
Mediating artifacts and interaction
in a computer environment

An exploratory study of
the acquisition of geometry concepts

Jan Wyndhamn

Nine dyads of twelve-year old students were engaged in collaborative small-group
activity in order to find a way to determine the area of a parallelogram via a computer
program. The program introduced two models or metaphors of a parallelogram, one
changing the perimeter with a constant area ("the deck-of-cards model"), the other
changing the area with a constant perimeter ("the frame model"). By changing the
form and size of a displayed parallelogram the students had the opportunity to
explore and obtain the characteristics of the parallelogram. The interaction between
the students and their interaction with the computer were registered for analysis.
After twenty minutes work with the computer, only one dyad failed to obtain the idea
of the area determinants. The students' discussion, characterized by active inter-
pretation and mutual adoption in combination with the deck-of-cards model as medi-
ating artifact, established a situation in which the students acquired the conception
that the area remained invariant through a specific kind of transformation. This know-
ledge was then used to draw a rectangle with the same area as a given parallelogram.

Introduction

The mathematics classroom is an arena characterized by dynamic inter-
action. Interactions occur between teacher and students, among students,
between the individual and the physical environment and so on (see, e.g.
Cobb, Wood, Yackel & McNeal, 1992; Steinbring, 1989; Voigt, 1989;
Wyndhamn, 1992). A persistent question is how to describe and make
intelligible the relationship between the pupil's external physical and
communicative activities and his/her mental and internal activities. Some
scientists use the metaphor of tools as a vehicle for describing the inter-
action between the mind and the world (e.g. Bruner, 1966; Olson, 1976;
Vygotsky, 1978). According to the Vygotskian tradition, thinking is not
only a matter of representation in the mind, but the dialectical relation

Jan Wyndhamn is a lecturer at the Department of Teacher Education and a
researcher at the Department of Communication Studies, Linköping University,
Sweden

Note: This work is a revised version of an article included in the author's ph-d thesis:
Problem-solving revisited. On school mathematics as a situated practice (Linköping
Studies in Arts and Science 98).



of a joint activity among people involving real objects, tools and media-
tional resources. The construct of 'tool-mediated action' is central in the
theory of Vygotsky (1986) and his followers (e.g. Zinchenko, 1985).
The idea is that external tool-mediated action can be transformed into
internal, mental action. Zinchenko argues:

Internalization is the activity-semiotic transformation not of tools, but of
their meanings (ibid., p. 102).

And Leont'ev, quoted in Zinchenko (1985), points out that

the process of internalization is not the transferal of an external activity to a
pre-existing, internal 'plane of consciousness'; it is the process in which
this internal plane is formed, (ibid., p. 107)

Uses of different tools or means in different contexts bring about diffe-
rent cognitive processes (see, e.g. Lave, 1988; Scribner, 1984). A teacher
who disregards this fact - and this is easily done - may cause many 'cul-
de-sacs' in mathematics education. In this paper, the main focus is on
the role of cognitive artifacts in mathematical thinking in relation to
understanding the determinants of the area of a parallelogram.

Theoretical background and research questions

The geometrical issue

To find the area of a general parallelogram, it is possible to count the
unit squares it contains, but such procedures are tedious and give only
approximate results. A general parallelogram can be transformed into a
rectangle of the same area by removing a right-angled triangle from one
side and replacing it on the other (cf. Wertheimer, 1959).

Figure 1. A general parallelogram becomes a rectangle ("the paper-cut model", see
reference in the text)



The area of a parallelogram is the product of the length of one side (the
base) and the corresponding height. The height is defined as the length
of the perpendicular from one side to the opposite side.

In this context, I must mention the so-called Cavalieri's principle
published in 1629 (cf. Gellert, Kustner, Hellwich & Kastner, 1977). Ca-
valieri, who was a student of Galilei, used a metaphor of a pile of equal
sheets of very thin material (a simple illustration would be a deck of
cards) to show that in spite of different shapes, solids with the same
height and with cross-sections of equal area have the same volume.

A natural consequence of this principle is that (in this case) the area of
the front side remains invariant. Thus, the area of a parallelogram is a
function of its base and corresponding height.

Figure 2. A special case of Cavalieri's principle ("the deck-of-cards model", see
reference in the text)

The psychological dilemma

In the previous section, two different ways of conceptualizing the for-
mula for the area of a parallelogram have been mentioned. From now
on, I will call these procedures, following Sayeki, Ueno & Nagasaki
(1991), "the paper-cut model" (Figure 1) and "the deck-of-cards mo-
del" (Figure 3). The paper-cut model has the character of deduction,
while the deck-of-cards model has inductive qualities. As long as the
number of cards remains constant in the deck-of-cards model, the area
observed does not change. No cards have been taken away or added.
This fact calls attention to the invariance of the 'thickness' of the deck
or, in geometrical terms, the 'height' of the parallelogram.

Figure 3. Deforming type 1 ("the deck-of-cards model")



The parallelograms A and B have the same area but different perimeters.
It is precisely here that a psychological obstacle arises. The height of the
parallelogram is often confused with the length of the shorter side (see,
e.g. Hart, 1981). One possible explanation for this might be that a paral-
lelogram can be 'pushed out of shape' quite easily in another way.

Figure 4. Deforming type 2 ("the hinge model" or "the frame model")

The shape of a parallelogram can be modified, by changing the angles
without altering the lengths of its sides. This will be understood by using
an analogy of considering four sticks held together by hinges. I will
refer to this as "the hinge model" or "the frame model" (Figure 4). The
parallelograms A and C have the same perimeter but different areas. In
this case as well, it appears as if nothing has been added to or taken away
from the original parallelogram.

