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This paper presents a comparison of three different frameworks used in research 
projects aimed at measuring knowledge for teaching mathematics. As the included 
cases all build on Shulman’s theoretical framework for teacher knowledge, in which 
the categories subject matter content knowledge (CK) and pedagogical content knowl-
edge (PCK) are central, his framework was used as a reference. To enable comparison 
across the frameworks, each framework’s categories were analysed and organized 
taxonomically. The results indicate agreement on a superordinate level. However, 
important differences were found in the operationalisation of the basic level cat-
egories mathematics CK and mathematics PCK. As the basic level normally represents 
clear communication of categories, this paper suggests that more attention to the 
operationalisation of basic level categories is needed.

Although Shulman did not deal explicitly with mathematics when char-
acterising the ”knowledge that grows in the minds of the teachers” (1986, 
p. 9), a number of researchers have adapted or extended his framework of 
knowledge in order to develop new frameworks for teaching mathemat-
ics. Following Shulman’s framework, in mathematics the category subject 
matter content knowledge (CK) becomes mathematics CK, i.e. knowing the 
facts, structures, rules and procedures of mathematics. Consequently, 
the category pedagogical content knowledge (PCK) becomes mathemat-
ics PCK, i.e. the special and unique knowledge that links mathematics 
CK and the teaching and learning of mathematics. Shulman expresses 
this knowledge as ”the ways of representing and formulating [mathemat-
ics in order to] make it comprehensible to others” (Shulman, 1986, p. 9). 
However, there is currently no consensus on how to implement this re-
categorisation, and there is an on-going debate on how to define and 
delimit the categories of teachers’ mathematics CK and mathematics 
PCK (Blömeke et al., 2008).
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Luca states: ”The square of a natural number is always 1 more 
than the product of its two closest neighboring numbers”.

Is Luca’s statement correct? 

Please show as many different ways of solving this as possible.

Figure 1. Test item from the COACTIV project (Krauss, Neubrand, et al., 2008, p. 
235), hereafter referred to as ItemCOACTIV . Translation from German to English 
approved and item reproduced with permission

Figure 2. Test item from the LMT project (Ball & Hill, 2008, p. 5), hereafter referred 
to as ItemLMT

One purpose of extending Shulman’s framework is to measure teacher 
knowledge. To this end, a clear definition and delimitation of categories 
is important. Two of the general steps involved in the process of devel-
oping a paper-and-pencil test to measure knowledge can be summarised 
as follows: (1) defining a framework, describing and delimiting the dif-
ferent categories of said framework and (2) operationalising the catego-
ries to design reliable and valid test items that span the entire frame-
work (Blalock, 1968, p. 257; Crocker & Algina, 2006; Downing, 2006; 
Schmeiser & Welch, 2006).
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The test items displayed in figures 1, 2 and 3 are from test instruments 
used in three different research projects. These were the Professional 
Competence of Teachers, Cognitively Activating Instruction and the 
Development of Students’ Mathematical Literacy (COACTIV), the 
Learning Mathematics for Teaching (LMT) and the Teacher Education 
and Development Study in Mathematics (TEDS-M). The projects aimed, 
amongst other things, to measure teacher knowledge related to teaching 
and learning mathematics. Each project created a framework for meas-
uring knowledge for teaching mathematics. All three used Shulman’s 

Figure 3. Test item from the TEDS-M project hereafter referred to as ItemTEDS-M 
(Brese & Tatto, 2012, p. 50). Item reproduced with permission
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framework as a basis to develop their own frameworks. In accordance 
with Shulman, knowledge for teaching mathematics was subdivided into 
the following two categories: mathematics CK and mathematics PCK 
(Ball, Thame. & Phelps, 2008; Baumert et al., 2010; Tatto et al., 2008).

As test items are seen as realisations of categories (Wilson, 2005), 
before reading on, the reader is invited to categorise the items in figures 
1, 2 and 3 using only the limited information provided in this intro-
duction. Drawing on Shulman’s two categories, the items should be  
categorised as either mathematics CK or mathematics PCK.

Now, turning to the categorisation of the items developed by the various 
projects: ItemCOACTIV (figure 1) was an operationalisation of mathema-
tics PCK; ItemLMT (figure 2) was an operationalisation of mathematics 
CK and ItemTEDS-M (figure 3) was an operationalisation of mathematics 
PCK. Are your categorisations in accordance with those of the projects?

To understand a project’s categorisation, it is necessary to look at how 
the project group models the concept to be measured, particularly how 
they define and delimit the categories of the model or framework. This 
paper thus focuses on the definition and delimitation of categories of 
knowledge for teaching mathematics in projects where mathematics 
teachers’ knowledge is measured by paper-and-pencil tests. The present 
investigation outlines and compares the framework categories of the  
projects. Hence, the research question is as follows:

What differences and similarities can be found in frameworks mod-
elling knowledge for teaching mathematics that build on Shulman’s 
general framework for teacher content knowledge?

The frameworks are expected to differ even though the focus of this 
paper is on frameworks based on the categories found in Shulman’s 
general framework for teacher content knowledge (1986). Hence, as the 
first part of the theoretical background section will show, categorisa-
tion is a cognitive process which depends on the categorisers’ theoretical 
and practical background. However, the comparison of frameworks pro-
vides knowledge about similarities and differences. This contributes to 
raising awareness about possible disagreements about category content, 
i.e. framework constructs, which could be vital if the aim of the research 
community is to reach a consensus on one model of knowledge for teach-
ing mathematics. Even if the objective is not to find one model, knowl-
edge about agreed-upon categories of teacher knowledge offers several 
advantages. According to Ball et al. (2008), such knowledge carries the 
following three advantages: 1) it allows researchers to examine whether 
any of the sub-categories of teacher knowledge are better predictors of 
student outcomes than others; 2) it provides a clearer distinction in order 
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to try out different approaches to teacher development and 3) it makes 
it easier to design teaching and support materials for both teacher and 
student education in schools. On the other hand, the lack of a common 
theoretical basis and disagreement about the categories to be used ”pre-
vents a convincing development of instruments” (Blömeke, Felbrich, 
Müller, Kaise. & Lehmann, 2008, p. 719), makes comparisons across pro-
jects difficult and could represent a problem when designing teacher 
education programmes.

In order to compare the three frameworks in this report, i.e. to discuss 
possible similarities and differences in the frameworks’ categories, the 
background section starts by providing theories for categorisation, fol-
lowed by an introduction on how one might organise categories taxo-
nomically. Further on, before explaining the methods and presenting 
the chosen frameworks, a more detailed description of Shulman’s content 
knowledge categories for teaching is provided. As previously mentioned, 
these are used as reference categories in the comparison that follows in 
the analysis and discussion section.

