of them and
do not use them effectively in the acquisition of new learning. Of parti-
cular importance to researchers in expert-novice differences is the psy-
chological research on meta-memory, and the individual's awareness of
the storage and retrieval of information. Psychological research has con-
sidered problems associated with the activation of inaccessible stored
information and the incubation effects in human problem solving.

By definition, the term incubation refers to an increased likelihood of
successfully solving a difficult problem, a result of placing a delay bet-
ween an initial period of intensive work on the problem and another
subsequent period of conscious effort toward completing the problem's
solution (Yaniv and Meyer, 1987, p.188).

Incubation is obviously related to research on memory, since as Yaniv
and Meyer (1987) advocated in the same paper:

An initial failure could occur because the stimulus configuration at the
start of processing provides inadequate retrieval cues and/or because com-
ponents of the memory traces are too weak for present purposes (p.189).

Siemon (1992) developed a theoretical metamodel in an attempt to
explore the role of metacognition in primary school children's mathe-
matical problem solving, in a series of two studies. The first study
was a ten-week teaching experiment involving grade three and grade
six classes. Siemon (1992) reported that:

results of the initial study supported the view that metacognition as it was
defined, is a "force" governing mathematical problem solving behaviour,
and that for some students enhanced metacognition can be achieved by
training, the complexity of the problem solving behaviour observed
suggested that metacognition is not a single or even bi-value "driving
force", but a multiplicity of complex "forces" and relationships not all of
which may be operating in the same direction at the same time (p. 1).



The second study was a year long teaching experiment, involving
fourth grade children and conducted from a constructivist perspect-
ive. The second study set to explore the role of metacognition on
students' mathematical problem solving, and the viability and suffici-
ency of the meta-model. According to Siemon (1992), the meta-
model, in its four generic approaches, can describe the student's be-
haviour, in mathematical problem solving through a cognitive/meta-
cognitive continuum. The meta-model's four generic approaches vary
according to two dimensions—high-low conceptual and high-low
procedural. Siemon concluded that contextual setting, specific con-
tent knowledge, beliefs, and motivations and values play an important
role in students' mathematical problem solving. Another conclusion
of the study according to Siemon (1992) was that:

many problem solving efforts failed not necessarily because of a lack of
monitoring ability per se or even a lack of knowledge as to what strategies
to use and when, but because of a lack of access to specific content, and
the inability to apply monitoring strategies (p. 8).

Absence of self-regulation or the inability to apply monitoring strate-
gies while solving a mathematical problem could lead to catastrophic
results. Students can exert themselves in wild goose chases exploring
a very limited sector of the multidimensional problem space, and fail
to obtain a solution to the problem they are dealing with. A common
byproduct of wild goose chases, observed almost everyday in mathe-
matics classes, is students' disappointment. Schoenfeld (1987) analysed
an extensive series of video tape sessions of students solving a non-
standard geometric problem. Students spent most of the time avail-
able (20 minutes) doing rather than thinking. Schoenfeld (1987) con-
trasted the attempt of a mathematician solving a difficult geometric
problem, to that of these novice students. The professional mathema-
tician was not a geometry expert, but he considered various approaches
in attempting to solve the problem by continuously generating and
rejecting ideas. He spent most of his time thinking rather than doing.
Schoenfeld (1987) concluded that:

the difference between the mathematician's success and the students' failure
cannot be attributed to a difference in knowledge of subject matter. Indeed,
the students started off with a clear advantage over the mathematician. They
knew all of the procedures required to solve the problems they were given,
whereas he did not remember them and had to figure them out for himself.
What made the difference was how the problem solvers made use of what
they did know. The students decided to try something and went off on a
wild goose chase, never to return. The mathematician tried many approaches,
but only briefly if they didn't seem to work. With the efficient use of self-
monitoring and self-regulation, he solved a problem that many students—
who knew a lot more geometry than he did—failed to solve!! (p. 195).



In an attempt to provide mathematics teachers with techniques that
focus on metacognition, for use in virtually any mathematics in-
structional setting, Schoenfeld (1985b, 1987) advocated a 'kitchen
sink' approach, consisting of four techniques which would arguably
enable the development of metacognitive skills in students. The four
techniques are presented in order from least interventionist to tech-
niques calling for increasingly deeper interactions between teacher
and students. In summary these techniques are:

• Watching video tapes of problem sessions.

• Teacher as a role model for metacognitive behaviour.

• Whole-class discussion of problems with teacher serving as "control".

