
5

Prodromou, T. (2013). A modelling approach to probability – analysing students’ conceptual 
structures. Nordic Studies in Mathematics Education, 18 (4), 5–27.

A modelling approach to 
probability – analysing 
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This research study investigates how middle school students use probability to model 
random behaviour in real-world contexts and how they articulated fundamental prob-
abilistic concepts to show aspects of the mental models that they generated. This 
article is concerned with the conceptual structures that the students develop when 
exploring computer-based simulations. The results suggest that the students relied 
on their experience to provide a context reality from which to construct their mental 
model of the situation, from which they then defined the probability model. While 
the students attempted to build mental models, they checked the adequacy of the 
mapping between their probability models and reality by interrogating the context 
of their personal experiences. The results also suggest that the way students express 
this relationship between signal and noise seems to have a particular importance in 
building comprehensive models that link observed data to modelling distributions.

Statistics and probability are connected, since statistical inference is 
based on probability to draw conclusions about uncertain situations. 
Nonetheless, probability, as an idea, is difficult to pin down and is still 
subject to ongoing controversies about its different conceptions. 

This paper is concerned with the modelling perspective of probabil-
ity (Chaput, Girard & Henry, 2011), in which probability is considered 
”as a theoretical value of the degree of confidence that one can give to a 
random outcome” (p. 86). This modelling approach is based on the syn-
thesis of the two primary conceptions of probability, the classical con-
ception and the frequentist conception. In the classical conception, which 
is based on combinatorial calculus, probability is a fraction of which the 
”numerator is the number of chances whereby an event may happen and 
the denominator is the number of all chances whereby it may either 
happen or fail” (deMoivre, 1718/1967, p. 1). This conception introduces an 
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a priori approach to probability in which probabilities can be calculated 
before any physical experiment is performed. 

The classical approach offers powerful theoretical results when using 
correct and accurately constructed mathematical models. These results 
are challenged by the empirical results obtained from an experimental 
reality. 

The frequentist conception is based on observations of relative fre-
quencies of an event associated with a random experiment that is repeated 
a sufficiently large number of times under the same conditions. In this 
view, experimental probability is estimated as a limit towards which the 
relative frequencies tend when stabilizing (von Mises, 1928). The idea of 
stabilization is based on the empirical laws of large numbers. When mod-
elling (i.e., associating a model with experimental data), the Law of large 
numbers is very important. The use of computers allows students to gen-
erate large statistical series, and hence helps them to understand this law. 

Chaput, Girard and Henry (2008) proposed three steps of modelling 
in teaching probability and statistics. The first step is the observation 
of the concrete situation and the description of it in usual terms. Any 
concrete situation is usually described using scientific knowledge based 
on pre-designed general models. Students are expected to describe the 
pre-designed general models in a simplified system presented in relation 
to everyday life and described using everyday language. Then one may 
proceed by choosing the appropriate characteristic properties of the real 
objects in order to design the related pseudo-concrete model. Then, the 
work hypotheses are set out to describe the situation that is modelled. 
For example, in an urn model, balls are supposed to have the same prob-
ability of being drawn. The experimental process also requires acting on 
the reality in order to study the invariants of the situation. 

According to Chaput et al. (2008), the second step involves the math-
ematisation process, during which the students represent the model in 
a suitable mathematical symbolic system. The mathematisation process 
leads to the formalisation of the model and the selection of the right tools 
to solve the abstract mathematical problem.

Chaput et al. (2008) describe the validation of a model as the third 
step of modelling in probability and statistics. The validation involves 
the translation of the mathematical results in regard to the appropriate 
pseudo-concrete model, and juxtaposition of the model hypotheses to 
the answers to the initial problem derived from mathematical results. 
At the end, according to the authors, the validity of the answers has to 
be estimated. 

The work of of Chaput et al. (2008, 2011) is interesting and provoca-
tive, but it only investigated the modelling process of a random situation 
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for teachers’ training. They did not provide any evidence of students 
making models. 