Theoretical background

Categorisation
Categorisation is a cognitive process, and as such it varies according to an 
individual’s background and previous experiences (Harnad, 2005; Jacob, 
2004). Consequently, proximity to the field of practice and/or theory 
influences the way an individual categorises, meaning that the categori-
sation of the test items in figures 1–3 most likely differs from person to 
person. For example, ItemCOACTIV (figure 1) could have been categorised 
as mathematics CK, while ItemLMT and ItemTEDS-M (figures 2 and 3) could 
have been categorised as mathematics PCK. In the latter two test items, 
three student responses are proposed which require the respondent to 
react as a teacher would; in the first item, however, the respondent is asked 
to solve the task in multiple ways like a student working with textbook 
tasks would. Or all items could have been categorised as mathematics PCK 
because they all show situations or knowledge demands that, although 
typical for a mathematics teacher, are beyond the realm of mathemat-
ics CK. ItemCOACTIV requires mathematics PCK because a mathematics 
teacher needs to know that a mathematical problem can be solved in mul-
tiple ways. Knowledge of the different solution paths enables the teacher 
to choose the most effective way to guide his/her students. This is tested 
by asking the respondents to use different methods to solve the problem.
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Not only do categorisations vary depending on a person’s background 
and previous experiences, they also vary according to how the concept 
category is understood. In addition, categorisation depends on the crite-
ria for categorisation that is to be utilised. There are different theories of 
categorisation, including the classical view, the prototype view and the 
exemplar view (Murphy, 2002). The present paper concentrates on the 
classical theory of categorisation (Smith & Medin, 1981) and the prototype 
theory (Rosch, 1978). These theories are of specific interest because of the 
substantially different impact they have on the validity of the inferences 
made on the basis of test results, i.e. that a test actually measures what 
it is designed to measure (Kane, 2006; Shadish, Coo. & Campbell, 2002).

In the classical theory of categorisation, a category is described as a col-
lection of objects that match the category definition as determined by a 
checklist of object characteristics (Murphy, 2002; Smith & Medin, 1981). 
Thus, the act of categorisation entails confirming that an object has all the 
characteristics on the checklist, in which case the object is a member of 
the category. If the object does not have all of the characteristics, it must 
belong to another category. There are no in-between cases; the boundaries 
of the categories are clear-cut and the categories are mutually exclusive.

On the other hand, in the prototype theory, categories are more like 
diffuse areas around one or more prototypical examples, and the act of 
categorisation comprises a personal judgment of how similar an object is 
to the prototype(s) of a given category. If an object is judged sufficiently 
similar to the prototype of a particular category and sufficiently different 
from those of other categories, then it belongs to the particular category 
(Ellis & Hunt, 1993; Hahn & Chater, 1997). The boundaries of the catego-
ries in the prototype theory are not clear-cut and there might be some 
overlap, with objects in the overlap belonging to more than one category.

Even though the prototype theory is assumed to adhere more closely 
to the way people actually understand and structure the world (Aase, 
1997), this theory is not as compatible with effective test development 
as the classical theory of categorisation. If valid decisions are to be made 
based on test scores, the categories in the construct to be measured need 
to be clearly defined and delineated (Downing, 2006). Furthermore, to 
ensure that the entire construct is measured, it seems essential to base 
categorisation on equality within categories and discontinuity across 
categories; hence, the items included in the tests used to measure this 
knowledge should be categorised into only one category, either as math-
ematics CK or mathematics PCK. If test developers adopt the prototype 
theory, which allows an item to be categorised as an operationalisation 
of CK and/or PCK, then how can one understand, interpret and report 
correct/incorrect responses to the test items?
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Taxonomies of categories
Although there are many different taxonomies of categories, the hier-
archical taxonomy, in which the categories are placed according to their 
level of specificity, inclusion or abstraction, is particularly important 
(Murphy, 2002; Murphy & Lassaline, 1997; Rosch, 1978). Murphy defines 
the hierarchical taxonomy as ”a sequence of progressively larger catego-
ries in which each category includes all the previous ones” (Murphy, 2002, 
p. 199), which makes it possible to identify the level at which agreement 
or disagreement regarding categorisation can be found and differences 
in categories can be discussed. A hierarchical taxonomy can serve as a 
framework for thinking and communicating.

In the present paper, a taxonomy with the following three levels of 
category abstraction is used: superordinate, basic and subordinate (e.g., 
Murphy, 2002; Rosch, 1978). Superordinate-level categories are more 
abstract and inclusive than lower-level categories. Lower-level categories 
are subordinate to higher-level ones, they are more refined and are more 
similar to each other than categories at superordinate levels (Murphy 
& Lassaline, 1997; Rosch, 1978). According to Rosch (1978) and Murphy 
(2002), the basic level of taxonomy is considered to be the most natural, 
useful and preferred level of specificity, with just the right level of  
identification and abstraction to allow for clear communication.

The taxonomy in figure 4 shows two subordinate-level categories of the 
superordinate level, one of which is referred to as basic, i.e. linear algebra 
and non-linear algebra are subordinate-level categories to the basic-level 
category of algebra, whilst algebra is superordinate to linear and non-linear 
algebra and subordinate to mathematics. Therefore, algebra is a first-order 
subordinate category of mathematics, and linear and non-linear algebra 
are second-order subordinate categories of mathematics.

Superordinate-level 
category

Basic-level 
categories

Subordinate-level 
categories

Mathematics

Algebra
Linear algebra

Non-linear algebra

Geometry
Vectors

Trigonometry

Figure 4. A small, non-exhaustive example-taxonomy of mathematics
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Although algebra and geometry work quite well as basic-level categories 
in figure 4, they may not always be the most appropriate categories to 
use as basic-level categories. For example, if the topic were a course in 
algebra then the category algebra would be too general as a basic-level 
category, and the subordinate-level categories of algebra listed in figure 4 
might be appropriate as basic-level categories. On the other hand, if the 
discussion were centred on school subjects, algebra would be too specific 
to be a basic-level category; instead, mathematics, history and language 
arts might be the categories most naturally placed at the basic level of 
taxonomy. The decision regarding which categories are most useful as 
basic-level categories always depends on the context. Furthermore, it also 
depends on the education, experience, background and training of those 
performing the categorisation (Murphy, 2002).