• Problem solving in small groups.

Schoenfeld considered his students to be culturally immersed in a
microcosm, being trained in heuristic strategies, managerial strate-
gies and self-regulation, while solving problems. Work on beliefs
was also considered to be important. Beliefs will be discussed in the
next section of this research essay.
Problem solving in small groups was a natural environment with the
students experiencing mathematics in a way that made sense, similar
to the way mathematicians experienced it. Schoenfeld (1987) further
proposed that we need a program of "cultural design" for schooling,
since understanding enough about the social contexts that promote
the need to develop and understand mathematical ideas may allow
us to create classroom environments where students do mathematics
naturally. In another paper, Schoenfeld (1985) identified two major
difficulties (limitations) of research on metacognition. The first is
that descriptions of competent executive behaviour characterises ideal
behaviour. The second is that discussions of meta-behaviour tend to
isolate this kind of behaviour from other levels of cognition.

To recapitulate, it is our contention that research on metacogni-
tive aspects of mathematical problem solving, both theoretical and
empirical, should be on top of the priority list of mathematics educa-
tors, since according to Silver (1987):

no process model of problem solving in any domain can be complete without
an adequate account of the role of metacognition and belief systems (p. 50).

Belief Systems—Affect

Affective issues in mathematical problem solving have attracted consi-
derable attention by mathematics educators and cognitive psychologists
in the past decade (Putt and Isaacs, 1992; Leder, 1993; Mason, Burton



and Stacey, 1985; McLeod, 1988, 1989, 1992; Lester & Garofalo 1987;
Schoenfeld, 1985, 1987, 1992; Dreyfus & Eisenberg, 1986;Mandler, 1989;
Silver, 1994). Some investigators (McLeod, 1989; Schoenfeld, 1985, 1992;
Lester & Garofalo, 1987) have postulated that inclusion of affective
aspects of mathematical problem solving is necessary for any useful
theory of problem solving in school contexts. A certain obstacle to pro-
gress in this domain is the non-alignment of terminology used by mat-
hematics education researchers. Schoenfeld (1992), in an attempt to as-
semble a theory of thinking mathematically and problem solving, listed
beliefs and affects as one of five aspects of cognition. McLeod (1992)
adopted a slightly different stance, stating that

beliefs are largely cognitive in nature, and are developed over a relatively
long period of time. Emotions, on the other hand, may involve little cognitive
appraisal and may appear and disappear rather quickly. Therefore we can
think of beliefs, attitudes and emotions as representing increasing levels of
affective involvement, decreasing levels of cognitive involvement (p. 579).

Recently Leder (1993) used Corsini's definition of affect as a term

used to denote a wide range of concepts and phenomena including feelings,
emotions, moods, motivation and certain drives and instincts (p. 1-46).

Despite lack of consensus among mathematics education research-
ers on the use of terminology, the affective domain is generally re-
garded as referring to constructs that, according to McLeod (1992),
go beyond the cognitive domain, and that beliefs, attitudes and emo-
tions can be considered as subsets of affect.

In a research project, initiated in 1981, Lester and Garofalo (1987)
attempted to provide some theoretical and research considerations on
the influence affects and beliefs (along with metacognition) have on
the cognitive activities of problem solvers. The project was initially
designed to explore seventh graders' metacognitive awareness in mat-
hematical problem solving. The scope of the project was later exten-
ded in an attempt to account for affective factors and students' beliefs
about mathematics and problem solving. Lester and Garofalo (1987)
postulated that a student's failure to solve a problem successfully can-
not be attributed only to an inadequate knowledge base—either for-
mal or informal—but also to non-cognitive and metacognitive factors,
namely beliefs, affects, control, and socio-cultural conditions. The
position held by these researchers was that attitudes are 'transient traits'
of the individual as opposed to emotions, which are situation-specific.
Two attitudes appeared to attract the interest of the investigators: con-
fidence and perseverance. Lester and Garofalo (1987) postulated that
perseverance is the resultant of three components: "desire to obtain



correct answers, resistance to premature closure, and persistence" (p.
7). Taplin (1992) adopted a similar stance on perseverance.

A critical research issue in the affective domain is the role that
beliefs about mathematics, or about mathematical problem solving,
or about oneself, play in skilful problem solving.

The idea here is that student's understandings regarding the nature of
mathematics establish the psychological context within which they do
mathematics—and in consequence, these understandings shape the stu-
dents' mathematical behavior. The results can often have strong negati-
ve effects on performance (Schoenfeld, 1985, p. 375).