The psychological dilemma can be formulated as such; the deformed
parallelograms B in Figure 3 and C in Figure 4 look alike. Furthermore,
many seem to assume on intuitive grounds that conservation of perime-
ter logically implies conservation of area and vice versa. The difference
of the areas is apparent to the eye only when B and C are put next to each
other.

Figure 5. Comparison between the two types of deforming

In Figure 5 the area of the parallelogram C is approximately 90 % of the
area of the parallelogram B or the rectangle A. However, the hinge model
can be used to show that the rectangle (or parallelogram) can be flattened
to an area of zero.

The kernel of the psychological dilemma is that area is an abstract
concept, not a tangible one. An area cannot be 'seen', because it is not a
direct product of observation, but it must be constructed intellectually.
'If the area decreases where does it go?' is a tricky question, hard to
handle for pupils. Theoretical notions and perceptual cues interfere in



what is for many a conflicting way. Schoenfeld (1986) shows how
difficult it is for students to move from the geometry of observation (the
perceptual field) to the geometry of proof (the abstract field).

The didactical problem

The learning of geometry has been analysed by many researchers. The
van Hiele theory (van Hiele, 1986) looks at successful thinking and lear-
ning as occurring through a necessary sequence of levels which, in ab-
breviated form, can be described as follows:

Level 0. Visualization. A learner recognizes objects by their global
appearance. (Objects as wholes.)

Level 1. Analysis. Learners can recognize properties of figures, but they
do not interrelate these properties or the figures. (Objects as bearers
of properties.)

Level 2. Informal deduction. A learner can establish relations among
the properties of a figure and among the figures themselves.
(Objects as bearers of logical relationships.)

Level 3. Deduction. The student understands deduction as means of de-
veloping a geometry. (Deductive reasoning in a global sense.)

Level 4. Rigour. Students are able to develop a theory without any
concrete interpretations.

Since the area of the parallelogram can be found in a fairly deductive but
logical way, the geometrical problem in this study belongs essentially to
level 2.

In the van Hiele theory, it is asserted that the advancement through
the levels is more governed by the instruction given than by age or
maturation. Thus, five sequential phases of learning are proposed: inquiry
or information, direct orientation, explication, free orientation, and integ-
ration. By the end of the last phase, pupils will have attained a new level
of thought. The pupils are ready to repeat the phases of learning at the
next level. The van Hiele theory is a "bottom-up" theory or, alternatively,
a developmental theory, since the levels and the phases come in order.
The processes on lower levels are supposed to precede and be independent
of the processes on higher levels.

The didactical problem includes the difficulty of matching the student's
level of thinking with the level of instruction. The desired learning and
progress may not occur, if the teacher, instructional materials, vocabu-
lary, and so on are on a different level than that of the student.



An inspiring experiment

In a study, Sayeki et al. (1991) showed that working with real cards
according to the deck-of-cards model was a superior method to teach
pupils to calculate the area of a parallelogram. Traditional instruction,
involving a pair of scissors and pieces of paper and following the com-
monly used paper-cut model, required the teacher's extensive, time-con-
suming demonstration of the properties of the figures. The students in
the experimental group, who were taught by means of the deck-of-cards
model, discovered by themselves without difficulty the intended rela-
tions among the geometric properties. Post-tests, carried out one week
after the instruction, showed a much better retention for the experimental
group. However, the study also reveals that even though the students
understood how to obtain the area of a parallelogram, they had trouble
realizing what is happening when the frame or hinge model is used. The
students misjudged the constancy of the area and they were reported to
be 'surprised' before they clearly understood this kind of transformation
or deforming. In this case, the students worked very practically with the
outer cover of a matchbox. A conclusion therefore is that the deck-of-
cards model and the frame model are supplementary to each other. The
authors emphasize that the students'

understandings are by no means restricted by the forms of the mediators.
Their understandings were mathematically valid, purely "formal" (in a
Piagetian sense) and yet deeply and firmly rooted in their everyday intui-
tion of manipulating concrete objects (ibid., p. 241)

and that children

may acquire through mediational tools, formal operations concepts which
are strongly tied to (and therefore intuitively accepted as) the truth "afforded"
by reality of objects in the world. (ibid., p. 241)

Concerning the two types of deforming, the crux for the student is to
infer what aspects of the shape and the size are invariant through the
transformations. In the Japanese experiment, the different kinds of de-
forming are presented one at a time: first the deck-of-cards model then
the flexible frame model. In a concluding task, the pupils in cooperation
with the teacher had to discover that the two transformations could
coincide when a frame was adjusted to surround the deck of cards. The
experiment had to follow this design by necessity, as the mediating tools
are not compatible. Then questions arise, what will happen if the two
types of deforming can be handled together on one and the same figure?
Will there be any qualitative differences in the students' conceptions of
the properties of a parallelogram? Will the students grasp the idea of
invariance in such a situation? And based on the understanding of these



variant and invariant features, will the student obtain the formula for the
area of a parallelogram?

Thus, I am primarily interested not in making quantitative compar-
isons of improvements in learning or remembering, but rather in con-
sidering profound changes in mathematical thinking that accompany
the usage of different cognitive tools. I am not looking for a tool only as
a conceptual amplifier but as a mediator of a basic geometrical structure,
or simply a mediating structure, that is a tool as a conceptual reorganizer
(cf. Pea, 1987). Can new technology catalyze the mathematical thinking
by allowing new forms of mediation?