Shulman’s framework for teacher knowledge
According to Shulman (1986), teacher knowledge can be divided into 
different domains, such as knowledge of individual differences among 
students, knowledge of generic methods of classroom organisation and 
management, and CK for teaching. The latter domain (CK for teach-
ing) constitutes the theoretical background for knowledge in this paper. 
Shulman further suggested that teacher CK consists of the following 
three categories: subject matter CK, PCK and curricular knowledge.

Schulman defined subject matter CK as ”the amount and organisa-
tion of [subject] knowledge per se in the mind of the teacher”; there-
fore, subject matter CK requires ”going beyond knowledge of the facts 
and concepts of a domain” (Shulman, 1986, p. 9). The subject matter CK 
concerns not only what teachers know, but also how well-founded this 
knowledge is. PCK is subject matter knowledge for teaching and includes 
knowledge about ”the most useful forms of representation […], the most 
powerful analogies, illustrations, examples, explanations, and demon-
strations” in the topic taught, as well as an ”understanding of what makes 
the learning of specific topics easy or difficult: the conceptions and the 
preconceptions that students of different ages and backgrounds bring 
with them” (Ibid., p. 9). This domain thus includes knowledge of how 
to represent, explain and teach the subject matter as well as an under-
standing of how children learn the subject and common obstacles to 
this learning.

Curricular knowledge ”is represented by the full range of programmes 
designed for the teaching of particular subjects and topics at a given level” 
(Shulman, 1986, p. 10). This adds the dimension of knowledge of plans for 
instruction and courses of study, including textbooks. The category of 
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curricular knowledge also has the subordinate-level categories of vertical 
and lateral knowledge. Vertical curricular knowledge is about knowing 
the ”topics and issues that have been and will be taught in the same subject 
area during the preceding and later years in school”. Lateral curricular 
knowledge refers to the ”teacher’s ability to relate the content of a given 
course or lesson to topics or issues being discussed simultaneously in other 
classes” (Ibid., p.10).

The work by Shulman and his colleagues in the mid-1980s (and there-
after) has had a great impact on teacher knowledge research as it made 
an important distinction between a) the conventional subject knowl-
edge and competence that teachers and those who study the advanced 
subject successfully acquire and b) the unique PCK that successful  
teachers develop (Shulman, 1986, 1987).

Methodology
The research strategy used in the present study resembles a collective 
case study (Cresswell & Maietta, 2002) in which representative cases are 
selected purposefully. Choosing a case study design has distinct advan-
tages when a ”question is being asked about a contemporary set of events, 
over which the investigator has little or no control” (Yin, 2003, p. 9).

Using the definition of a case as a system bound in time and place 
(Merriam, 1998; Stake, 1995; Yin, 2003), the framework for measuring 
knowledge for teaching mathematics of each included project is regarded 
as a case in this paper. The cases, i.e. the frameworks, included in this 
study were purposefully selected (Robson, 2002) based on the following 
three inclusion criteria: (1) the frameworks used Shulman’s (1986) catego-
risation of CK for teaching as a part of the theoretical foundation; (2) the 
categories of the frameworks were operationalised in order to measure 
knowledge for teaching mathematics using a paper-and-pencil test and 
(3) information about the projects (reports, articles) was easily accessible. 
The following frameworks were included: Professional knowledge of sec-
ondary school mathematics teachers from the COACTIV project; Mathe-
matical knowledge for teaching from the LMT project and Knowledge for 
teaching mathematics from the TEDS-M project (table 1).

The status of each of the included frameworks differs from one 
another. The framework of the LMT project is presented as a working 
hypothesis that the researchers acknowledge still requires improvements, 
whereas the frameworks of the TEDS-M and COACTIV projects are used 
to ensure that items included in the measurement instruments used in the 
respective projects span the entire framework. Other differences include 
the target populations of the projects (in- and pre-service teachers) and, 
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to a certain degree, the school level at which the teachers are teaching or 
are expected to teach. However, the purpose of this paper is to compare 
proposed categories of knowledge for teaching mathematics in order to 
raise awareness about similarities and differences found in the research 
literature. To this end, the states, target population and school levels of 
the frameworks are not considered important. Moreover, the framework 
categories are not understood to be final.

For the purposes of comparison, Shulman’s (1986) categories for teacher 
CK were placed taxonomically (see table 2). This hierarchical ordering of 
Shulman’s categories facilitates the structuring of the categories of the 
included frameworks and serves as an analytical tool to help identify the 
levels at which comparisons can be made (table 2). Shulman’s category 
teacher CK is regarded the most general category and was therefore placed 
at the superordinate level; subject matter CK, PCK and curricular knowl-
edge are placed as first-order subordinate categories. As for second-order 
subordinate categories, Shulman seems to define only two such catego-
ries: lateral and vertical knowledge (subordinate to curricular knowledge). 
However, other subordinate categories could be constructed from his 
descriptions of subject matter CK and PCK, as exemplified in table 2.

In order to decide which subordinate category level to label as basic, 
a previously published list of empirical advantages of basic-level cat-
egories was utilised. The list shows that basic-level categories are more 
informative than superordinate-level categories and that the names of 
basic-level categories are more frequently used in texts (Murphy, 2002, 

Project Framework Origin Measuring 
knowledge of

Teaching 
school level

COACTIV Professional 
knowledge 
of secondary 
school 
mathematics 
teachers

Germany In-service 
teachers 

Lower 
secondary 

LMT Mathematical 
knowledge for 
teaching

USA In-service 
teachers

K–8

TEDS-M Knowledge 
for teaching 
mathematics

International * Pre-service 
teachers

Primary 
& lower 
secondary

Table 1. Frameworks of the projects included in the analysis

Note. * 17 countries participated: Botswana, Canada, Chile, Chinese Taipei, Georgia, 
Germany, Malaysia, Norway, Oman, the Philippines, Poland, the Russian Federation,  
Singapore, Spain, Switzerland, Thailand, and USA (Tatto et al., 2012).
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p. 214). Considering the vast amount of literature that used subject 
matter CK and PCK as subordinate-level categories of teacher knowl-
edge, Segall (2004) even claimed that PCK has ”become ’common cur-
rency’ in the literature in and on teacher education” (p. 490). There-
fore, the first-order subordinate categories subject matter CK and PCK 
(in table 2) are regarded as the most natural categories to place at the 
basic level along with Shulman’s curricular knowledge. Following the 
taxonomy of Shulman’s categories (table 2), the knowledge categories 
of each case were placed in a corresponding or similar taxonomy for 
comparison (see table 3).

