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Two current phenomena, the prevalence of computer-based learning environ-
ments and renewed interest in "hands on" learning as a popular response to re-
commendations of national curriculum statements such as the NCTM Standards,
occasion a revisitation of issues surrounding the use of physical materials. We
discuss the efficacy of several manipulative materials in instructional settings,
noting both their strengths and their limitations.

Adopting a modeling perspective on the use of instructional materials in mathe-
matics learning, we draw critical distinctions between internal models and exter-
nal embodiments, and between teacher-intended meanings and the subjective
nature of student interpretation. We explore the consequences of a narrow inter-
pretation of active learning and caution against relying on a single manipulative to
capture the richness and connectedness of mathematical ideas. As an alterna-
tive to asking students to discover mathematical ideas as perceived by adults, we
endorse the perspective that materials should be used within a larger pedagogi-
cal framework in which students individually and collectively negotiate mathemati-
cal meaning. Remaining unanswered questions are posed as an agenda for future
research.

An earlier version of this paper was presented at the Sixteenth Annual Meeting
of the Mathematics Education Research Group of Australia, July 1993. The authors
would like to thank Les Steffe for helpful comments on a draft.

What is a square and how do we know?
The notion of a square is a well entrenched item of mathematics
curriculum from before the days of Euclid. As teachers we probably
have two related ideas of a square: some kind of formal definition
like a quadrilateral having equal sides and equal angles, and a men-
tal image of a particular geometric shape. Before children in the ele-
mentary school are aware of a formal definition, our guess is they
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have a fairly good mental image of the geometric shape - or do
they? What do they really know? How do they come to know it?
And what does it mean to know the concept "square"? These are
open questions for which we do not have definite answers. However,
in a classroom a common teaching strategy would be to demonstrate
by drawing a picture on the chalkboard or overhead projector. Per-
haps the teacher might invite the children to portray what they under-
stand a square to be. Of course the picture is not a square even though
it might in some sense represent a square. It is some kind of approxi-
mation indicating "squareness". Indeed, such an action can only point
crudely to an organizing principle that draws together related
phenomena. As Davis (1991) has suggested, in relation to circles:

... when a teacher says "let C be a circle", what does the teacher mean?
In practical terms the teacher means that C will be a name for any one
of the phenomena related by the relation of circularity: in other words
the name of anything that fits the definition of 'circle'. But what then of
the 'concept' of a circle? It is easy to claim, and we do claim, that the
concept does not exist as such. To put it more positively, what exists is
a constructed relation; the idea of a concept is then a generic name for
an object in the class of related phenomena (p. 233).

What about a fraction like, say, 1/2?
The fraction one half is an interesting example to choose, for of the
fractions of school mathematics it singles itself out as being quite
special (see for example, Behr et al., 1984; Hunting & Davis, 1991;
Polkinghorne, 1935; Pothier & Sawada, 1983). The verbal utterance
"one half", "half", and similar terms, as well as the written symbols
1/2 and 0.5, are, according to Davis (1991), simply names for any
one of the phenomena related by the relation of "half-ness". (We
accept that some might argue that terms like one-half are also sym-
bols.)

But what kinds of phenomena are connected by the relation one
half? Are they purely numerical - such as the equivalence class of
fractions of which one half is the standard representative? Or does
acceptable phenomena extend to physical quantities with which we
engage? Observant teachers of children know that the concept of
one half develops from qualitative conceptions, such as 'you have
the little half and I have the big half, to quantitative conceptions in
which precision and equality are key factors, and later to meta-
quantitative knowledge whereby the relation common to a possibly
infinite number of numerical relationships is constructed (Hunting



& Davis, 1991). It seems a sensible aim to use didactic settings and
materials which will assist students to advance to more sophisticated
(i.e. powerful) conceptions. How this might be done in practice is
something with which we continue to wrestle. As Fischbein (1987)
says:

The main problem is to learn to live with the intuitive loading of con-
cepts - necessary to the productive fluency of reasoning - and, at the
same time, to control the impact on the very course of reasoning of
these intuitive influences. For this, the student has to learn to become
aware of the exact, formal meaning and the implications of the mathe-
matical concepts, on the one hand, and the underlying intuitions on the
other (p. 207).