Mediation in the computer environment

First, let me summarize what has been said so far. The topic is "How to
obtain the area of a parallelogram" or formulated differently in Vygots-
kian terms "How to form, organize or shape an internal plane in the
pupil for resourceful mathematical thinking relating to the concept of
area". In the perspective outlined here, the pupil has to be an agent and
interact or coordinate with an external and relevant structure embodied
in a communicative medium. Mediating structures can be embodied in
artifacts, arithmetic procedures, heuristics for problem-solving, check-
lists and so on, but also in methaphors, iconic representations, written
language, and systems of mathematical notation (cf. Hutchins, 1986;
Pea, 1987). In fact, all symbolic systems can be considered as mediating
structures or cognitive tools (cf. Kaput, 1987; Ong, 1982; Säljö, 1992a).
All these tools have a common quality: They represent externalized pro-
ducts of thinking, which can be analyzed, reflected upon, and discussed.

The computer environment provides new facilities or utilities and new
cognitive tools; computer and screen complement paper and pencil and
provide new mediational means and new possibilities for manipulating.
The mediating artifact is software designed with specifically fashioned
features rendered possible by the external representations, which are
manipulable, dynamically linked and simultaneously displayed. The
computer itself is a 'practical tool' and the control system for the opera-
tions can be seen as a 'meta-mediator'. A student can manipulate, ex-
plore and create relationships in the body of information both faster and
qualitatively differently than is possible in a paper-and-pencil environ-
ment. In this way, some of the unique attributes of the computer are
exploited.

Moreover, the computer context offers opportunities to analyse dif-
ferent interactional processes: between pupil and computer and between
pupils. It is easy to arrange a situation in which the learner her/himself is
in charge of finding a solution, that is a situation without any interven-



tion of an instructor. Of course, the outcome of an activity is important
to know, but also the processes by which the result has been achieved.
To analyse the process, all the pupil's efforts can be stored in the com-
puter and later scrutinized. Another aspect is pointed out by Sheingold
(1987) who writes that

computer-based activities 'invite' collaborating which can assist
accomplishments for children both as individuals and in groups, (ibid.
p. 204)

Thus, an analysis of the ways in which pupils talk, in a shared exercise,
may uncover critical, significant points whereby the students' thinking
is facilitated or reorganized. Are the students talking about the screen
output, the underlying geometrical issue or the links between the two?
These are crucial issues in the theoretical perspective taken here. Addi-
tionally, in a joint activity the conversation or discussion per se can be
considered as a potential tool, generating new knowledge and having
great impact on the problem-solving process (Säljö, 1992b).

Research questions

The purpose of this study was to shed light on these questions:

(1) How do the different models mentioned influence the thinking of
the students about the area of a parallelogram, when the models are
presented via a personal computer (PC)?

(2) How do pupils interact with the manipulable representations of
parallelograms on a computer screen as mediating tools?

(3) How do pupils express themselves while they are working together
in front of the PC?

(4) How do students co-operate in solving a task offered after working
with the PC program?

Method

Subjects

Nine pupil-pupil dyads participated in the study. The students were 12
years old. The dyads were selected on a voluntary basis from two clas-
ses in the same school. In accordance with their previous academic
achievement, each group was composed so that it could be allocated to
one of three performance categories: 'high', 'average', and 'low'. The
forming of the dyads was done by the class-teachers and there were
three dyads on each achievement level. The students were familiar with
the formula for the area of a rectangle.



Procedure

Each group - one at a time - was seated in front of a microcomputer (PC)
with a mouse-driven pointer. The PC was placed in a special classroom
for computer use in the school. The students were informed by the author
that after working together with a program concerning parallelograms,
they were going to solve a final task jointly. The students were shown
two sheets of paper with drawings and were told that they would answer
some questions and get some instructions about these papers, later at the
end of the session. The program started when one member of the dyad
keyed a first name on the keyboard. At the same time, this manoeuvre
opened a file where all the trials made by the students were stored.

The computer program was developed*) specifically for this explora-
tory study and it is divided into four parts. Appendix A gives some
illustrations.

Part 1. The Parallelogram Family was presented. The 'members' square
and rectangle were shown as moving coloured drawings. The
concepts of area and perimeter of a parallelogram were introduced
in text and diagram, then the hinge model and the deck-of-cards
model followed - in text as well as in colour and in motion. The
surrounding text was read by the author. Questions that came up
were answered but no more information was given.

Part 2. The students were given instructions on how to change the form
and size of the displayed parallelogram. The mouse-driven pointer
could be placed in four spots of different colours, and by pressing
the two buttons on the mouse, four parameters of the parallelogram
could be increased or decreased. They were:

Parameter indicated by

length with constant angles red
height with constant angles green
perimeter with constant area yellow
(deck-of-cards model)
area with constant perimeter blue
(hinge model)

It must be noted that the geometrical terms were not shown explicitly on
the screen together with the colours, nor were they mentioned by the
author. The students thus had eight ways to change the drawing on the
screen. The actual measurements of the area and the perimeter were
displayed. The two students in each group could practise as long as they
wanted in order to become acquainted with the combinations.

*) by Leif Linderbäck, Linköping



Part 3. This part was the most significant. The screen showed a parallelo-
gram with the measurements (in proper 'computer units') 210 for
the area and 62.6 for the perimeter. In five successive tasks, the
students were asked to make a parallelogram with the following
measurements:

Area 225 100 150 320 100
Perimeter 80 50 100 86 40

When the assigned measurements had been completed, a new task
was automatically presented. Every task started with 210 and 62.6.
When a correct measurement was found, the numerals changed colour
to indicate to the students that their answers were correct. The pupil-
computer interactions (items 2.1; 2.2; 2.3; see survey below and
Appendix B) were saved on the special file, and the pupil-pupil inter-
action (item 3.1) was audiotaped and transcribed.