Reporting case studies includes providing a description of the context 
of each case. The context descriptions of the three projects included 
herein are mainly based on information found in documents and research 
literature listed on the projects’ respective internet homepages. Only 
documents that describe the frameworks; explain and justify the cat-
egories of the frameworks; present short histories/descriptions of the 

Level of taxonomy

Project Superordinate
First-order 
subordinate

Second-order 
subordinate

Knowledge 
Growth in 
Teaching 
(Shulman, 1986)

Teacher CK

Subject matter CK

knowledge of facts *

knowledge of 
concepts *

knowledge to 
understand the 
structure of the 
subject matter *

PCK

representing 
subject matter *

explaining subject 
matter *

teaching subject 
matter *

Curricular 
knowledge

lateral knowledge

vertical knowledge

Note. * Shulman (1986) did not propose these as categories; they are suggested by 
the author as examples of possible second-order subordinate categories based on the 
descriptions of subject matter CK and PCK presented in the previous section about 
Shulman's framework.

Table 2. Taxonomy of Shulman's (1986) teacher CK categories, showing superordi-
nate, first- and second-order subordinate-level categories
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projects and/or show exemplary or actual items included in their meas-
urement instruments were selected for context descriptions. The docu-
ments for every case were divided into primary and secondary sources 
of information. Although secondary sources are not necessarily directly 
referred to in this paper, they were used as a backdrop. The primary 
source documents from the projects were written in English and gave 
a good overview of both the framework and the project. Although they 
were not always written in English, the documents displaying exemplary 
or actual test items were also included as primary source documents in 
the present paper. The primary and secondary source documents are 
listed in the appendices for the COACTIV (appendix A), LMT (appendix 
B) and TEDS-M (appendix C) projects.

The three test items presented in the introduction section of this paper 
serve two purposes. They are examples of test items that were designed to 
measure knowledge for teaching mathematics in the respective projects, 
and they facilitate illustrations of similarities and differences in categori-
sation. However, one should note that the items are purposefully selected 
and thus represent a biased selection. Furthermore, none of the projects 
have released or published complete instruments, and it is thus assumed 
that the items found in the research literature are representative of items 
used in the projects; more specifically, they are representative of items 
designed to measure the stated category.

ItemTEDS-M and ItemCOACTIV were part of the pool of items included in 
authentic tests. Hence, the categories presented here are the categories the 
items were representing as reported by the projects. ItemLMT is not used 
in actual measures of teachers; rather, it is part of a small set of published 
items demonstrating the LMT project’s effort to write and pilot survey 
items (Ball & Hill, 2008), though ItemLMT is repeatedly used as an item 
that exemplifies teachers’ mathematics CK (Hill & Ball, 2004; Hill, Schil-
lin. & Ball, 2004; Hill, Sleep, Lewi. & Ball, 2007). However, whether or not 
the items are used in tests is not the issue. The purpose of the inclusion 
of these items here is to aid the comparison of categories across the three 
frameworks. According to Wilson (2005), items are seen as realisations 
of the categories; hence, ItemLMT and ItemTEDS-M were selected because 
while almost identical in design, they are operationalisations of mathe-
matics CK and mathematics PCK, respectively. ItemCOACTIV was selected 
because of its dissimilarity to both ItemLMT and ItemTEDS-M, and because 
it is categorised as mathematics PCK. However, this item could, as argued 
earlier, be perceived to only require mathematics CK because it is asking 
the respondents to solve a mathematical problem in as many different ways 
as possible. Based on an analysis of the included documents, a descrip-
tion of each case and case context is given before the comparison of the 
frameworks commences.
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Cases and case contexts

The context and framework of the COACTIV project
The framework Professional knowledge of secondary school mathematics 
teachers guided the work and empirical investigations of the COACTIV 
project, which was conceptually and technically embedded in the 
German extension of the Programme for International Student Assess-
ment (PISA) 2003 cycle (Baumert et al., 2010; Krauss, Baumer. & Blum, 
2008). The target population of the COACTIV project was ninth-grade 
students and their mathematics teachers.

One aim of the COACTIV project was to investigate the theoretical 
assumption that mathematics CK is empirically distinguishable from 
mathematics PCK. A second aim was to investigate the impact teachers’ 
mathematics CK and mathematics PCK had on student outcomes. Their 
hypotheses were as follows: ”CK and PCK represent distinct knowledge 
categories, […] PCK is directly associated with the quality of instruction”, 
and ”[the] effect [of instruction] on student learning is mediated by the 
quality of instruction” (Baumert et al., 2010, p. 135).

The COACTIV team conceptualised teachers’ mathematics CK to be 
”a profound mathematical understanding of the curricular content to 
be taught” (Ibid., p. 142), and PCK as ”a distinct body of instruction- and 
student-related mathematical knowledge and skills – the knowledge that 
makes mathematics accessible to students” (Ibid., p. 142). Then, based 
on the suggestions of Shulman (1986), COACTIV researchers further 
divided mathematics PCK into the following three categories (which 
they referred to as dimensions): ”Knowledge of mathematical tasks as 
instructional tools, knowledge of students’ thinking and assessment of 
understanding, and knowledge of multiple representations and explana-
tions of mathematical problems”, which are referred to as the instruc-
tion dimension (Ibid., p. 142). Since the project emphasised the profes-
sional teacher knowledge needed to cognitively activate the students, the  
mathematics PCK dimensions were developed on the basis of the 
demands of mathematics instruction (Baumert et al., 2010).

The context and framework of the LMT project
The framework Mathematical knowledge for teaching is the result of the 
following two US projects started in the 1990s: Mathematics teaching 
and learning to teach (MTLT) and the LMT project (Ball et al., 2008). 
The intent of these two projects was to ”develop a practice-based theory 
of mathematical knowledge as it is entailed by and used in teaching” 
(Ball, Thame. & Phelps, 2008, p. 396). In the first project, the MTLT, a  
third-grade public school classroom was observed for an entire school 
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year (1989–1990) to analyse the work of teaching mathematics. The 
researchers investigated the kind of knowledge used in and for teaching 
as well as the kind of knowledge a mathematics teacher needs in order 
to teach effectively (Ball, 1999; Ball et al., 2008; Hill & Ball, 2004; Hill, 
Sleep, Lewi. & Ball, 2007).

As a complement to the first project, the researchers developed meas-
ures of CK for teaching mathematics in their second project, the LMT 
(Hill & Ball, 2004; Hill, Schillin. & Ball, 2004). The project group wanted 
a set of analytical tools that could be used to coordinate mathematical 
pedagogical perspectives. They used the measures provided as a way to 
investigate the nature, role and importance of the different categories of 
mathematical knowledge for teaching suggested in the first project (Ball 
et al., 2008). The intention was to design a test to measure mathemati-
cal knowledge for teaching, which was defined as ”mathematical knowl-
edge needed to perform the recurrent tasks of teaching mathematics to  
students” (Ibid., p. 399).