But what does Fischbein mean by "the intuitive loading of concepts",
and another thing, how do we develop materials that stimulate stu-
dents' intuitions in such a way that the signal is able to be separated
from the noise?

Case of the CopyCat: A computer-based fraction
learning setting
The CopyCat is an operator-like computer based learning tool deve-
loped in Hypertalk 2.0 for use on Apple Macintosh computers.
Experiments performed using the CopyCat program may be directed
at determining what fraction is responsible for observed numerical
inputs and corresponding outputs, or at determining the numerical
value of inputs or outputs for given fractions governing the CopyCat's
behavior. Part of the graphic display can be seen in Figure 1.

Figure 1. Graphical features of the CopyCat



The CopyCat's structural and graphical properties

On the CopyCat itself are three "buttons;" each can be activated with
a mouse-click when the cursor is positioned over it (see Figure 1).
The arrow buttons control the number of counters placed on the "in-
tray" (left side of graphic). Counters are added or subtracted one at a
time. The Go button activates a script which determines what the
CopyCat will do. If the number of counters placed on the in-tray is
divisible by the fraction denominator, d, and the Go button is click-
ed, an observer sees a group of d counters removed, one at a time,
from the in-tray; simultaneously a distinctive sound is heard. Next,
counters appear one at a time in the output tray until the number of
counters in the tray equals the number in the numerator of the selec-
ted fraction. A new sound accompanies the appearing fraction. This
process continues until all the counters in the in-tray have been used
up. Finally, to the accompaniment of applause, all the counters reap-
pear in the input tray; and the windows, above the words "In" and
"Out," display the number of input and output counters. If the num-
ber of input counters is not divisible by dr the CopyCat "explodes"
to appropriate noises. Other buttons - visible and invisible - can be
used to reset the machine after each experiment and to activate a
screen to cover the selected fraction. The fraction can be selected by
choosing a restricted set of numerators and denominators from the
menu bar at the top of the display (not visible in Figure 1). Possible
numerators are numbers one through eight; possible denominators
are numbers one through six, eight, and ten.

A feature of the CopyCat is that numerical inputs and outputs, in
the form of countable objects, are perceptually available, and further-
more, successive experiments can be carried out rapidly to determi-
ne the function that is operating on the inputs. Success in solving
these problems assumes that the common relation or rule across a
class of particular instances is at least implicitly understood. Con-
ventional approaches to teaching fractions focus on identifying spe-
cific instances of relations to wholes and parts with the formal lang-
uage and symbolism. The importance of a fraction referring to a ge-
neral and more abstract relation across an infinite set of particular
instances is not addressed satisfactorily in mathematics curriculum.
This tool has the potential advantage of being, in structure, an iso-
morphic copy of the field of rational numbers. That is, in every re-
spect, its operations coincide with the mathematical laws governing
that field. Furthermore, preliminary testing with children aged seven
and eight years (Hunting, Davis & Bigelow, 1991) showed that simple
versions of that tool are accessible to young children who have had



no formal instruction about fractions. Indeed, it would seem that
young children are capable of relatively abstract conceptions of one-
half, for example, even prior to learning the associated formal sym-
bolism. Other work with eight and nine year-old children (Davis,
Hunting, & Pearn, 1993a; 1993b; in press a; in press b) has demon-
strated the potential of this tool to assist in the development of po-
werful comparison schemes.

Note however that it is in the nature of the CopyCat not to operate
on inputs unless they are divisible by the set denominator. Such a
limitation can be a source of concern (Carraher, 1993), especially
since one can easily perform simple partitions mentally which the
machine will not! For example, consider one half of three items.
There are other limitations too, although probably less contentious.
For example, the CopyCat in its current form will not accept more
than 50 input items; it will output only up to 150 items, and the range
of possible numerators and denominators available when choosing a
fraction is restricted. The CopyCat is not unique in this regard. Any
physical instantiation used for didactic purposes has limitations.