Part 4. Before the students set about the chief target problems, the group
was offered the opportunity to revise. The students could repeat what-
ever they wanted from part 1 and 2 via a special menu. They could,
for instance, again look at how the deck-of-cards model transformed
a parallelogram.

After the computer-session, it was time for the criterial tasks that had
been announced to the students. The papers, which the students saw at
the very beginning, were shown again. The first paper with drawings
was similar to Figure 3 and Figure 4 in this report, see also Appendix B.
The pupils were requested to categorize the two deformings (transforma-
tions) in terms of 'the deck-of-cards' and 'hinges' (item 1.1), give reasons
for their answers (item 1.2) and specify the properties of the transfor-
mations, that is, if the area or the perimeter was constant (item 1.3). On
the second paper, a single parallelogram was drawn. The parallelogram
had 10 cm and 7 cm sides. The height, corresponding to the longest side,
was 6 cm but it was not marked in the drawing. There were no measure-
ments in the drawing, and otherwise the sheet was quite blank without
lines or a grid. The students were asked to make a picture of a rectangle
with the same area on the paper (item 1.4). They used a pencil and a
ruler (graduated in centimetres). The discussion between the students
(item 4.1) was audiotaped and transcribed. During and immediately af-
ter the sessions, the author took notes.

The connections between the questions in the previous section and
the procedure can be further clarified. Question (1) corresponds to the
criterial tasks (items 1.1; 1.2; 1.3; 1.4 in Appendix B). The pupils' answers
to question (1) are documented on the papers and in the transcripts.
Question (2) - items 2.1; 2.2; 2.3 - can be studied through the printouts
of the special file containing the attempts from each dyad (see



Appendix C). Question (3) - item 3.1 - and question (4) - item 4.1 - can be
answered by analysis of the transcripts and through the author's notes.

Results

Below, the different dyads are labelled: 11, 12, 13 for high achievers;
21, 22, 23 for average ; 31, 32, 33 for low achievers.

The time for a session varied between 26 and 33 minutes. The diffe-
rences between groups are not statistically interesting.

At an overall level, the participating dyads gave correct answers to
item 1 .1- requiring them to identify the two transformations. All dyads,
except group 21, specified in item 1.3 the properties of the transforma-
tions and solved item 1.4 - the drawing task - correctly. Here is an
excerpt from the audiotape and my notes:

Diana: There is no difference between 'the deck of cards' and 'the hinges'. Area
and perimeter are the same all the time. It ought to be so.
Diana drew a rectangle 10 cm long and 7 cm wide, and Doris did not object.

The most common way of drawing the rectangle in item 1.4 was to draw
it somewhere beside the given parallelogram. Two dyads (12 and 31)
drew the rectangle over the parallelogram. In doing so, they did not need
to use the ruler as a measuring device, but they made use of the constant
height and fixed length. Glenn in dyad 31 commented on Gisela's correct
drawing by saying:

The deck of cards lies very tidily (Swedish: jättesnyggt) when you start out.

Carola and Conny in dyad 13 was the only group to place its drawing on
the paper at a level with the given drawing. The constancy of height was
evident to Conny:

The deck of cards becomes neither higher nor lower but longer.

In the students' reasons given (item 1.2) for their answers concerning
the transformations, three different categories were found:

Reference to: Examples of utterances:

Appearance It looks like a deck of cards.
The deck of cards is thick and standing more 'upright'.
This resembles a deck of cards.

Differences (between The hinges press down more than the deck of cards.
transformations) The hinges put down more.

The hinges slope more quickly
(The statements are often reinforced by the movements of hands.)

Constancy of height This is the same ...(pointing to the height).
(implicitly expressed) The deck of cards remains ...(showing constant distance between

the thumb and the forefinger and simultaneously moving the hand
over the drawing).



The responses given by the dyads were not solely from one single cat-
egory, but rather a mixture. Dyads 13, 23, 31, 32 and 33 answered ac-
cording to the first category above; dyads 11, 12, 13 and 21 according to
the second; dyads 13, 22 and 33 according to the third.

The interaction with the PC (items 2.1; 2.2 and 2.3) can be quantitat-
ively described. Table 1 shows the total number of key punches during
part 3 of the computer program.

Table 1. Total number of key punches per dyad

Achievement level
of groups: Sum Mean

high 70 42 23 135 45
average 39 63 53 155 52
low 81 47 51 179 60

469 52

The outcome pattern suggests a trend of direction: the higher the achieve-
ment level, the lower number of key pressings or trials. But, the within-
group variation is considerable and there is no statistical significance
between groups. Instead, I would like to present some further qualitative
information which accounts for some of the numbers. One member of
each of the dyads 13 and 21 (which show low numbers) had "computers
at home" and they were used to working or playing with a mouse-driven
PC. The members in dyad 11 (with a large number of key pressings)
told me this was "the very first time" they had tested a PC. All the other
pupils had tried "a little sometimes".

Table 2 shows the total time devoted to the five tasks in part 3, the
problem-solving part of the program.

Table 2. Time devoted to problem-solving per dyad. 1 time unit = 30 seconds

Achievement level
of groups: Sum Mean

high 27 17 10 54 18
average 22 22 21 65 22
low 28 26 21 75 25

194 22

The pattern from Table 1 reappears. This means that every dyad made
2-3 trials during an interval of 30 seconds. Table 3 shows how the trials
were distributed over the four parameters changing the form and size of
the parallelogram.