Probabilistic models can be built into the computer software and 
used to generate simulations to be investigated by students, who might 
view the real world situation through a probabilistic model, instead of 
seeing the probabilistic model through the data (Pratt, Davies & Connor, 
2011). Presenting the modelling approach using powerful technologies 
changes the way teachers teach probability and students learn stochas-
tics (Chance, Ben-Zvi, Garfield & Medina, 2007). Eichler and Vogel (2012) 
researched mental models in students of grade 4 and grade 6 to explain 
the students’ reasoning in situations that involve data and necessitate 
modelling with frequentist probability. Eichler and Vogel showed that, 
when students dealt with elementary situations of uncertainty they 
expressed a huge variability in actions and responses depending on the 
situation’s complexity and representation. The distinction of the aspects’ 
data, objects (or data generation) and mental simulation helps to facilitate 
the analysis of students’ rationales and identify students’ difficulties in 
mental modelling. 

However, we have limited empirical knowledge about how students 
develop mental models when using the modelling process to model every-
day situations. For example, Nilsson (2009) provided some empirical data 
about how Swedish students (12–13 years old) developed mental models 
about compound phenomena and how they developed conceptual struc-
tures of variation and coordination among theoretical and experimen-
tal interpretations of probability. Nonetheless, we still need to research 
further the conceptual models and the conceptual structures that stu-
dents develop about stochastic concepts. On account of that, the aim of 
the current paper is to investigate what conceptual structures students 
may (or can) develop when modelling computer-simulations of real-world 
phenomenon. This overall aim is addressed through the following two 
research questions: (1) How do middle school students use probability to 
model random behaviour in real-world contexts? (2) What connections 
do they build among fundamental probabilistic concepts when treating 
probability as a modelling tool? 

Model-building

A modelling approach in the teaching of probability and statistics
The modelling approach reinforces use of probabilistic models that are 
formalised in a symbolic system and developed to represent concrete 
situations or problems arising from reality. The probabilistic models  
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incorporate uncertainty, or random error in a formalized way (Borovc-
nik, Bentz & Kapadia, 1991). These probabilistic models, according to 
their inherent rules, are expected to simulate the behaviour of random 
phenomena and also predict specific outcomes of random phenomena 
(Borovcnik et al., 1991; Pratt, 2011). 

From a classical, Laplace-oriented, conception of probability, the con-
struction of a probability model begins with the investigation of the 
sample space that is the set of all possible outcomes of the experiment 
under study. When the sample space is constructed a probability is 
assigned to each of the possible outcomes. This structural approach can 
embrace these probabilities as numerical values or in the form of density 
functions such as the normal distribution. In this framework, a prob-
ability distribution of some discernible characteristics has the status of 
a model of the data that describes what one might see if many samples 
were collected from a population, enabling us to compare data from a real 
observation of this population with a theoretical distribution. The prob-
abilities assigned to the set of all possible outcomes can be validated later. 

In statistics and probability teaching, modelling is performed by the 
creation of sample simulations based on probabilistic models of popu-
lations that can be built into the computer software and used to gener-
ate simulations that can be investigated by students (Chaput et al., 2011; 
Pratt et al., 2011). These sample simulations are ”on the determination 
of various parameters through a frequentist approach, or the testing of 
theoretical models by comparing their behavior with the real observed 
data” (Chaput et al., 2011, p. 92). As Chaput and colleagues pointed out, 
the use of computer simulations requires minimal knowledge of prob-
ability or any knowledge of a theoretical model to achieve its comparison 
with the real observed data. 

The importance placed on formal symbolic systems in this description 
of the modelling approach coincides with the modelling used in various 
simulation activities. Such modelling is present in the two experiments 
of this study included essentially no formal symbolic work at all. 

A modelling approach and statistics
In statistics teaching, the modelling perspective is in accordance with 
the modelling process of contemporary statistical thinking (Wild & 
Pfannkuch, 1999) that allows the application of theoretical results  
when making statistical inferences regarding particular observed sample 
statistics or data analysis. 