Other action-oriented instructional materials

Sticks

Steffe and his collaborators at Georgia (Biddlecomb, 1994; Steffe,
1993; Steffe & Olive, 1992; 1993; Steffe & Tzur, 1994; Steffe &
Wiegel, 1994) have developed computer microworlds in their re-
search on children's rational number learning. One such microworld
is called Sticks. Sticks is essentially a length measurement setting in
which children can manipulate graphic images of line segments. The
sticks portrayed indicate hierarchies of units; and fractions are used
to describe relationships between various stick lengths. Among pro-
blems posed for the children are those of determining equivalence
and order of multiples of different length sticks. A limitation of Sticks
is that the basic unit of length is the video screen pixel. Potential
difficulties arise when comparisons are made between multiples of
different stick lengths assigned by fractions where the numbers of
pixels being compared do not equate.

Paper folding

Another physical setting used for ages in classrooms and recently
used in a research study on rational number learning is paper folding
(Kieren, 1992; Kieren, Mason, & Pirie, 1992). A fundamental ope-



ration supporting instructional experiments is the action of halving.
This is reasonable since paper sheets can be manipulated using this
physical action. However, problems posed are necessarily restricted
to fraction denominators that are powers of two, although Kieren et
al. (1992) report an ingenious method for representing 1/3 with pa-
per using symmetry and folding. Such a method has also been repor-
ted by Hunting and Korbosky (1990), who conducted a teaching ex-
periment with Year 5 children. Nevertheless, prime denominator frac-
tions other than 1/2 are, as far as we know, very difficult to repre-
sent, and when achieved (as an approximation) can lead to difficult-
ies. For example, in Hunting and Korbosky's study, a task using
paper strips was used to compare two fractions. The fractions were
1/2 and 3/6. One student folded her paper strips in such a way that
when one strip was placed side by side with the other, the centre
folds did not match up. She concluded, based on the evidence, that
3/6 was larger. (She might just as reasonably have concluded 3/6 to
be smaller.)

The intended effect of instruction using paper folding is often
thwarted by other conceptual and procedural errors. Research with
elementary and junior high school students has shown that children
use a wide range of strategies on area comparison tasks, not all of
them appropriate, such as comparing number of shaded blocks, or
comparing length of the blocks (Armstrong, 1989). For children who
do not naturally use a direct comparison method to determine equi-
valence, both examples in Figure 2 are troublesome. While in the
first problem, the teacher might rotate the paper 90° and "suggest"
that the student directly compare the shaded areas, the second example
presents the additional complication that the two papers were orien-
ted differently before the folding and coloring occurred, and inter-
pretive discussion must be managed carefully so that the student will
conclude that 2/6 is 2/6.

Other difficulties children encounter

LOGO is a computer environment designed to help children develop
their conceptions of two-dimensional space by giving commands that
govern the movements of a turtle and watching as those movements
are recorded as a path. Kurland and Pea (1985) tested children who
averaged over 50 hours of experience using the LOGO programm-
ing language and found that the students' hands-on experience did
not provide meaningful learning. On their own, students had
developed incorrect notions about fundamental programming con-



Figure 2. Equal areas through paper folding.

cepts, leading the researchers to conclude that this form of active
learning "needs to be mediated within an instructional context"
(p. 242). In other studies comparing college students who had hands-
on experience with the BASIC computer language with others who
were given direct instruction about the connections between com-
mands and concepts, the group who had teacher-based instruction in
addition to student exploration, fared better on transfer tasks and
showed fewer misconceptions (Bayman & Mayer, 1983).

Gravemeijer (1991) reported on the experiences of the Dutch re-
searchers in the development of the Rekenen & Wiskunde textbook
series in which the abacus was used as preparation for addition and
subtraction of whole numbers. The Dutch researchers found that the
manipulative action was not isomorphic to the mental action that
was necessary to perform symbolic arithmetic.