Table 3. Number of key punches altering the parameters

Achievement level of groups:
Parameter: high average low Sum

length 26 45 45 116
height 38 49 42 129
perimeter 37 38 47 122
area 34 23 45 102

135 155 179 469

The distribution over the parameters is even.
An analysis of the 45 sheets of paper displaying the efforts of the nine

dyads to solve the five tasks in part 3 of the program exhibits four cat-
egories with respect to the strategy used (item 2.3). The paramount strat-
egy is that after some adjustments primarily of the parameters of length
and height, the dyads try to get the desired area, and then via "the deck
of cards", that is by changing the perimeter, reach the complementary
value. This was the blueprint for success which the dyads 11, 12, 22, 23
and 32 used intentionally in most of the tasks.

A few times, the correct value of the perimeter emerged first by chance
and a temporary solution was to change the area by using "the hinges".
However, dyad 21 consistently used this solution. This strategy constitutes
a second category. Dyad 13 shows a third and more flexible strategy.
Carola and Conny in dyad 13 tried constantly to minimize the number
of trials. This was the only group which used the graduated axes on the
screen output. The parallelogram was temporarily regarded as a rectangle.

Conny: We have got to find a smart solution.

The dyads 31 and 33 used a fourth strategy reminiscent of gambling.
Their efforts followed no distinct or well thought-out design. All the
same, it worked well for two dyads.

Now over to item 3.1 and the discourse in front of the PC. The content
of the discourse is the different kinds of strategies. But which is the
form? In analyzing the audiotapes, four categories can be found (an
overview is shown below).

The different dyads were not consistent in their manner of expressing
themselves. The categories overlap each other in a specific group. The
first category was used by 21, 31 and 33; the second by 12, 21, 22, 23,
31, 32 and 33; the third by 12 and 23; the fourth by 11, 13 and 22.
Apparently, it is easy to talk with reference to the colours.

Placing the outcome of item 4.1 - data concerning the interaction
between the pupils when solving the drawing problem - in a survey as
for item 3.1 is not possible. The nine discussions went in different direc-



Designation of category Characteristic examples of utterances

Demonstrative level (Pointing at the screen and simultaneously saying:)
Take this one.
Put the pointer here.
Increase that.
More there.
Try that first.

Visual level Take the blue spot, I think.
Decrease with the yellow.
Run with red.

Metaphoric level Change with the deck of cards.
Try the hinges.

Formal level We try to hit the area first.
Change both area and perimeter in one go.
Reduce the area.
The perimeter is far from correct. Add (Sw.: "plussa").

tions, and each discourse ought to be analyzed separately. I will return
to this in the next section in a more elaborated way. However, the most
prominent feature is that five dyads used the deck-of-cards model in
their argumentation for a specific drawing, namely 12, 13, 22, 23 and 31.

The members of dyad 21 did not talk to each other in a collaborative
way; they (as the only group) did not succeed in solving the criterial
problems either. As mentioned earlier, one member (Diana) had access
to a PC at home. Therefore, I think, she saw herself as superior to Doris.
Diana solved most of the tasks alone and Doris said "yes" or was silent.
When Diana did not get the right answer quickly enough, she pushed
over the mouse to Doris saying: "Now it is your turn." The discussion
had no turn-takings or comments. Diana started to draw a rectangle
10 cm x 7 cm and Doris agreed with this solution.

Two other dyads (22 and 23) started in the same manner by measur-
ing the sides 10 cm and 7 cm, and drawing a rectangle 10 cm x 7 cm, but
this drawing was corrected during the continued interaction. The pupils
asked questions and argued to reach consensus.

Dyad 23.
Frank: Will the sides be the same here (comparing the two drawings on the paper)?
Frida: Do you mean 10 cm and 7 cm?
Frank: They must be shorter straight upwards.
Frida: Yes, but how long?
Frank: It must be...
Frida: But think of the deck of cards... These lines must be shorter (pointing to the

shorter sides of the rectangle).



Frank: Yes, the measurement here... between (pointing to the height of the parallelo-
gram).

Frida: Reduce...
Frank: The same space (Sw.: mellanrum)... 6 cm.
Frida: Mm (draws correctly).

The crucial point is to realize that the height should be the same. No
dyad used the word 'height', but they found other expressions to com-
municate about the issue. Dyad 13 came closest to 'height' by talking
about "how high /will the rectangle be/?" All groups, except 21, pointed
at their drawings when discussing the problem.

Table 4 in Appendix D summarizes the results of the study. Several
relationships can be found, but they are vague and no single one is
significant. However, the main result of the study is that the deck-of-
cards model seems to be easy to acquire and to apply.

Discussion and conclusions
The present study is about interaction and mediation, phenomena that,
in a Vygotskian perspective, concern two different domains: a domain
of internal mental activity (e.g. reasoning, learning, perception, atten-
tion) and a domain of physical and external objects in the broadest sense
of the term (e.g. paper and pencil, abacus, timetable, words written or
oral, symbols, gestures). Operations in the first domain are hypothetical,
while operations in the other are as a rule observable. These two domains
are related through two opposite processes. First, the physical objects
are interpreted actively by the individual, or the material evokes thoughts
in a more passive and less consciously controlled way. In this process,
the material assists but at the same time constrains cognition. All desired
operations are perhaps not admissible according to some rules. Second,
the mental structures or operations can be projected onto the existing
physical material objects, or new cognitive components can be applied
to the material (cf. Wyndhamn, 1992). The second process externalizes
the individual thinking in order to be communicated or tested. The two
processes are repeated as well as mutually dependent. They can be seen
as two sides of the same coin, that is making sense of experience.