Statistical practice often involves the use of chance models that 
describe the variability in observed data, either for comparison with 
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experimental data or to simulate data to make an estimate about a par-
ticular population from data provided by a simulated sample (Garfield 
& Ben-Zvi, 2008). Statistical thinking involves constructing models 
and using them to study, model, and predict the behaviour of particu-
lar aspects of the world. Part of developing ideas of statistical model-
ling is to select appropriate models (Wild & Pfannkuch, 1999) and use 
these models when considering drawing statistical inferences from data. 
Inferences are made when using a model to compare a model with the  
experimental results, producing a p-value. 

Lightner (1991, p. 628) argues that ”statisticians must consider probabil-
istic models to infer properties from observed data”. Statistical inference 
is based on probability and ”whereas variability in data can be perceived 
directly, chance models can be perceived only after we have constructed 
them in our minds” (Cobb & Moore, 1997, p. 820). From this point of view, 
the development of understanding, builds up on mental models (Bartho-
lomew, 1995) informed by ”expert knowledge”.

The acknowledgment that probabilistic models can be used to describe 
and predict behaviour adds to the existing difficulty of teaching inferen-
tial reasoning. The integration of statistical data analysis with theoretical 
probabilistic distributions and the assumptions underlying those models 
present a real conundrum in teaching. Research on students’ informal 
and formal inferential reasoning would suggest that there are huge gaps 
in current knowledge about how best to enable learners to make the  
connection between probability and statistical inference.

Pratt (2011) advocates that a modelling approach to probability would 
fit more comfortably with the use of statistics in disciplines other  
than mathematics and may enable to students to connect probability to 
statistics. In particular, Pratt (p. 9) states that: 

presenting probability in the curriculum as a modelling tool will 
inevitably bring with it certain new challenges in how children 
learn but these difficulties can be embraced as essential steps to 
overcome in the development of students who will engage fully in 
modern society.

Pratt provides Prodromou’s Basketball simulation (2008, 2012a) as an 
example of using the probability as a modelling tool. In this simulation 
the shots of a basketball are modelled by a normal distribution and the 
variations that are coming from measurement errors or random causes, 
are spread around a central value. The Basketball simulation used a simple 
model of a basketball player shooting baskets. Two mechanisms were 
used by the Basketball simulation to generate the trajectories of the 
balls following Newton’s Laws of motion; one was fully determinist, the 
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other was probabilistic, incorporating variation in variables that deter-
mined the trajectories of the balls. The software provided students with 
the opportunity to assess the data-centric perspective on distribution 
that was graphically presented as a set of data about the trajectories and 
success of shots at the basket. Students also had access to the graphical 
representation of the modelling distribution, which showed a distribu-
tion of values from which the computer would randomly choose. The 
students could set the modelling distribution by either adjusting inter-
face controls (the arrows or the handle on the slider, see left in figure 1), 
or by directly entering their own value for each outcome interval (right 
in figure 1). In both cases, the simulation allowed students to transform 
the modelling distribution (which generates the output data) directly 
and thus they have indirect control over the data-centric distribution.

Prodromou’s research investigated whether and how 15-year-old stu-
dents built connections between the data-centric perspective on distri-
bution and the modelling perspective on distribution. When Prodromou 
(2008, 2012a) and Prodromou and Pratt (2006) termed the ”modelling 
perspective on distribution,” she simply meant a set of values of basket-
ball shootings modelled by a normal distribution, provided that the vari-
ations spread around a central value and are subject to random causes. 
Ultimately, in the design of the Basketball simulation, the normal curve 
is the model used to generate variation in the outcomes. 

Prodromou’s research (2008, 2012a, 2012b) showed that 15-year old  
students constructed three interpretations: 

Figure 1. The students altered the modelling perspective directly by moving either the 
arrows or the handle on the slider (left), or by setting numerical values associated 
with each possible outcome for a given variable (right)
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 – 	 General Intention (IG): The modelling distribution (MD) was per-
ceived as the intended outcome and the data distribution (DD) as 
the actual outcome, suggesting a connection being made in which 
the modelling distribution in some sense generates the data.

 – 	 Stochastic intention (IST): General intention becomes stochastic 
intention (IST) when randomness becomes a part of the interpre-
tation of the student. 

 – 	 Target: The modelling distribution (MD) was perceived as the 
target (T) to which the data distribution (DD) is directed. 