Ball and colleagues produced a ”map of usable professional knowl-
edge of subject matter” (Ball et al., 2008, p. 402) based on a synthesis of 
the results of their two projects which they called Framework for mathe-
matical knowledge for teaching. Using Shulman’s framework as a basis, 
the researchers suggested dividing teacher mathematics CK into the 
following six subordinate-level categories: common CK, specialised CK, 
horizon CK, knowledge of content and students, knowledge of content 
and teaching, and knowledge of content and curriculum.

Common CK was defined as ”mathematical knowledge known in 
common with others who know and use mathematics” (Ibid., p. 403), 
while specialised CK was defined as ”mathematical knowledge and 
skill unique to teaching, […] knowledge not typically needed for pur-
poses other than teaching” (p. 400). Horizon CK was described as an 
”awareness of how mathematical topics are related over the span of  
mathematics included in the curriculum” (Ball et al., 2008, p. 403).

Knowledge of content and students, as well as knowledge of content 
and teaching, were defined to be at the intersection of subject matter CK 
and knowledge about students and teaching (Ball et al., 2008). Knowledge 
of content and curriculum was an adaptation of Shulman’s (1986) subject 
independent category curricular knowledge.

Even though the researchers in the LMT project focused mainly on 
content knowledge and items were largely developed for common content 
knowledge and specialised content knowledge (Ball et al., 2008; Hill et 
al., 2004), they maintain the importance of carefully mapping teacher 
knowledge. Thus, their empirical findings suggest that CK for teach-
ing is multidimensional and that the proposed categories are in need of  
refinement and revision (Ball et al., 2008).
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The context and framework of the TEDS-M project
Unlike the COACTIV and LMT projects, the TEDS-M project was an 
international comparative study of teacher education. It focused on the 
preparation of mathematics teachers for the primary and lower second-
ary levels (Tatto et al., 2008; Tatto et al., 2012). The TEDS-M project 
paid particular attention to the links between teacher education policies, 
practices and outcomes.

The purpose of the TEDS-M project was to identify how the par-
ticipating countries prepared mathematics teachers to teach in primary 
and lower secondary school, and to study the variation in the nature and 
impact of teacher education programmes on mathematics teaching and 
learning within and across the countries included. The researchers also 
aimed to measure the level and depth of mathematics and mathemat-
ics-related teaching knowledge that prospective primary and secondary 
teachers had attained by the end of their pre-service teacher education 
(Tatto et al., 2012).

To measure, the framework Knowledge for teaching mathematics was 
defined. It divided the concept of knowledge for teaching mathematics into 
two main sub-sets of knowledge: mathematics CK and mathematics PCK.

The framework for mathematics CK in the TEDS-M project was built 
on the content and cognitive domains of the TIMSS 2007 and TIMSS 
Advanced 2008 assessment frameworks (Tatto et al., 2008; Tatto et al., 
2012). As the theoretical background for modelling teacher PCK in 
mathematics, the TEDS-M project group referred to research literature 
(Shulman, amongst others), the feasibility study of the TEDS-M project 
(MT21) and the frameworks of the LMT and COACTIV projects (Tatto 
et al., 2008; Tatto et al., 2012). Based on core tasks of professional teach-
ers assessable in an international cognitive study (Schmidt et al., 2007), 
mathematics PCK was divided into the following three subordinate-
level categories: mathematical curricular knowledge, knowledge of plan-
ning for mathematics teaching and learning, and enacted mathematics  
knowledge for teaching and learning.

Analysis and discussion
In order to discuss the differences and similarities between the frame-
work categories in the present study, the categories of the three included 
projects were taxonomically organised. Using the analytic tool presented 
in table 2, the framework categories were placed as shown in table 3. 
The teacher knowledge concepts modelled in the frameworks of the 
LMT, TEDS-M and COACTIV projects are considered to be categories 
at the most abstract level. They are regarded as similar to Shulman’s cat-
egory teacher CK, and were hence placed at the superordinate level of  
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taxonomy. Basic-level categories were easily identified in the TEDS-M 
and COACTIV frameworks in that their first-order divisions of teacher 
CK are labelled and described much in accordance with Shulman’s  
categories subject matter CK and PCK.

In the frameworks of the TEDS-M and COACTIV projects, there were 
three levels of categories, whilst in the framework of the LMT project 
there were only two. However, since the six subordinate categories of 
mathematical knowledge for teaching were proposed by the research-
ers of the LMT project as a refinement to Shulman’s categories, and 
the researchers themselves demonstrated the link to Shulman’s subject 
matter knowledge and PCK (Ball et al., 2008, pp. 402–403), a three-level 
hierarchy of categories was applied to the framework of the LMT project 
as well. Hence, second-order category divisions of teacher CK in all three 
frameworks are placed at the subordinate category level in the taxonomy.

Based on the overt preference found in research literature for math-
ematics CK and PCK, the following comparison will focus on the basic-
level categories and their subordinate-level categories. Moreover, com-
pared to the subordinate-level categories of mathematics as a (school) 
discipline, the category mathematics PCK and its subordinate categories 
are relatively new and therefore of particular interest.

Although all three frameworks included in the present study build on 
or use Shulman’s categories as part of their theoretical background, they 
all divide their superordinate-level categories into two subordinate-level 
categories, i.e. mathematics CK and mathematics PCK, instead of three 
as Shulman (1986) suggested (table 3). In the framework of the LMT 
project, Shulman’s third basic-level category of curricular knowledge was 
provisionally placed as a subordinate-level category of PCK because LMT 
researchers were uncertain whether it would run across several categories 
or should be considered a category of its own (Ball et al., 2008). Since the 
framework of the TEDS-M project was based partly on the framework of 
the LMT project and partly on the framework of the TEDS-M feasibil-
ity study (in which mathematics PCK was subdivided into instructional 
planning), student learning and curricular knowledge (Schmidt et al., 
2007) was apparently accepted as a subordinate category of mathematical 
PCK in the framework of the TEDS-M project. In the framework of the 
COACTIV project, curricular knowledge was not a category on its own. 
The COACTIV researchers claimed that mathematics CK for teaching is 
”defined by the curriculum and [it is] continuously developed on the basis 
of feedback from instructional practice” (Baumert et al., 2010, p. 142). 
Curricular knowledge seems to permeate all categories of the framework 
of the COACTIV project. For instance, the knowledge needed to select 
appropriate tasks as well as which examples and activities to assign at a 
given grade level both depend on the teacher’s curricular knowledge. This 
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Level of taxonomy