Similarly, when using a number line to help children add and sub-
tract whole numbers under twenty, the counting process does not
correspond to one's mental work. For example, to add 5 + 4, the
pupil starts at 5, counts " 1 , 2, 3, 4," and reads out "9," while the
mental task is a case of double counting "6, 7, 8, 9," while
simultaneously counting the counts (Gravemeijer, 1991).

Bishop & Goffree (1986) reported another problem concerning
the relationships between representations that occurs when children
use Cuisenaire rods. Children make connections between number
names and colors, failing to realize the significance of the lengths of
the rods.



Dienes blocks, also called multibase arithmetic blocks (MAB), are
sets of wooden blocks, each embodying a different base system. A
set for base b is composed of single cubes called "units," rods or
"longs" composed of b units, squares called "flats" of area b x b, and
cubes , called "blocks," of dimension b x b x b. Resnick & Omanson
(1987) found that children who used multibase arithmetic blocks to
perform addition and subtraction operations, were unable to make a
smooth transition to the use of written symbols. Whether or not the
actions children have developed are a good match to the desired
mental activities, the rules and algorithms children develop when
working with the manipulative materials may be carried over to their
operations with symbols, or, when they work with symbols not well
connected to their network of knowledge, children invent flawed algo-
rithms when they become stuck (Brown & Van Lehn, 1982).

Hiebert and Carpenter (1992) spoke to the tremendous potential
for instruction involving concrete materials to go awry:

... it is not simply the presence of concrete materials that provides mean-
ing for symbols, nor is it simply the juxtaposition of materials and
symbols. In order for symbols to acquire meaning, learners must connect
their mental representations of written symbols with their mental
representations of concrete materials. The potential for these connec-
tions to create understanding is complicated by the fact that concrete
materials themselves are representations of mathematical relationships
and quantities. Thus, the usefulness of concrete materials as referents
for symbols depends on both their embodiments of mathematical
relationships and on their connections to written symbols (p. 72).

In the next section, we adopt a mathematics modeling perspective to
further examine some of the problems associated with the use of
concrete materials; namely, can the translation between representa-
tions induce learning or does it signify an already existing basis in
understanding?

A modeling perspective
Humans use the language of mathematics to describe patterns (Steen,
1990), to collect and order experiences, and to articulate the structure
of the world (Kitcher, 1984). This view of mathematics learning and
problem solving relates the "doing" of mathematics to the construction
of models. Because the term "model" has been devalued through
broad application to a variety of ideas, to facilitate our communica-
tion, we shall use the term "model" to refer to a cognitive (internal)
construction, a system of quantities, relationships, operations, and
representations constructed in some subjectively meaningful way,



connected to the individual's existing knowledge base, and used to
make sense of one's subjective world of experience. Representations
(or embodiments) such as Cuisenaire rods or Dienes blocks are con-
crete (external) interpretations of internal models, notation systems
that facilitate the communication of our models to others.

Because of the connectedness of mathematical ideas, models
develop over time and not in isolation of one another. They grow in
complexity, completeness, and depth (Lesh & Lamon, 1992). They
overlap and eventually unite. In short, it is not the case that under-
standing happens or does not happen, but rather, it can be character-
ized as a dynamic, multi-dimensional growth process (Kieren, Mason,
& Pirie, 1992). Though we may talk about "model building" in the
singular, in reality, we often use multiple models in series or in
parallel, because of their differing abilities to capture relevant aspects
of a given situation, and we embed these models in different nota-
tion systems, only some of which take a physical form: spoken
language, written symbols, static pictures or diagrams, manipulative
concrete materials, and visualization (Lesh & Lamon, 1992).

A question of ownership

Whether we ask students to examine the operator notion of fraction
using a computer program such as the CopyCat, to explore the
measurement notion of fraction using sticks as length models, or to
attach meaning to fractions by means of paper folding, we are asking
them to step into a system for describing, explaining, constructing,
and manipulating some portion of our world of experiences. Eventu-
ally, we hope that students will be able to explore the system for its
own sake so that they might use it to gain further insights, to make
conjectures and generalizations about the phenomenon the system
embodies, or to somehow elaborate what they know. But is this always
a reasonable expectation?