These interpretations are mental models constructed by the students 
when trying to build connections between the data-centric and model-
ling perspectives, with the intentionality models dependent on appre-
ciation of quasi-causal probability, and the target model dependent on 
recognition of quasi-causal emergence (figure 2).

When the students tried to build connections between the data-cen-
tric and modelling perspectives, they constructed these interpretations, 
which can be understood as mental models of the sort described by  
Johnson-Laird (1983).

Conceptual structure: Johnson-Laird’s mental models 
To discuss the conceptual structures used by the students, we will use the 
theory of Mental Models first discussed by Johnson-Laird and then elab-
orated on by Schnotz (1994), Kintsch (1998), and Schnotz and Bannert 
(1999). Mental models are defined as representations of real situations 
(Kintsch, 1998). Johnson-Laird stated: ”A mental model plays a direct 

INTENTION TO ACTUALITY

ACTUALITY TO TARGET

MD DD

Randomness

Variation

Emergence

Probability

Figure 2. A tentative model for the connection of the data-centric and modelling 
perspectives on distribution
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representational role since it is analogous to the structure of the corre-
sponding state of affairs in the world – as we perceive or conceive it” (1983, 
p. 156). Therefore, the mental modelling of a real situation acknowledges 
the physical objects of the real situation that is to be simulated, its con-
stituent components, and the mechanisms governing the behaviour of 
these objects, the characteristics, and their relationships. 

According to the information-processing model theory (Schnotz & 
Bannert, 1999), mental models are constructed in regard to a task and its 
requirements. 

When dealing with requirements of a specific situation, the model-
ler builds a mental model that simulates certain aspects of a situation 
(Seel, 2001). The function of mental models provides us with answers 
via mental simulation processes (e.g., identifying possible outcomes of 
an experiment by constructing the event space of a coin flip). Mental 
simulations require sense-making of the simulation process. 

Mental models could not be considered as fixed structures of memory 
that humans recall (Baguley & Payne, 1999). The mental models are con-
sidered situational constructions made to help process a situation. The 
elements of a mental model may be altered, improved, or modified while 
a modeller attempts to construct any representations of the real situation. 
Ultimately, mental models exhibit interpersonal difference in the way 
the models are structured and in their constituent functional elements 
(Schnotz, 1994). Since mental models are internal quasi-objects (Schnotz 
& Bannert, 1999), inferred from observable information that portrays the 
mental modelling involved in a particular situation or process, in this 
study the observable information involves students’ articulations after 
students’ use and direct manipulation of TinkerPlots (Konold & Miller, 
2011) tools that conventionally would be regarded as abstract but which 
are represented as if concrete on the computer’s screen. 

TinkerPlots
Recent developments in pioneering software used in statistics educa-
tion, such as TinkerPlots, are ideally suited for supporting the modelling 
approach for students by providing them with modelling tools based 
on probability (i.e., the user can set the probability of some event) that 
can be used to construct models used by computer-based simulations. 
TinkerPlots software is the most recent version of TinkerPlots soft-
ware that has been designed for use by students in grades 4–8. Tinker-
Plots provides students with tools to develop understandings of data, 
statistical concepts, and probability by designing and running prob-
ability simulations, using ”the sampler” (figure 3) to create modelling  
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distributions. For example, modelling distributions are created by defin-
ing the sizes of the sectors of a spinner, or by determining the heights of 
the bars of a histogram that describes the population in a mixer, or by 
drawing a curve to define a probability density function. All these options 
of the sampler engine inevitably bring with them new challenges in how 
students combine these tools when use probability as a modelling tool to 
build a model that simulates of a real-world phenomenon. Additionally, 
this will consequently bring with it new challenges in how children learn 
and give rise to research questions about the conceptual development of 
students who will engage in constructing chance models. 

It is of paramount importance to understand how students construct 
mental models while designing, running probability simulations, inter-
preting outcomes, and drawing connections amongst them when making 
informal statistical inferences, as well as understanding the challenges 
students might encounter in a modelling-approach pedagogy. 