Project Superordinate Basic Subordinate

COACTIV

Professional 
knowledge of 
secondary school 
mathematics 
teachers

Content 
knowledge

Arithmetic

Algebra

Functions

Geometry

Probability 

Pedagogical 
content 
knowledge

Knowledge of mathematical tasks as 
instructional tools

Knowledge of students’ thinking and 
assessment of understanding

Knowledge of multiple 
representations and explanations of 
mathematical problems

LMT
Mathematical 
knowledge for 
teaching

Subject matter 
knowledge

Common content knowledge

Specialized content knowledge

Horizon content knowledge

Pedagogical 
content 
knowledge

Knowledge of content and curriculum

Knowledge of content and teaching

Knowledge of content and students

TEDS-M
Knowledge 
for teaching 
mathematics 

Mathematical 
content 
knowledge

Algebra and Functions

Number and Operations

Geometry and Measurement

Data and Chance

Mathematics 
pedagogical 
content 
knowledge

Mathematical curricular knowledge

Knowledge of planning for 
mathematics teaching and learning

Enacting mathematics knowledge for 
teaching and learning

Table 3. Taxonomy of framework categories by project, showing superordinate, basic 
and subordinate-level categories

might be one of the reasons LMT researchers were uncertain about the 
placement of curricular knowledge.

On the basic level, the three frameworks are strikingly similar in 
regards to the number of categories and their labels (table 3). Neverthe-
less, to determine how similar the categories actually are, we need to 
investigate how the frameworks of the projects delimited and defined 
the basic-level categories through their subordinate categories.

It is noteworthy that the subordinate-level categories of subject matter 
knowledge in the framework of the LMT project differed from those 
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in the frameworks of the TEDS-M and COACTIV projects, as pre-
sented in table 3. The effort made by Ball and colleagues in the LMT 
project in ”developing in more detail the fundamentals of subject matter 
knowledge for teaching by […] elaborating subdomains, and by measuring 
and validating knowledge of those domains” (Ball et al., 2008, p. 402) 
might provide researchers and teacher educators with an opportunity 
to learn more about what is special about the mathematical (discipline)  
knowledge demands of a teacher.

Table 4 provides a structured overview of the division of mathemat-
ics PCK in the three frameworks alongside Shulman’s original notion 
of PCK from 1986. It contains a thorough, yet shortened description of 
the subordinate categories of the frameworks. For the framework of 
the TEDS-M project, all the topic samples (examples of core situations) 
given in the conceptual framework (Tatto et al., 2008) are shown. For the 
frameworks of the LMT and COACTIV projects, short paraphrases or 
quotations of the published category descriptions are used.

The frameworks of the LMT, COACTIV and TEDS-M projects all 
divided mathematics PCK into three subordinate-level categories, and 
the names of these categories could offer hints as to how the researchers 
chose them. Questions like when or in relation to what/whom do teach-
ers use their knowledge seem to be key features of the subordinate-level 
category definitions.

Recalling that categorisation is a cognitive activity, it should not come 
as a surprise that the subordinate-level categories of the three frameworks 
are different. The categories originate from three projects with differ-
ent contexts, different expert members and different aims and goals. 
Nevertheless, all three frameworks included (i) knowledge about content 
and students; (ii) knowledge about content and teaching/instruction; (iii) 
knowledge about planning for teaching the content and, as previously 
described, (iv) curricular knowledge. Furthermore, elements from Shul-
man’s notion of PCK can be found in all subordinate-level categories of 
the three frameworks. For example, knowledge of the most useful repre-
sentations is found in the subordinate-level categories concerning teach-
ing or enactment of mathematics, and knowledge of students’ conceptions 
and preconceptions is either a category of its own (in the frameworks of 
the LMT and COACTIV projects) or is incorporated in the knowledge 
needed to plan and enact mathematics for teaching and learning (in the 
TEDS-M framework). However, knowledge of students (and curriculum) 
necessarily informs the teacher when choosing appropriate examples or  
representations as described in the subordinate teaching/instruction cat-
egories of the frameworks of the LMT and COACTIV projects, in which 
the subordinate categories combine general knowledge of teaching and 
instruction with mathematics in order to ensure the students achieve 
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Shulm
an (1986, p. 9)

Subordinate-level categories of m
athem

atics PC
K

C
O

A
C

T
IV

 (B
aum

ert et al., 2010)
L

M
T

 (B
all et al., 2008)

T
E

D
S-M

 (T
atto et al., 2008, p. 39)

Pedagogical content 
know

ledge is subject 
m

atter content 
know

ledge for teaching 
and com

prises
– know

ledge of the 
m

ost useful form
s 

of representations of 
m

athem
atical ideas

– know
ledge of the m

ost
pow

erful
analogies
illustrations
exam

ples
explanations
dem

onstrations
– an understanding 

of w
hat m

akes the 
learning of specific 
topics easy or diffi

cult
– know

ing/
understanding that 
students bring diff

erent 
conceptions and 
preconceptions to class

– know
ing strategies 

m
ost likely to be 

fruitful in reorganising 
the students’ 
understanding if the 
preconceptions are 
m

isconceptions
…

 in a w
ord, [know

ing] 
the w

ays of representing 
and form

ulating the 
subject that m

ake it 
com

prehensible to others

K
now

ledge of m
athem

atical 
tasks as instructional tools 
(T

A
SK

S)
“K

now
ledge of the potential of 

m
athem

atical tasks to facilitate 
learning” (p. 142)
– includes the “ability to identify 

m
ultiple solution paths” (p.149)

K
now

ledge of content and 
curriculum

 
“W

e have provisionally placed 
Shulm

an’s third category, curricular 
know

ledge, w
ithin pedagogical 

content know
ledge” (p. 402)

M
athem

atical curricular know
ledge 

(C
U

R
R

IC
U

LU
M

)
– establishing appropriate learning goals
– know

ing diff
erent assessm

ent form
ats

– selecting possible pathw
ays and seeing 

connection
s w

ithin the curriculum
– identifying the key ideas in learning 

program
s

– know
ledge of m

athem
atics curriculum

K
now

ledge of students’ 
thinking and assessm

ent of 
understanding (ST

U
D

E
N

T
S)

“K
now

ledge of student beliefs 
(m

isconception
s, typical errors, 

frequently used strategies) and 
the ability to diagnose students’ 
abilities, prior know

ledge, 
know

ledge gaps, and strategies” (p. 
142-143)