In addition to environmental affordances that influence the model-
building process, that is, such things as experiences, events, teacher-
made interventions, and observable regularities in nature, models
are shaped partly by a person's unique cognitive filtering, organiz-
ing and interpreting functions. Can we actually facilitate students'
learning by offering them models designed and promoted by expert
adults? We propose that model building is motivated by a certain
amount of evidence, a kind of intuitive, experiential, tacit knowledge,
gut feeling, or sneaky suspicion that there is something in a situation
worthy of further investigation and explanation, a sense that there is
something there that the person does not know, and that, in fact, this
kind of "primitive knowing" (Kieren, Mason, & Pirie, 1992) provides
the push that enables the personal investment of time and effort.



Unless a student already possesses this primitive knowledge, our
efforts to facilitate further knowledge construction through the use
of imposed didactic materials may be fruitless. In model building,
"the foundation and growth of knowledge become more and more
intertwined" and "knowledge appears as the cause as well as the
objective of the investment and involvement" (Brousseau & Otte,
1991, pp. 26, 33). A certain amount of crude knowledge may ac-
count for the distinction between model-constructing (adopting or
sharing) and merely appearing to use someone else's model; the
difference between learning through the use of manipulatives and
merely going through motions.

Representations simply cannot be told. If students have not yet
constructed the meanings and images behind the concrete materials,
then the actions on the materials are governed by adult-made rules
that the student must follow, or, in many cases, guess. When child-
ren fold one paper lengthwise and one crosswise and then cannot
discover equivalence; when children count MAB rods and units as if
they were both tens; or when children adopt multiple strategies for
area comparison during paper folding activities, they are telling us
that the material re-presents someone else's meanings, not their own.
As Gravemeijer (1991) warns,

By not making a clear distinction between internal and external represen-
tation it goes unnoticed that one is mixing up the time order: the pupil
needs the mental representation (model)... to be able to interpret the
concrete representation (p. 67).

The role of materials
These questions resurrect others posed by Kieren (1971) more than
20 years ago that remain unanswered today: Where does action-based
learning with physical materials fit into a sequence of experiences
that contribute to mathematical understanding? For whom, for what
topics, with what materials, and under what circumstances are mani-
pulative activities valuable? Readiness, timing, degree of content-
relatedness, personal preference, and other overlooked variables may
be more important than we realize.

Perspectives from research

The current popularity of instructional materials is based more on
opinion and personal belief than on research-based knowledge.
Certain materials gain popularity because a large number of adults



agree that those materials capture the essence of their own under-
standings about a certain piece of mathematics. Although the allure
of these materials might be powerful, a close examination of the
literature reveals that there has never been indisputable evidence of
their effectiveness. A number of studies conducted in the 1960s and
the 1970s, such as Fennema (1970), Nelson (1964), Biggs (1965),
Williams (1967), Trueblood (1967), Vance & Kieren (1971),
Wilkinson (1974), Suydam & Higgins (1977), Friedman (1978), and
a more recent meta-analysis of 60 studies (Sowell, 1989), suggest
that there is a large host of variables influencing the use of didactic
materials, among these, type of material, length of time used, teacher
training, age of the students, whether students or teacher chose the
manipulative. It should come as no surprise that the quality of the
teaching was the single most decisive variable in the successful or
unsuccessful use of manipulative materials. The skill of the teacher
in facilitating connections between the material and related concept-
ual work has a strong positive effect on achievement and understand-
ing (Suydam & Higgins, 1977).

Bandwagons

The United States Curriculum and evaluation standards (NCTM,
1989) called for a more conceptually oriented curriculum, for more
sense making and fewer rote activitites, for mathematics instruction
that recognizes the need for students to actively participate in their
own learning. The imperatives of the Standards have been popularly
interpreted - without the benefit of research-based guidance - as a
demand for "hands-on" learning. Although the teacher is no longer
recognized as one who transmits knowledge, concrete materials have
become a substitute for teaching as telling. A new (but tacit) belief is
that concrete materials transmit knowledge.