The interaction mediates the relationship between humans and the
world in which they carry out their real-life projects. Pufall (1988)
discusses the relation between self and world, where world implies both
tangible and ideational reality, and the relation between self and object.
In this study, it is important for analytical purposes to maintain this
distinction between the relation self-world and the relation self-object.

In Vygotsky's theoretical framework, mediation is achieved through
tools ("technical tools") and signs ("psychological tools"). Vygotsky



made his most concrete comments on the nature of semiotic (that is
sign-based) mediation in connection with natural language, but his list
of psychological tools also included:

various systems of counting; mnemonic techniques; algebraic symbol sys-
tems; works of art; writing; schemes, diagrams, maps, and mechanical
drawings; all sorts of conventional signs. (Vygotsky, quoted in Wertsch,
1991, p. 91)

A tool has assigned purposes, but many tools do not have meaning. The
meaning is created through co-construction in social settings and involves
both sense and referents (cf. also Bruner & Haste, 1987). Furthermore,
Vygotsky (1986) distinguishes between spontaneous concepts and
scientific concepts. Spontaneous concepts arise directly from personal
experience and reflect the vivid meaning of that experience. Scientific
concepts on the other hand, Vygotsky argues, are learned by means of
formal instruction.

So, with this background, what can be said about the 'figure' of the
experiment concerning the concept of area ('world') and mediating
artifacts ('objects') in the computer environment?

The main interaction - in this study as well as in the Japanese one - is
between the cognition of the pupil and the models of a parallelogram as
a deck of cards and a frame respectively. The mediating structure is
embodied in a 'microworld' (for an analysis of this concept, see, e.g.
Hedrén, 1990; Hoyles, 1991). In short, a microworld is a conceptual
system and sets a context within which knowledge can be construed. In
the Japanese experiment, the medium was physically manipulable and
in the present experiment the manipulation is computer-based. The results
of the computer version verify the findings of the Japanese study: the
two models of a parallelogram are powerful metaphors. They facilitate
and support the pupils' understanding of the properties of a parallelogram;
they are easy to interpret. After twenty minutes work with the PC, only
one single dyad of nine failed to obtain the idea of the area. Thus, it is
not a necessary condition for success for these pupils that the objects are
physically concrete. The objects may be concrete or computer-displayed.
The metaphors in themselves contribute to the creation of conceptions
of the properties of the parallelogram.

The original meaning of the Greek word 'metaphor' is "carrying from
one place to another". A metaphor can be expressed in forms or phrases
such as 'X is Y', 'X is like Y', 'X is as if Y'. Metaphors mediate under-
standing. Nolder (1991) points out:

Metaphor makes it possible to talk about X at all /... and/ to relate new
concepts systematically to things already understood. /.../Metaphor extends
thought /... and/ compels attention, (ibid., p. 112)



As the results show, the pupils did not talk about the parallelogram (X)
and its properties (the tasks or problems per se; the abstract figure; that
is the relation self-world) to any great extent. Rather, they seemed to
think in the medium or the metaphor (Y) (metaphorical thinking; the
drawing is regarded as a deck of cards or a frame; that is the relation
self-object). Yet, two dyads (13 and 23) saw the deck-of-cards metaphor
as a metaphor.

All group discussions were accompanied by a flow of gestures. The
gesture types can be called 'enactive' and 'iconic' in Bruner's well-
known terms. A concept or meaning can also be shown or demonstrated
through a (virtual) action. Such non-linguistic clues as gestures give
information about the significance of what is being said, and they may
sometimes replace a missing word. Utterances, gestures and computer
display form - in a pragmatic and functional manner - a coherent basis
for operational knowing and for reasoning. Or as Dreyfus (1992) puts it
in a commentary on Heidegger's discussion of signs:

A sign's signifying must take place in a context, and it signifies, that is it
can be a sign, only for those who dwell in that context, (ibid., p. 102)

As can be seen, practical and symbolic tools are intertwined in a com-
plex way in the sense-making processes. Therefore, for the continuing
discussion, it is productive to distinguish between the epistemic and the
ontic aspect of cognition in relation to language (Feldman, 1987).

The epistemic aspect of cognition concerns the means by which we as
humans come to know about the world. The mental acts (epistemological
processes) operate on objects (concrete operations) or on propositions
(formal operations). The ontic aspect of cognition concerns the means
by which a situation is first construed. The subject must construe or
stipulate what is to be taken as given before, e.g. approaching problem-
solving. Giving something ontological status is, according to Feldman,
making it 'real'. Ontic stipulations can sometimes be derived from
epistemic operations, that is an epistemic process results in an ontic
product. Feldman calls this "ontic dumping" (ibid., p. 136).

The process of ontic dumping is at work when the deck-of-cards model,
as a strategy or rule for solving a particular problem, becomes a rule in
itself for use in any compatible context. The metaphor becomes at best a
concept suitable for reasoning about ('think about'; relation self-world),
rather than a perhaps step-by-step governed procedure and stereotypical
way of knowing in a particular case ('think in'; relation self-object).