K
now

ledge of content and 
students 
K

now
ledge com

bining know
ing 

about students and about 
m

athem
atics, teachers m

ust 
(paraphrased from

 page 401);
– anticipate w

hat students think 
and fi

nd confusing
– know

 w
hat students w

ill fi
nd 

interesting and m
otivating, easy 

or hard
– anticipate student respon

ses
– be able to hear and interpret 

students em
erging and incom

plete 
m

athem
atical thinking

K
now

ledge of planning for m
athem

atics 
teaching and learning (PL

A
N

N
IN

G
)

– planning or selecting appropriate activities
– choosing assessm

ent form
at

– predicting typical students’ respon
ses 

including m
isconception

s
– planning appropriate m

ethods for 
representing m

athem
atical ideas

– linking the didactical m
ethods and the 

in
structional design

– identifying diff
erent approaches for solving 

m
athem

atical problem
s

– planning m
athem

atical lesson
s

K
now

ledge of m
ultiple 

representations and 
explanations of standard 
m

athem
atical problem

s 
(IN

ST
R

U
C

T
IO

N
)

K
now

ledge of how
 to guide and 

support the students’ 
“achievem

ent of a deep 
understanding of m

athem
atical 

content (…
) by off

ering m
ultiple 

representation
s and explanation

s 
“(p. 143)

K
now

ledge of content and 
teaching 
K

now
ledge com

bining know
ing 

about teaching and about 
m

athem
atics, teachers m

ust 
(paraphrased from

 page 401);
– know

 how
 to sequence particular 

content for in
struction

– choose appropriate exam
ples, 

representation
s, m

ethod(s), 
procedures

– know
 how

 to evaluate the 
in

structional advantages and 
disadvantages of representation

s 
used

E
nacting m

athem
atics for teaching and 

learning (E
N

A
C

T
IN

G
)

– analyzing or evaluating students’ 
m

athem
atical solution

s or argum
ents

– analyzing the content of students question
– diagnosing typical students’ respon

ses, 
including m

isconception
s

– explaining or representing m
athem

atical 
concepts or procedures

– generating fruitful question
s

– responding to unexpected m
athem

atical 
issues

– providing appropriate feedback

Table 4. An overview of the subordinate categories of mathematics PCK, including 
Shulman's notion of PCK from 1986
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a deep understanding of the subject. The frameworks of the LMT and 
COACTIV projects thus included both the pre-active and interactive part 
of teaching in the subordinate teaching/instruction categories, as they 
define knowledge needed before, during and after interaction with stu-
dents (i.e. teachers plan and choose appropriate examples or cognitively 
challenging opportunities to present to the students; teachers interact, 
guide and support the students and are continually evaluating the instruc-
tional choices made). The choice of verbs used to exemplify the categories 
of the framework of the TEDS-M project, on the other hand, may help 
distinguish between the pre-active part of teaching (PLANNING) and 
the interactive part of teaching (ENACTING) (Tatto et al., 2008).

The apparent danger of overlap in subordinate-level categories within 
a framework gives rise to the question of mutual exclusiveness, hence 
compromising the aim to span the whole construct and the ability to 
report test results by subordinate-level categories. A solution could be to 
report on the basic-level categories, given that the line between math-
ematics CK and mathematics PCK is easier to draw. To shed light on this 
issue, the items categorised in the introduction are reconsidered. The 
context of ItemLMT and ItemTEDS-M (figures 2 and 3) presents a typical 
situation and task of mathematics teachers, with students being repre-
sented by their work. Upon reaching the questions posed in these items, 
test respondents are brought into a school context as they are presented 
with three students’ work and asked to react to each of the students’ 
responses as they would in the classroom. So far, the impression might 
be that these test items require either more or something other than 
mathematics CK; hence, it seems plausible at this point to presume 
that both items could be operationalisations of the basic-level category  
mathematics PCK, which is only the case for ItemTEDS-M.

In ItemLMT, respondents were asked to judge if the methods shown 
can be generalised for all whole numbers or not, and in ItemTEDS-M the 
task was to determine whether or not each proof was valid. ItemLMT 
was designed to measure knowledge of mathematics, in particular the 
”[mathematical] knowledge not typically needed for purposes other than  
teaching” (Ball et al., 2008, p. 400); i.e. specialised mathematics CK. 
ItemTEDS-M was an operationalisation of ENACTING, and the most likely 
corresponding sample topic is ”analyzing or evaluating students’ mathe-
matical solutions or arguments”. Analysing or evaluating students’ math-
ematical solutions is indeed a core task of teaching. However, in order 
to generalise methods or validate proofs, as is the case in ItemLMT and 
ItemTEDS-M , a correct score requires CK of mathematics, as is the case for 
similar questions such as ”Is this true for all numbers?”, ”Can this method 
always be used to solve this kind of question?” and ”Is this true for all 
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similar situations?” Considering the similarity between the test items, in 
the framework of the LMT project, ItemTEDS-M would probably be cat-
egorised as mathematics CK, whereas in the framework of the TEDS-M 
project, ItemLMT would probably be categorised as mathematics PCK.

One thing worth noticing here is that the process of designing test 
items, operationalising the categories defined in a framework and making 
sure the whole construct is adequately covered is difficult and time con-
suming (Downing, 2006). Thus, it might be cost-effective to follow the 
example of the TEDS-M project team. They had the opportunity to build 
on the frameworks of both the LMT and COACTIV projects; even so, they 
obtained permission from the LMT project to use some test items devel-
oped in and for that framework (Tatto et al., 2012). The apparent similarity 
between ItemLMT and ItemTEDS-M might be due to this sharing of items.

In the COACTIV framework, the three subordinate categories of 
teacher PCK were assessed in the paper-and-pencil tests as teachers’ 
(i) ”ability to identify multiple solutions paths” (TASKS); (ii) ”ability 
to recognise students’ misconceptions, difficulties, and solution strat-
egies” (STUDENTS) and (iii) ”knowledge of different representations 
and explanations of standard mathematics problems” (INSTRUCTION) 
(Baumert et al., 2010, p. 149). As the following observation illustrates, this 
emphasis seems to be a strong signal of the importance of mathemat-
ics CK: ”PCK is inconceivable without CK [and] we assume that PCK is 
needed over and above CK to stimulate insightful learning” (Baumert et 
al., 2010, p. 145).