A narrow interpretation of "active" learning further legitimizes
the new rally cry, "learning through manipulatives." Active learning
certainly goes beyond mere physical manipulation to include cogni-
tive engagement in sense making. Because it is the cognitive engage-
ment that is essential, early research involving instructional materials
indicated that it makes little difference whether the students are doing
the manipulating themselves, or whether they are watching and
thoughtfully participating as the teacher demonstrated with the
materials (Suydam & Higgins, 1977). As Baroody (1989) said: "The
particular medium ... may be less important than the fact that the
experience is meaningful to pupils and that they are actively engaged
in thinking about it" (p. 5).



In the interest of pedagogically responsible use of physical materi-
als, we propose that some unexamined assumptions underlying the
use of certain materials be questioned. Because there is an adult con-
sensus about a certain type of manipulative material, does this imply
that it must be useful in helping students to achieve mathematical
understandings closer to our own? Are we not giving students our
models and expecting them to recognize what we already know? Do
we want students to understand that they should start with expe-
riences and model them, or do we start with models and try to relate
them to our experiences? To what extent does such a classroom cul-
ture truly reflect a constructivist theory of knowledge building? Be-
cause a model is a metaphor, an inseparable mingling of a mathema-
tical idea and a specific way of representing it (Brousseau & Otte,
1991), questions about which material to introduce and when to in-
troduce it are, simultaneously, questions about how mathematical
ideas are best sequenced for instruction. Is it possible that a particular
didactic material may be ineffective for some students because for them
an alternate representation or multiple representations are needed?

Further questions
Given the inadequacies of physical materials, are there guidelines
for choosing the most efficacious, and what might these be? For
example, there has been continuing debate about the relative merits
of continuous versus discrete materials for teaching fractions and
whole numbers (Hatano, 1982; Hiebert & Tonnessen, 1978; Hunt-
ing & Korbosky, 1990; Minskaya, 1975). Considerable research has
been conducted on pedagogical approaches to learning whole
numbers (see for example, Carpenter, Moser, & Romberg, 1982;
Greer, 1992; Hiebert & Behr, 1988; Labinowicz, 1985; Leinhardt,
Putnam, & Hattrup, 1992; Sowder, 1992; Steffe & Cobb, 1988). But
do the seemingly greater complexities of learning rational numbers
imply different strategies for teaching? Or another way, does the
complexity of teaching rational numbers mean different criteria or
relaxed conditions or expectations, compared to teaching whole
number numeration? Do our pedagogical mathematics methods
seduce us into using a traditional physics teaching approach, so that
we ignore crucial distinctions between the nature of mathematical
knowledge and scientific knowledge? Is there a single "best" path-
way to knowledge of a mathematical concept or cluster (Ellerbruch
& Payne, 1978), or are multiple pathways better (Kieren, 1976)?
Mack (1990, 1993) has suggested that rather than attempting a broad-
based approach to developing understanding of rational numbers a



viable alternative may be to develop a particular conception, then
expand that conception once students can relate mathematical pro-
cedures and their symbols to their informal knowledge. Is the dis-
tinction between concrete and abstract thought valid (Menchinskaya
& Moro, 1975), and if so, how can it inform our pedagogy? What
about the issue of visual and perceptual material actually hindering
learning (Perry & Howard, 1994)?

How then do we deal with the difficulties of teaching
mathematical abstractions using instructional materials?
It is clear that there is no possibility of finding physical material with
the robustness needed to mirror, as it were, the precise essence of the
mathematical concept we have in mind to teach. But is it necessary
to assume that since a physical setting does not afford actions cor-
responding to operations we believe to be important, then that setting
is necessarily inadequate? For example, the CopyCat won't operate
on seven input items when it is set to 1/2. What if it did? Since it
doesn't, does that mean it presents a serious obstacle for learning
and teaching rational numbers? In any case, what settings will allow
the possibility of infinite divisibility, other than in one's head?