Moreover, in her theoretical analysis Feldman finds a striking paral-
lel between the - here, briefly described - cognitive operations and
language. With reference to Roman Jakobson and the Prague School of
linguistics, she takes up the distinction between the 'given' and the 'new'



in a discourse. A required condition for successful dialogue is that the
topic (the given) is preserved both by and across speakers. An utterance
can refer to the topic, but it can also introduce something new to the
discourse. Depending on how an utterance is treated, the discourse can
move laterally or onwards or even stop. Feldman continues:

The same consequences would follow for thinking undertaken in the form
of language. For in order that thinking move forward in a progressive way,
it too must maintain a clear marking of the cognitively given (ontically
stipulated) and the cognitively new (or epistemic). (ibid., p. 137)

Her point is that cognition and language follow each other closely in the
same pattern. So, the ontic dumping has its linguistic counterpart in the
process when information marked as new in the discourse is being treated
as a topic, that is becomes old, given or taken for granted. That is to say,
to follow and examine how comments in the discourse construct topics
is, at the same time, to follow and watch how processes in the mind
build cognitive objects (concepts) to be reasoned about.

The ontic aspect of knowing is determined relative to epistemic
operations. Therefore, there are many alternative ways of interpreting a
situation, of stipulating, of giving ontic status to what is taken as given
for the epistemic plans at hand. That is why people often construct
idiosyncratic concepts. However, people can know the same thing, co-
ordinate their actions, if they have a common store of referents, a shared
'ontic dump'.

After this development of some concepts, the following remarks can
now be made. Firstly, the results from the discourse in front of the PC
can be made understandable. Most of the pupils construct the state of
affairs by talking on the demonstrative and visual levels. The demon-
strative level contains indexical words - words such as this, here, first -
accompanied by pointing gestures. The words are completely context-
dependent but virtually transparent. The members of the dyad have the
same focus for their discussion. Also, the visual level is unproblematic.
Shared objects and displays facilitate the process of referential anchoring.
Instructions, requests, propositions, questions and so forth on the
metaphoric or formal levels have an ontic status demanding convergence
and coherence in thought. The results suggest a relationship between
the linguistic level and the achievement level of groups, but from a
functional and pragmatic aspect, this relationship is indifferent. The
language has great flexibility when it comes to establishing shared
understanding among participants. On the other hand, the levels reflect
disparate addresses for attention concerning the relation self-object and
the relation self-world. In the format of this study, the influence of this
difference, e.g. retention measured on a post-test, is left unheeded.



Secondly, if the interaction between pupil and computer is regarded as a
conversation, the common picture of a pupil who is asking and a computer
that is answering, has to be supplemented. The computer - especially in
this study - does not give any strict answers, but provides information
which has to be construed in the ontic-epistemic or given-new paradigm
like an ordinary utterance in a discourse. The different patterns in the
pupils' key punches support this suggestion.

Thirdly, the change of medium - from computer-based action to paper-
and-pencil drawing - in the final problem challenges the comprehension
of the concept of area. In fact, the pupils have to talk in terms of the
relation self-world to get shared referents and establish a new here-and-
now situation. The personally constructed knowledge through the
computer program has to be jointly reconstructed. The discourse in group
23 presented earlier shows how social interaction makes the problem-
solving successful through giving comments, asking questions, poin-
ting things out to one another, arguing with and elaborating on each
other's ideas. The discourse can be a structuring resource and a scaffolding
process (cf. Bruner, 1985) when the situation makes the pupil a participant
and a contributor. The discourse can be seen as a potential process of
making meaning (Säljö & Wyndhamn, 1990).

Fourthly, what can be said about dyad 21 which was the only group
not to succeed in solving or answering the criterial items? The deck-of-
cards model and the hinge model did not help Diana and Doris to
discriminate between area and perimeter. They were stuck with the
psychological dilemma.

Diana: Area and perimeter are the same all the time. It ought to be so.

Of course, looking at this exercise as a learning experience, this outcome
is negative. But why does Diana reply as she does? The preceding
discussion can be extended to include a possible answer to this question.
Diana did not perceive any contradictions between the two models. She
was subjectively certain in her own thinking. She applies her self-world
relation to the self-object relation when she sees the problem through a
'it-ought-to-be-so' lense. The area problem is subordinated to a personal
scheme for reasoning. Diana's beliefs or conceptions were never
questioned by the program nor by her partner Doris. As mentioned before,
the two girls did not co-operate. Here, I think, a teacher through instruction
could cause a cognitive conflict leading to a reflective and reconstructive
process. In this way, the results from dyad 21 are positive, they support
the general theoretical framework, and emphasize that a particular
interaction does not always result in a certain, intended cognitive
construction (cf. Pufall, 1988).



To conclude, and as a summary of this study, I will reproduce a part of
the discussion (some repetitions are excluded) in dyad 13 from the final
task, and make a few remarks on the places labelled with capital letters.

Carola: Think of the deck of cards. A
Conny: (measuring the sides of the parallelogram) ... 10 cm ... 7 cm...

10 times 7 is 70, but ... (now measuring the height). B
Carola: Is it so?
Conny: With the deck of cards ...
Carola: ... it is the same ...(pointing to the height).
Conny: 10 is the same ... 6 cm ... it ought to be 6.
Carola: But ... Does the area decrease now? ... 7 ... C
Conny: No. The perimeter becomes longer ... or shorter.
Carola: Mm. How long is ... (pointing to the height)? This was difficult... D
Conny: Yes, 10 times ... how high ... 10 times 6 is it.
Carola: Mm.
Conny: The deck of cards becomes neither higher or lower ... but longer ... (making

gestures).
Carola: Yes... (draws a rectangle using the position of the given parallelogram to get

the right height, thus not using the measurement of 6 cm).

A. Carola stipulates the basis of the discussion - a proper metaphor.
The pupils then discuss the properties of the parallelogram by refer-
ring to the deck of cards. The metaphor monitors and scaffolds the
discourse.