The next two sections of this paper will describe how middle school 
students use probability to model random behaviour in two contexts, 
namely, the Virtual school and the Facebook task. The studies of students’ 
engagement with designing the Virtual school simulation and the Face-
book task simulation show how students construct mental models and 
the connections they build among fundamental probabilistic concepts 
when treating probability as a modelling tool. 

Figure 3. Examples of samplers in TinkerPlots™ 2
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First study: Virtual school simulation
The Virtual school simulation study investigated how 15 year-old stu-
dents built connections between probability, statistics, and simulated 
phenomena within a TinkerPlots computer-based environment. 1

Students were asked to use TinkerPlots features to build a ”Data 
factory” (see figure 4) to generate a number of individual ”virtual stu-
dents” to populate a ”virtual secondary school” with each virtual student 
created using student-defined probability distributions for each of the 
different variables (e.g. gender, name and height). 

TinkerPlots provided students with tools that enable students to use 
probability as a modelling tool using the sampler, which is essentially a 
non-conventional form of probability distribution. The students’ articu-
lations show variability in their actions depending on how they used a 
combination of tools to model the situation under study. The analysis of 
the students’ utterances and actions shows that their construction of the 
sample was based on their personal understanding of the situation when 
activating experiences from daily life. 

The students began by setting up the sampler as a spinner, which 
allowed them to visually assign different angles for the sectors that cor-
respond to the probability of selecting a gender for each virtual student 
(figure 4). 

We start by discussing how the students, George and Rafael, chose 
unequal angles for the sectors, thus giving unequal probabilities of 
getting male (m) students and female (f) students; in this case there was 
a much larger probability of getting male students than females. The 
students explained their choice:

Figure 4. Data factory that simulates a ”virtual school”
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Ge:	 in schools there are generally more males.
Ra:	 Umm, generally the schools that I’ve been in there have been more males. 

This school for example has a lot more males than females.

They then created two different ”mixers”, one for the names of each 
gender, and placed names in each mixer, from which one name was 
chosen at random for each virtual student of the appropriate gender.

The students decided to introduce another attribute for the virtual 
students, height, so they set up two samplers, one each for boys’ and girls’ 
heights, as probability density functions by drawing two curves, as shown 
in figure 4. Rafael stated, ”This is getting complex. For a student, we have 
a choice of gender, name, and height. We are going to have many data for 
each student”. George agreed that although ”each student is one, varied 
information is provided for a student”. 

Rafael and George chose the characteristic aspects of the ”virtual 
school” in order to develop a pseudo-concrete model that was supposed 
to represent the essential features of a school. Hypotheses were set out to 
describe the situation: For instance, a virtual student assumed to consist 
of a cluster of pieces of data. Twenty minutes into the activity, Raphael 
and George decided to have the data factory generate 675 virtual stu-
dents. The simulation generated sample data for the virtual school. The 
students compared the distributions of heights of the virtual students 
with the curves drawn in the sampler (see figure 5).

Ra:	 [pointing to the distribution on the bottom right of figure 5a] We had it 
rising there, then we had a drop, then we had a big rise there which is why 
I’m guessing all these came from before it dropped down there. 
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Figure 5. Distributions created in the sampler and distributions of height
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Ge:	 Well the females theory of the rise [pointing to the graph on the bottom 
left of figure 5a], which is here [pointing to 150–155 of the bottom left 
graph], and that goes down a bit before continuing, so it would be going, 
down, continuing up [170–175], around here [180–183], before decreasing 
again. With the males, we thought the height was a lot higher that was 
there [pointing to the graph on top left]. 

Ra:	 There, there’s a lot less males though, so even, the end results aren’t as 
packed there, the more spread out, or they seem to be spread out as much 
as the females but there’s no piles. Like you can’t see them as high as well 
as you can see the females’ height increases but you can actually see the 
increase there [175–185 right bottom].

Ge:	 There is an increase but it’s not as prominent as the female increase. 

Rafael and George decided to make 1000 virtual students, because they 
believed that the graphs would show the distribution of the height of 
males clearer. They observed: 

Ra:	 But now you can see the increase in the males a lot better (pointing to the 
top figure 5b). Like you can see the towers higher, stacked higher than they 
were before. It’s clear see that there is increase, but with the females is you 
can still see the increase, the huge increase the females have had as well.