Counter-productive beliefs must be identified and be dealt with on an
individualised basis. It is important to train our students to realise that
their beliefs that most problems can be solved in five minutes, and
copying the teacher's solution from the board, do not constitute mathe-
matical thinking in any way. Researchers working on mathematical
problem solving have tended to ignore the role of beliefs in "expert"
problem solving, with the exception of Schoenfeld (1985, 1987, 1989),
Silver (1987, 1994), Lester (1985, 1988), and Lester and Garofalo
(1987). Lester and Garofalo (1987) stated that "beliefs shape attitudes
and emotions and direct the decisions during problem solving" (p.7).

The above mentioned studies of students' learning indicate that
affect plays an important role in their mathematical performance.

Stacey (1990), investigated students' capacity to utilise their own
mathematical knowledge in unfamiliar situations. Stacey concluded
that there is a dependence between the students' attitudes and beliefs
about mathematics and its learning, and their mathematical know-
ledge and understanding.

Another area of research in mathematics education that can be
considered to be related to affect is the area of problem posing.
Problem posing refers to students posing their own problem or re-
formulating problems given to them by teachers or other sources.
Silver (1994), posited three major conclusions that can be drawn
from research studies in problem posing:

First, it is clear that problem-posing tasks can provide researchers with
both a window through which to view students' mathematical thinking
and a mirror in which to see a reflection of students' mathematical
experiences. Second, problem-posing experiences provide a potentially
rich arena in which to explore the interplay between the cognitive and
affective dimensions of students' mathematical learning. Finally, much
more systematic research is needed on the impact of problem-posing
experiences on students' problem posing, problem solving, mathemati-
cal understanding and disposition toward mathematics (p. 25).



It is interesting to note that all three conclusions involve aspects of
affect.

Finally, an area of the affective domain that has received very
little attention by researchers and curriculum frameworks and reports
(A. E. C., 1991; N. C. T. M., 1989), is the role aesthetic influences
play on mathematical thinking and problem solving. A number of
well known mathematicians and psychologists (Hadamard, 1945;
Krutetskii, 1976; Poincare, 1946) have endeavoured to investigate
the role aesthetics plays in mathematical thinking and problem solv-
ing. Hadamard (1945) and Poincaré (1946) suggested, according to
Silver and Metzger (1989), that mathematical discovery is guided
by aesthetic emotions, which in turn guide mathematicians (at a con-
scious and an unconscious level) to decide the route to a particular
solution. Krutetskii (1976), who conducted a twelve year-long study
on the problem solving abilities of mathematically talented high
school students, reported that they consistently monitored and eva-
luated their solutions, in search for an elegant path to the solution.

The question of what constitutes mathematical aesthetics and how
it is related to mathematical thought and problem solving is another
area where research has not as yet provided the mathematics educa-
tion community with a unanimously acceptable answer. Dreyfus and
Eisenberg (1986) have attempted to answer these questions. They
quoted Birkhoff (1956), who attempted to quantify aesthetics. Birk-
hoff proposed that aesthetics could be determined by

the formula M = O/C, where O is a measure of order, C a measure of
complexity, and M a measure for the aesthetic value of the object or
argument under consideration (p. 3).

Hofstader, (cited in Dreyfus and Eisenberg, 1986) however, held a
diametrically opposite opinion:

there exists no set of rules which delineates what it is that makes a piece
beautiful, nor could there ever exist such a set of rules (p. 3).

Despite the disagreement among researchers however, Dreyfus and
Eisenberg (1986) stated that factors contributing to an aesthetic appeal
of a solution or proof are interconnected. Those factors were clarity,
simplicity, brevity, conciseness, structure, power, cleverness, and
surprise. Elegance was not listed although it can be argued that some
of the factors in the list such as simplicity, brevity, and conciseness,
could be considered to partly represent the essential ingredients of
an elegant solution.

Although training students on mathematical aesthetics seems to be
last on the list of curriculum developers of mathematics programs,
Halmos (1980) insisted that students should be trained to look for



aesthetically appealing solutions in mathematical problems. The issue
of how mathematics teachers can facilitate their students' apprecia-
tion of qualitative differences between pedestrian and elegant solu-
tions and an appreciation of the beauty of mathematics, remains a large-
ly unexplored and unresolved issue, since it represents a very complex
area of human learning that requires a lot more research. Training
students to appreciate mathematical aesthetics could become a promin-
ent feature of mathematics curricula, if and when mathematics curricula
designers adopt the rationale that students and teachers of mathema-
tics should be embedded in a mathematical culture in the way mathe-
maticians experience it, which according to Davis (1990):

has two aspects to it: the largely unconscious part, so internalised that is
difficult to see if any thing but obvious truth, and another part that is
distinguished by an individual's conscious choice to become part of a
broader culture (p. 4).