B. Conny says more or less automatically "10 times 7 is 70". He is now
working metonymically, that is he is searching for another 'name'
instead of 'area' in terms of internal relations of the parallelogram.
He takes a starting-point in "the area of a rectangle is length times
width". However, Conny is aware that the statement must be
corrected. Three other groups in the study started in this way, they
even drew a rectangle with the sides 10 cm and 7 cm. All these pupils
for a longer or shorter period referred to the metonymy "length times
width".

C. The question is an example of self-regulation or self-correction of
cognition. In fact, precisely here the relation self-world and the
relation self-object are compared and scrutinized.

D. Carolas problem is not mathematical but linguistic and/or semantic.
I think, she is searching for a proper noun. Conny does not find it
either, however, and he tries with an adjective "high". It is notable
that the pupils point at a drawing on a sheet of paper oriented in the
horizontal plane and still talking about how 'high' something is.
This episode illustrates how language objectifies reality. The pupils
have to listen to a predecessor of the mathematics culture to get the



conventional term or to get their own term confirmed (cf. Bruner &
Haste, 1987).

The discourse as a whole exemplifies how important interaction with
people and artifacts is concerning learning and problem-solving, but
also how the environment for learning is affected by a larger context,
that is embedded in a surrounding culture. Geometry (read mathematics)
deals with human meanings found in a shared understanding, and it is
intelligible only within the context of culture.
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Kommunikationsmöjligheter i datormiljö.

En explorativ studie av begreppsbildning i geometri

Sammanfattning
Nio grupper bestående av två elever (tolv år gamla) ställdes inför upp-
gifter att genom samarbete och via ett datorprogram finna ett sätt att
bestämma arean av en parallellogram. Programmet presenterade två
modeller av hur en parallellogram kan uppfattas. Den ena ("helhetsmo-
dellen") visade att arean kan vara konstant medan omkretsen varierar.
Den andra ("gångjärnsmodellen") visade att omkretsen kan vara kon-
stant och arean variera. Genom knapptryckningar kunde eleverna lätt
ändra form och storlek av en på skärmen visad parallellogram och där-
med utforska och upptäcka olika egenskaper hos parallellogrammen.
Elevernas samspel med datorn registrerades direkt i datorn och elever-
nas inbördes diskussion togs upp på ljudband för analys. Efter tjugo
minuters arbete med datorn hade alla grupper utom en genomskådat hur
olika parametrar inverkar på parallellogrammens area. Samtalet i grup-
perna och interaktionen med datorprogrammet mejslade fram korrekta
föreställningar av vilka geometriska storheter som är invarianta vid oli-
ka transformationer. Denna kunskap utnyttjades sedan i en slutuppgift
då eleverna uppmanades att rita en rektangel med lika stor area som en
snedvinklig parallellogram.

Anm: Detta arbete är en bearbetad version av en artikel som ingår i författarens doktorsav-
handling: Problem-solving revisited. On school mathematics as a situated practice (Linkö-
ping Studies in Arts and Science 98).
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Appendix A

Familjen Parallellogram Rektangeln kan även förskjutas
snett som man kan göra med en
kortlek

Deck-of-cards model

target values

Rektangeln kan knuffas i
sidled som om den hade
gångjärn i hörnen

Area Omkrets

Slutvärden: 225.0 80.0

210.0 62.6

hinge or frame model parameter fields with pointer



Appendix B

Items in the study

Direct answers from the students to the
criterial tasks:

1.1 Look at this paper 1. You see the two
transformations that were dealt in the
computer program.
Which is the "hinges"-transformation?
Which is the "deck-of-cards"-transforma-
tion?

1.2 Give reasons for your answers.

1.3 Say something about the properties
of the transformations concerning area
and perimeter.

1.4 Here, you see a parallelogram.
Draw on paper 2 a rectangle with the same
area.

Answers via analysis of printouts:

2.1 and 2.2 How many trials were necessary and how long time did it
take to reach the target values?

2.3 Which strategy is used?

Answers via analysis of transcripts and notes:

3.1 Which is the nature of the discourse in front of the PC?

4.1 How to describe the discourse during the problem solving phase of
item 1.4?



Appendix C

dyad 23, task 3



Appendix D
Table 4. A survey over the results: items vs dyads

Item
1.1
1.2
1.3
1.4
2.1
2.2
2.3
3.1
4.1

Dyad
11

correct
differences
correct
correct
70
27
deck of cards
formal
pointing

12

correct
differences
correct
correct
42
17
deck of cards
metaphoric/visual
pointing/deck of
cards

13

correct
app./diff./const.
correct
correct
23
10
flexible
formal
pointing/deck of cards

Item
1.1
1.2
1.3
1.4
2.1
2.2
2.3
3.1
4.1

Dyad
21

correct
differences
wrong
wrong
39
22
hinges
dem./visual
no co-operation

22

correct
constancy
correct
correct
63
22
deck of cards
visual/formal
exploring rectangle
10 cm x 7 cm /
pointing/deck of
cards

23

correct
appearance
correct
correct
53
21
deck of cards
visual/metaphoric
exploring rectangle
10 cm x 7 cm /
pointing/deck of
cards

Item
1.1
1.2
1.3
1.4
2.1
2.2
2.3
3.1
4.1

Dyad
31

correct
appearance
correct
correct
81
28
gambling
dem./visual
pointing/deck of
cards

32

correct
appearance
correct
correct
47
26
deck of cards
visual
pointing

33

correct
constancy/appearance
correct
correct
51
21
gambling
dem./visual
pointing