Rafael paid attention to slices of prominent features of the distributions 
such as higher areas of accumulated data of the distribution. George 
attempted to equalise the number of male students with female students. 
After generating a new set of virtual students with a 50:50 ratio of male 
to female students, the boys observed the new distribution (figure 5c):

Ra:	 Yeah, it’s a lot clearer to see the increase in the males [pointing to the distri-
bution of male height], now because it is a probability it’s not going to look 
exactly like that [pointing to the distribution of male height they created 
in the sampler]. There’s going to be exemptions. But you can see, you can 
see the overall that it’s increasing. Getting higher here before dropping 
down again [pointing to the distribution of male height], which is what 
our graph showed [pointing to the distribution of male height they created 
in the sampler]. The females you could tell fairly compact in the middle 
… and there’s not as much any to the side which is show here [pointing to 
the distribution of female height]. 

Ge:	 Exemptions? 2 
Ra:	 I suppose there is always gonna be exceptions to the graph. They’re not 

always gonna be exactly as we plan out. Because this is based on probabil-
ity and probability, just because we see that [pointing to the distributions 
they created in the sampler], like it doesn’t mean that it will follow that 
(100 %). 
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The above excerpt shows how Rafael’s attention was, at this point, focused 
on the way the shape of the distributions of heights was changing com-
pared to the distributions they created in the sampler. The extended dis-
cussion of the boys showed that Rafael could not recognize the absolute 
resemblance of the data distribution of heights with the distribution they 
created in the sampler due to uncertainty caused by probability.

George suggested excluding female students from their model and creat-
ing a virtual school with 500 male students. After creating their all-male 
school, they observed: 

Ra:	 Well, it’s steadily increasing with slight jumps. Like it lows there and jumps 
up a bit, which guessing that 140, 155 region there [pointing to the left 
graph in figure 8].

Ra:	 It’s a 163 [left graph9. And that 163 just there [right graph]. 
Ge:	 It’s going up and just going down a little bit 8right graph].
Ra:	 That’s probably where that is come from 160. 164 here has just a low. But 

then it continues. Then it jumps back up and keeps going before dropping 
down a bit again here [pointing to both graphs at the same time].

Ge:	 Just there that one, for reason it’s just steadily dropping [pointing between 
180–185 of right graph]

Ra:	 … except there [180–185]. That seems to have a sharp drop which I’m guess-
ing is just off one of these areas here. Where it just seems to drop down 
[both graphs].

Re:	 Do you believe that the final graph resembles of what you created in the 
sampler? 

Ra:	 Yeah, fairly accurately. 

Rafael was able to conclude that the two distributions eventually resembled 
each other.

Figure 6. The distribution of male height they created in the sampler and the 
distribution of male height 

145 150 155 160 165 170 175 180 185

Height

M
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When engaged in a modelling-approach activity, the students, in an 
intermediate step in their reasoning, developed a mental model in which 
a holistic entity is perceived of as a cluster of independent pieces of data. 

After building the all-male school, they wanted to add another feature, 
and they chose to set a sampler as a probability density function by 
drawing a curve based on the users’ personal experiences, they drew con-
nections between probability, statistics, and the simulated phenomenon. 
When the boys engaged in drawing a curve that illustrated a probability 
density function of heights, they first acknowledged a central area where 
the most common heights were gathered and then talked about the varia-
tions of heights spread around that central area. These students appeared 
to recognise that the description of the notion of probabilistic models and 
the nature of a reasonable approximation of real or simulated phenomena 
lies in the relationship between a central area of values and variations 
spread around that central value that are coming from random causes. 

The students seemed to appreciate that the co-ordination of a central 
area of values and the variations spread around that central value requires 
a fairly good knowledge of how objects and physical processes work, so 
that the students could design the TinkerPlots Data Factory in such a way 
that it would generate sample data that would resemble the real-world sit-
uations being modelled. A good co-ordination of a central area of values 
and variations spread around that central value seem to be essential for 
mental modelling of statistical knowledge and experience. 