In ItemCOACTIV, an operationalisation of the subordinate level TASKS 
category, the respondents are asked to provide as many solutions to the 
given problem as possible. One could argue that the knowledge needed to 
respond to this item is mathematics CK. However, one could also argue that 
it is particularly necessary in and for teaching mathematics, thus making 
it mathematics PCK (as is the case in the framework of the COACTIV 
project). The more versatile and flexible the teachers’ mathematics CK is 
(regarding multiple solution paths and multiple representations), the easier 
it also becomes to give feedback and guidance to students (Baumert et 
al., 2010). However, this ambiguity makes basic-level categorisation all the 
more difficult. Thus, categorising ItemCOACTIV as both mathematics CK 
and PCK indicates that the prototype theory of categorisation might apply 
better than the classical theory where the object to be categorised is put in 
only one category (no in-between cases or overlap). If categorizing on the 
taxonomical basic level across frameworks, ItemCOACTIV would probably 
be categorised as mathematics CK in the framework of the LMT project 
in that it only requires mathematical knowledge (recognising the impor-
tance for teaching, it might further be placed in the subordinate category 
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specialized mathematics CK). In TEDS-M it might be placed as math-
ematics PCK as it could be designed to elicit future teachers’ knowledge 
about different approaches for solving mathematical problems (as in the 
subordinate category PLANNING), or it might be placed as mathematics 
CK as the item context does not explicitly show a core teaching situation.

The examination of the relationship between the framework catego-
ries and their operationalisation in test items might suggest that the 
ambiguity (as indicated when categorising ItemTEDS-M, ItemLMT and Item-
COACTIV in and across frameworks) could potentially reveal missing cat-
egories in the frameworks. Furthermore, it could simply be the outcome 
of poorly constructed categories or test items, i.e. some test items just do 
not fit as operationalisations of the frameworks’ categories.

Concluding remarks
Compared to Shulman’s original notion of PCK, the subordinate-level 
categories of mathematics PCK showed that the three frameworks 
all adequately covered his description even though they categorised 
mathematics PCK differently. For example, knowledge about content 
and students was a category on its own in the frameworks of the LMT 
and COACTIV projects, whereas in the TEDS-M project it was part 
of the two categories: planning for teaching mathematics and enacting  
mathematics for teaching and learning.

One subordinate mathematics PCK category stood out as an addition 
to Shulman’s description: the TASKS category of the COACTIV project. 
By including this category in their framework, the COACTIV project 
has indicated the importance of knowing and recognising the potential 
of mathematics tasks to facilitate learning. Other categories worth men-
tioning are the subordinate categories of mathematics CK in the frame-
work of the LMT project. The effort made by the LMT expert group 
to also present subordinate teacher categories of mathematics CK may 
benefit further development of teacher knowledge categories because 
it might support the understanding of (and agreement on) basic-level  
categories across projects. Furthermore, the subdivisions of Shulman’s 
basic-level categories might have advantages when investigating what 
kind of teacher knowledge best predicts student outcomes. Indeed, this 
was indicated by Ball et al. (2008), but did not fall within the scope of 
this paper.

Overall, the analysis and discussion herein showed that each project 
provided a framework that, for the most part, had much in common both 
with Shulman’s framework and with each other. However, differences in 
the operationalisation of the basic-level categories were observed. More-
over, this paper supports the claim that the disagreement between the 
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LMT and TEDS-M projects regarding the categorisation and/or oper-
ationalisation of categories by ItemLMT and ItemTEDS-M, and the ques-
tion of whether or not knowing different solution paths to one problem 
(as in ItemCOACTIV), represents a problem – the problem of how to dis-
tinguish genuine mathematics PCK from pure mathematics CK. These 
two categories should be mutually exclusive if they are categorised in 
the classical perspective in order to validly measure and report teachers’  
cognitive abilities.

As one aim of the current and forthcoming regulations in the Nordic 
countries is for teacher education to be research-based (Breiteig & 
Grevholm, 2010; Dahl, 2010; Grevholm, 2010; Gunnarsdóttir & Pálsdót-
tir, 2010; Niemi & Jakku-Sihvonen, 2011), the problem of distinguish-
ing mathematics CK and PCK comes into play if the goal is to design 
courses and teacher education programmes based on research focusing 
on what kind of CK teachers have (or should have). As this paper dem-
onstrates, categorising can be done in various ways for the same object; 
namely, knowledge for teaching mathematics. However, the multitude 
of frameworks and categories might imply a pragmatic stance within 
the teacher education research community towards different categories 
since categorisation is a cognitive activity that draws on personal back-
ground and experience. Thus, if the frameworks analysed here are to 
be used as a basis to design courses for mathematics teacher education, 
the similarities and differences between them must be kept in mind. 
Most importantly, the fact that they seemingly do not have the same 
idea regarding what constitutes mathematics CK and mathematics PCK 
when operationalising (and eventually reporting test results on) these 
basic-level categories must be acknowledged.
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Appendix A – The COACTIV project

Notes. * Primary source documents for the present study. 
**All documents are listed on the COACTIV internet home page,
http://www.mpib-berlin.mpg.de/coactiv/en/index.php  (Eng. version).



hege kaarstein

Nordic Studies in Mathematics Education, 19 (1), 23–52.50

Authors 
(year) Document ** Title Published

Ball, 
Thames, 
and Phelps 
(2008)*

Article Content Knowledge for 
Teaching: What Makes It 
Special?
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Notes. * Primary source documents for the present study.
** All documents, except the first, are listed on the LMT internet home page,
http://sitemaker.umich.edu/lmt

Appendix B – The LMT project
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Appendix C – The TEDS-M project

Authors 
(year) Document Title Published

Tatto et al. 
(2008)*

Conceptual 
Framework

Teacher Education 
and Development 
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(TEDS-M): Policy, 
practice, and readiness 
to teach primary and 
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Conceptual framework

http://teds.educ.msu.
edu/reports/ ***

Tatto et al. 
(2012) *

International 
Report

Policy, Practice, and 
Readiness to Teach 
Primary and Secondary 
Mathematics in 17 
Countries: Findings 
From The IEA 
Teacher Education and 
Development Study in 
Mathematics (TEDS-
M)

http://teds.educ.msu.
edu/wp-content/
uploads/IEA_TEDS-M-
International-Report1.
pdf

Schmidt 
et al. 
(2007)*

MT21 
Report **

The Preparation Gap: 
Teacher Education 
for Middle School 
Mathematics in Six 
Countries 

http://usteds.msu.
edu/MT21Report.pdf 

Brese and 
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(2012)*

Released 
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TEDS-M 2008. 
User Guide for the 
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Notes. * Primary source documents for the present study. 
** Reporting the feasibility study of TEDS-M. 
*** http://teds.educ.msu.edu is the internet home page for the TEDS-M project.
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