This culture values highly "elegance, parsimony, symmetry, coher-
ence, simplicity, beauty and similar attributes", according to Silver
and Metzger(1989,p. 71).

One of the main obstacles of research efforts into the affective do-
main and the role it plays in mathematical problem solving perform-
ance, is the absence of an adequate theoretical framework (Lester and
Garofalo, 1987). Recently McLeod (1988, 1989) has attempted to formul-
ate a theory, based on Mandler's (1989) theory of affect and emotion.
The dimensions of the theory take into consideration characteristics of
affective states such as magnitude and direction, duration of the emo-
tion, the level of awareness, and the level of control. Consideration is
given to the relation of affect to instructional issues such as types of
cognitive processes, types of instructional environment, and belief sys-
tems. McLeod (1988, 1989) offers a detailed exposition of the theory.

There is a need to probe further into the affective domain and to
achieve an integration of research on the affective and the cognitive
domains, on affect and learning, and on affect and teaching. There is
also ongoing debate over which research methodology should be used
to measure and evaluate affective aspects of mathematics learning and
problem solving. McLeod (1992) has claimed that the debate is almost
over and that the use of clinical interviews is the way ahead in research
on the role affective issues play in mathematical problem solving.

Discussion
Successful problem solving in mathematics requires the converg-
ence of a number of critical elements. This review has focused on
cognitive, metacognitive and affective aspects which are considered



to underpin mathematical thinking and problem solving. Emerging
areas of research such as the practice of mathematics teaching and
problem solving, enculturation, mathematical problem solving assess-
ment and the needs of prospective teachers of problem solving, have
not been reviewed. Mathematics teachers however, may refer to the
following excellent resources: Leder (1992); Schoenfeld (1992);
Charles (1988); Bishop (1988).

Schoenfeld, whose model of mathematical thinking and problem
solving (1985a, 1985b, 1992) has provided the scaffolding for this
review, argued (Schoenfeld, 1992) that metacognition, beliefs, and
mathematical practices are the critical components of his model, and
that "domain specific knowledge plays an altered and diminished role,
even when it is expanded to include problem-solving strategies" (p.
363). We postulate—along with Schoenfeld—that the only way mathe-
matical knowledge, metacognitive skills, beliefs, aesthetic apprecia-
tions of mathematical work, and mathematical practices of individu-
als can fit together to form a unified network, is by developing indi-
viduals who can visualise, represent and analyse the world through a
mathematical spectrum—the way mathematicians experience it.

The first issue that results from our review and needs clarification in
further research efforts, concerns the definitions of the terms 'problem',
'problem solving' and 'problem solution' when the terms are used in
research studies. An attempt was made to address this fundamental
and currently unresolved issue. We contend that if we are to avoid
confusion—especially within the mathematics teaching community—
the mathematical problem solving research community should adopt
one operational definition for each one of the terms, or reach an agree-
ment that, at the least, every study will provide definitions of the terms
followed by specific and detailed examples.

In the area of cognitive research two issues require further clarifica-
tion, according to Schoenfeld (1992). Firstly, an adequate frame-
work for the description of cognitive mechanisms must be developed,
and secondly, the extensively researched but currently unresolved
issue of the relationship between cognitive resources, strategies, affect
and beliefs. Regarding metacognition, Lester (1985) argued that one
of the issues that requires attention from researchers is the role meta-
cognition plays in successful mathematical problem solving. He
argued that metacognition guides cognitive processing during
problem solving. Two further critical issues on metacognition require
further exploration and clarification. The first issue is the role of
aesthetics in metacognitive activity during problem solving. Silver
and Metzger (1989) postulated that:



aesthetics can serve as a link between one's monitoring and evaluating
behaviour and one's emotional response. In this capacity aesthetics
provides a link between cognitive and metacognitive activity and emo-
tion" (p. 71).

The second issue is lack of an adequate theory of the mechanism of
metacognition (Schoenfeld, 1992). That is, for example, how does
expert mathematical knowledge affect metacognitive and aesthetic
decisions during problem solving and vice-versa.