The students actively constructed mental models in the service of 
understanding and explaining their experience. They seemed to realise 
the importance of the choices they made as modellers, thus they focused 
their attention on creating in the sampler modelling distributions of the 
attributes, such as height, gender and hair colours. 

Results from the students’ activity showed that the positioning of 
probability as a modelling tool used to build models in computer-based 
simulations brings, as Pratt (2011) suggested, distribution of data into 
the foreground, not as a pre-determined entity, but as a non-fixed entity, 
open to debate.

Raphael and George compared the data distribution of the simulated 
heights to the density curve they drew in the sampler and articulated 
situated heuristics, for example 

there is always gonna be exceptions to the graph. They’re not always 
gonna be exactly as we plan out. Because this is based on probability 
and probability ... just because we see that [pointing to the distribu-
tions they created in the sampler] ... like it doesn’t mean that it will 
follow that 100 %.
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This situated abstraction can be interpreted as a construction of a rela-
tively naïve conception of the use of probability as a modelling tool. It 
portrays one of the general properties of mental models: Mental models 
are often constructed spontaneously to understand a situation and to 
make predictions via mental simulation of these models. One of the stu-
dents in the study could not recognize or accept the absolute resem-
blance of the distributions of heights to the curves students created in 
the sampler due to the existence of many variables that caused sam-
pling fluctuations in the repetition of running the simulation. When 
they excluded one variable from the attributes of the model, the students 
were better able to identify the resemblance of the distribution of the 
generated data with what they designed in the sampler and progressively 
construct the notions of sampling fluctuations and model. 

This empirical evidence shows that students seemed to be checking 
the adequacy of the mapping between the model and reality when com-
paring the data distribution of the simulated heights to the distribution 
they drew in the sample. This mapping between the model and reality 
feed back into the mental model and to actively contributing to the  
development of or aspects of the mental models. 

Second study: Facebook task simulation
This was another task in which the students relied on their everyday 
experience in the world in order to build their models. In this case they 
were interested in the hours they and/or their friends spent on Facebook 
and the impact of hours spent on Facebook on simulated students’ school 
performance/grades. One pair of students – Chris (C) and John (J) – 
decided that all students spent an equal amount of time, 5 hours, and they 
drew curves in the interface to define the probability density functions 
that would be used to generate the simulated data. 

The Facebook task focuses on the interaction between at least 
two variables: hours they and/or their friends spent on Facebook and  
the impact of hours spent on Facebook on simulated students’ school 
performance/grades.

They had generated 1000 virtual students and they compared the dis-
tributions created in the sampler to the distributions of the generated 
data: 

C:		 Well, this is a lot more accurate [pointing to the graphs on the right, see 
figure 7]. Because it shows like, out of the thousand like samples, rather 
than that’s just like a rough drawing [pointing to the graph on the left]. 
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J: 		  Yeah, it’s just a rough copy ... It’s to show us, it’s to get the real data. To get 
the more accurate data in order to put it into the plot form [pointing to 
the graphs on the right].

The students connected the density function and the distribution of the 
generated data, thus coping with aspects of connecting theoretical and 
empirically generated data. The density function and the generated data 
are the observable information from which the mental models that the 
students constructed can be inferred. The students used this observable 
information to perceive the data distribution as the actual outcome, sug-
gesting a connection being made in which the modelling distribution in 
some sense generates the data. They suggested that the data, time spent 
on Facebook, were generated from the model that they built in Tinker-
Plots but they did not find it necessary to use information from the real 
data to feed in back into the model ”interrogating” the context of real 
data. It seemed that the function of their mental models allowed for 
deriving answers via mental simulation by anticipating possible results.

While the students were working on observing representations of the 
situation, it appeared that there was no need to change, enrich or modify 
the elements of the mental models that they built. 

The students spent time discussing how to incorporate in their model 
a representation or representations that would show the impact of Face-
book on simulated students’ school performance. The students relied on 
their experience to provide a context reality from which to construct 
their mental model of the situation, from which they then defined the 

Figure 7. Data factory that simulates the ”Facebook task” (left) and the distribution 
of the generated hours for boys and girls 
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TinkerPlots sampler. They reflected on the impact of hours spent on FB 
on their marks and on the marks of their friends. For instance, Chris 
commented that he does not spend any time on Facebook, but he does 
spend time on sport activities that influence his school performance. 
George mentioned: 

Well I know that a lot of boys do use FB, but I think there’s more 
girls than boys who use FB more hours. But girls’ grades are  
better than boys, so the hours they spent on FB do not have such a 
negative impact on girls’ grades. 