It may well be that particular physical settings are to be preferred.
Even so, we still have a problem. Cobb (1992) has argued the inade-
quacies of a learning theory which assumes students modify their
internal mental representations to construct mathematical relation-
ships or structures that mirror those embodied in external instruc-
tional representations. Fundamentally, sources of meaning are
assumed not to be inherent in external representations but located in
"students' purposeful, socially and culturally situated mathematical
activity" (p. 6). A trap mathematics educators can fall into is to im-
bue selected physical material with the meanings of experts (us, as
well as other teachers) which, to those experts, are self-evident. Being
self-evident, we assume that our interpretation "is shared with every-
one else who knows mathematics" (Cobb, 1992, p. 9). In the process
the expert "smooths over" or overlooks serious deficiencies inherent
in the material - the noise. How can we hope that students will focus
on just those relationships we "see" in the materials as structured,
and not on any of a host of others? The teacher's saving grace is the
necessity and significance of interactive communications between
students, and students and teacher, as they together develop "taken-
as-shared" mathematical ways of knowing. As Cobb (1992) argued:
"Such a view emphasizes that the learning-teaching process is inte-



ractive in nature and involves the implicit and explicit negotiation of
mathematical meanings" (p. 10). Thompson (1992) drew two con-
clusions from his research into the relationships between concrete
materials, and the signs and conventions of whole number numera-
tion:

The first is that before students can make productive use of concrete
materials, they must first be committed to making sense of their activi-
ties and be committed to expressing their sense in meaningful ways.
The second is that for concrete embodiments of a mathematical concept
to be used effectively in relation to learning some notational method,
students must come to see each as a reflection of the other - constraints
and all. They must end up feeling just as constrained in their notational
actions as they do with those actions' counterparts in a concrete setting
(p. 146).

Having rejected the idea that mathematical meanings lie in physical
embodiments used as teaching devices, the burden is somewhat lifted
from our shoulders. It is interesting to note that Cobb, Yackel, and
Wood (1992) prefer to call materials such as The Candy Factory -
used to teach whole number numeration and place value - "pedagogi-
cal symbol systems" (p. 22), rather than instructional representations,
in order to emphasise the symbolizing role they play in individual
and collective mathematical activity. As he goes on to explain:

... we might say that materials typically characterized as instructional
representations are of educational value to the extent that they facilitate
students' individual and collective constructive activities and thus their
increasing participation in the mathematical practices of wider society.
In this view, correctness does not mean conforming to the dictates of an
authority who spells out his or her own interpretation. Instead, it means
making mathematical constructions that have clout in that they enable
students to increasingly participate in socio-historically evolving mathe-
matical practices (Bruner, 1986). Moreover the notion of instructional
materials as a means of delivering mathematical knowledge to students
is displaced by the view of teachers initiating and guiding emerging
systems of mathematical meanings and practices in their classrooms
(p. 25).

Other material upon which students operate
It is as well to remember that not all children's mathematical think-
ing is based on physical material, models, or devices. In fact we
argue that the stuff of mathematical thinking is intricately bound up
with material other than the physical or perceptual. For example, we
are only beginning to explore the role of the imagination in the learn-



ing process (Johnson, 1985). Mathematics is a curious body of know-
ledge, in that its invention and application may, for extended periods,
be an almost entirely cognitive experience. Consider this question
and where it might lead: Is there a fraction between one half and one
third? What might it be? Children in the elementary school need to
consider questions such as these. Physical materials and experience
serve as intuitive bases for thought and reflection. Reflection on
objects and relationships apprehended or constructed, in the context
of interactive communications with other students and adults, pro-
motes the development of general mental structures and operations
which will transcend specific instances and examples.