There has been renewed interest in the past two decades, by mathe-
matics educators and cognitive psychologists, to conduct research
on affective issues and belief systems. Schoenfeld (1992) however,
was not satisfied that these results clarify the vexing issue of an ade-
quate theoretical model, despite the efforts of McLeod (1988, 1989,
1992) mentioned earlier.
With regard to mathematical practices and enculturation, Schoen-
feld (1992) has warned us that we know very little in what "may
ultimately turn out to be one of the most important arenas of under-
standing the development of mathematical thinking" (p. 365). Schoen-
feld (1992) also identified instruction and assessment of problem
solving as inadequately researched areas, with a host of questions
still remaining unanswered. Some instructional implications of the
research will be reviewed in the next section.

A recent book however, edited by Leder (1992), may be seen as
an attempt to bridge the gap between instruction, assessment and
learning of mathematics. Leder' s title of the last chapter of the book:
"curriculum planning + assessment = learning?" encapsulates the
dilemma with which the contemporary mathematics education com-
munity is faced with respect to assessment and curricular/instruc-
tional issues. It is evident from the previous exposition of under-
exploited issues, or issues that require further clarification and
theoretical support, that there exist some discernibly difficult theoreti-
cal and practical questions to be tackled by researchers in the years
to come.

Directions for further research

It can be concluded from the review of cognitive studies on expert
and novice problem solvers that the novice-expert transformation is
not a continuous process. We have argued earlier in this paper that
expertise in mathematical problem solving requires extensive theoreti-
cal and practical training, mathematical maturity and a multitude of
traits and skills. Research studies could attempt to resolve the issue



of why this discontinuity occurs and how instructional and curricular
programs might be delivered to remove the discontinuity and achieve
a smooth transition in the novice-expert transformation process.

We have argued that metacognitive decisions could be considered
the 'driving forces' in mathematical problem solving. Research
studies could investigate the teachers' own monitoring, regulation
and evaluation mechanisms during problem solving instruction and
how it might be used as an instructional method to enhance the
students' metacognitive activation during problem solving.

In this review an attempt has been made to present some views on
the constituents of successful problem solving. Is it possible how-
ever, to develop a taxonomy of indicators of success in mathemati-
cal problem solving?
It seems that we are a long way from the development of a unified
model of mathematical thinking and problem solving despite the ef-
forts of Schoenfeld (1985, 1992); and Goldin (1992). Considering
that a partial unification has been achieved via the Lester (1985)
model, and Schoenfeld's (1992) and Golding's (1992) attempts for
the development of unified models, is it possible to develop a Grand
Unified Theory of Mathematical Problem Solving, which will incor-
porate as its constituent components: a refined Polya model; the ap-
proach advocated by Sweller and his colleagues; Schoenfeld's (1985,
1992) and Lester's (1985) models; and Goldin's (1992) attempted
unification model?

Conclusion

Students' mathematical problem solving is a very complex pheno-
menon. It can be considered as a nexus of cognitive, metacognitive,
affective, instructional, environmental and cultural attributes, at the
least. Studies reviewed have generated a plethora of theoretical and
practical data on each one of the abovementioned attributes. Some
researchers have endeavoured to formulate a chart of the problem
solving terrain, with limited success. An articulation of the tacit com-
ponent of what the problem solving experts do remains an elusive
dream, much like the 'ghost particle' of high energy physics—the
neutrino. Although research progress has been made, we do not know
enough to formulate the necessary and sufficient conditions for an
adequate description of mathematical problem solving expertise ac-
quisition. It appears that problem solving researchers are embarked
on an exciting journey, into a galaxy whose manifold topology ne-
cessitates systematic further research.
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En översikt över aktuell forskning kring kognitiva,
metakognitiva och affektiva aspekter av problemlösning

Problemlösning i matematik är en komplex aktivitet som ger oss
anledning att noggrant tänka över de bästa sätten att undervisa,
eftersom olika individer kan komma fram till samma lösning av
problemet med olika men korrekta metoder.

I syfte att ge en sammanhängande bild av forskningsläget idag
presenteras i denna forskningsöversikt kvaliteter gemensamma för
goda problemlösare, undervisningsrelaterad problemlösningsforsk-
ning samt bidrag från olika system av kognitiva och metakognitiva
s k "belief systems".

Några hittills obearbetade och underrepresenterade frågeställningar
tas också upp för att visa på olikheter i och mångfalden av angrepps-
punkter i forskning i problemlösning i matematik och behoven av
samarbete mellan forskare inom detta fält.
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