Mathematics learning may be viewed as a cybernetic process.
Existing cognitive "material" allows a learner to observe, interpret,
and verbalize about actions on physical material. Relationships in
problematic task settings involving physical material can stimulate
the development of cognitive material when the phenomena bound
by the physical material cannot be fully "assimilated" into the
learner's mental schemes. Constructivists advance the hard core
device disequilibrium with its affective (discomfort, anxiety, frustra-
tion) and cognitive (accommodation, reorganisation) consequences
to explain this learning process.

The physical and perceptual materials mathematics teachers use
with students are only one source of the total storehouse of material
upon which children's minds work. Other material includes language
and vocabulary used to communicate about experiences, problem
situations, and other printed literature, as well as recall of static images
and re-presentation of dynamic experiences stored in memory.

Summary and discussion
The popularity of manipulative materials is understandable. They
may be very motivational; they are often colorful and engaging, like
play things (Steffe & Wiegel, 1994). They provide an alternative to
pure expository teaching. In a sense, they give instruction a certain
grounding in reality. Children like to manipulate and there is broad
consensus that active lessons with concrete embodiments improve
students' attitudes about mathematics class. To use instructional
materials responsibly, however, requires attention to their short-
comings as well as their strengths and to some of the assumptions
underlying their use.

We have seen that representations often highlight certain aspects
of mathematical interest at the expense of others. It is important to



recognize precisely which ideas they instantiate and which they
neglect. We have also noted that materials do not always demonstra-
te their own validity. Sometimes movements performed with con-
crete objects do not correspond with the mental activity needed to
perform certain operations; in such cases, they may be creating
obstacles for, rather than facilitating, the jump to mental and symbolic
operations. Finally, adults who find certain embodiments attractive,
often find it difficult to put themselves into the minds of children.
For the uninitiated, concepts and connections are not as easily de-
duced from the materials, and when children operate according to
the teacher's rules without any subjective meaning, we run the risk
that they will memorize teacher actions or invent their own (some-
times "buggy" (Brown & van Lehn, 1982)) algorithms to get them
through the task.

One useful way in which to accommodate these issues in class-
room instruction is to clearly distinguish "teaching mathematics
through manipulatives" or "hands-on" teaching as a form of instruc-
tion, from the use of concrete manipulatable materials as part of a
broader instructional environment. When viewing concrete materials
as a teaching strategy, one often assumes that activity necessarily
produces learning, and the inadequacies of the materials may be over-
looked. If, however, materials are viewed as tools, and the teaching
strategy is negotiation of meaning, students are given further oppor-
tunity to build meaning through reflection, communication, cogni-
tive conflict and its resolution, reality testing of subjective impres-
sions, and other community-based experiences.
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Undervisningsmaterial i matematikundervisningen

- en översyn

Sammanfattning
Två samtidiga fenomen, tillgången till datorbaserade inlärningsmil-
jöer och förnyat intresse för "hands on"- inlärning är en populär re-
aktion på rekommendationer i nationella kursplanedokument som
NCTM Standards. Detta ger anledning till en översyn av frågor kring
bruket av undervisningsmaterial. Effektiviteten hos ett flertal mani-
pulativa material i undervisningssituationer diskuteras. Styrka och
begränsningar analyseras.

Kritiska skillnader mellan inre modeller och yttre konkreta for-
mer samt mellan den av läraren avsedda innebörden och den subjek-
tiva naturen hos elevens tolkning lyfts fram genom att anlägga ett
modell-perspektiv på användningen av undervisningsmaterial vid ma-
tematikinlärning. Konsekvenserna av en snäv tolkning av aktivt lär-
ande studeras och det varnas för att sätta sin lit till ett enda manipu-
lativt material för att fånga rikedomen hos och sambandet mellan
matematiska idéer. Som ett alternativ till att låta elever upptäcka be-
grepp och idéer, så som de uppfattas av vuxna, föreslås att material
används i ett större pedagogiskt sammanhang i vilket elever indivi-
duellt och kollektivt underhandlar om den matematiska innebörden.
Återstående obesvarade frågor framställs i form av en agenda för
framtida forskning.
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