Both students mentioned attributes of the given problem, which entail 
the results of possible mental simulations concerning the FB task. 
However, both students were not able to adequately simulate the given 
situation mentally. The identification of the appropriate attributes of 
a situation under study that essentially influence the data generations 
seems to be an integral component for mental modelling. 

The students added a spinner-type sampler by defining the sizes of 
its sectors: positive impact, no impact, and negative impact (figure 8). 
Although the properties of these on-screen objects, the spinners and 
mixers of TinkerPlots, are unknown to the students, it is possible to bring 
to mind the main influences of the data generation by activating experi-
ences from daily life, especially other factors that have a causal impact on 
students’ performance. They argued that in some cases, ”Facebook would 
not have much of an impact, because if a student is not doing any study, 
s/he can’t really go down because s/he haven’t been really studying in the 
first place.” They also articulated: 

Figure 8. Data factory that simulates the ”Facebook task” (left) and graphs of the 
impact of Facebook on boys and girls
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J: 		  The boys spent less time on FB … umm so they do have an extra 3 hours of 
time. 3, 4 hours, no 2 or 3 hours of time. They’d probably use that playing 
video games … or you know training for their sport or something like 
that … but it would have a positive impact on their school sporting if that 
counts too. 

While the students attempted to build mental models, they checked the 
adequacy of the mapping between their probability models and reality 
by interrogating the context of their personal experiences. What the 
students attempted to do was to seek and get some statistical informa-
tion from the context of their real experiences and compare the gener-
ated graphs to this context. When the students observed the empirically 
generated graphs (figure 8): 

C:		 Yeah, It’s having more of a negative impact on girls than it is having on 
boys … I don’t think it is very realistic actually because boys who spent 
time on FB wouldn’t be getting study done either so they’d, they would 
have negative impact on school too. 

J: 		  It is real yeah, realistic in a way that, it does have more of a negative effect 
than any other effect. 

The students disagreed about whether the Facebook task model was real-
istic or not. On the one hand, Chris believed that the model was not 
realistic because the impact of FB on girls’ school performance was more 
obvious than the impact that FB had on boys’ performance. On the other 
hand, John observed the negative impact that FB on students’ school 

Figure 9. The distribution of the impact of FB on school performance versus hours spent
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performance. It seems that the mental models that Chris and John con-
structed showed interpersonal differences in the way that the two boys 
interpreted the empirically generated graphs. 

Chris checked the adequacy of the model by relying on his personal 
experience observing the graphs of the generated data. He compared the 
distributions of the empirically generated data (figure 9) from the model 
to the probability models in the sampler. He seemed to work with rep-
resentations of the situation in order to construct his mental model that 
will simulate the situation under study. 

G:		  … it peaks up here and peaks in there [pointing to the distribution of data]. 

C:		 It doesn’t, it kinda peaks in there.

Discussion
Inspired by Cobb and Moore (1997), who argued that ”whereas variability 
in data can be perceived directly, chance models can be perceived only 
after we have constructed them in our own minds” (p. 820), in this paper 
we can see how the modelling approach leads to the development of 
cognitive/conceptual structures, the mental models. The mental model 
(abstract) is instantiated as an on-screen (Papert, 1996), quasi-concrete 
(Turkle & Papert, 1991) object, the sampler, that can be manipulated and 
experienced as concrete and tangible (Turkle & Papert, 1991). 

In both studies, when students were introduced to probability through 
activities designed in accordance with the modelling approach, they built 
mental models by integrating statistical knowledge from data (real or 
generated) with information from the context of everyday life to con-
tinually check the adequacy of the model and its mappings to reality. 
Students interrogated the context of real life and sought information in 
the form of data as they observed the empirically generated distributions. 

The generated data presented in graphical form, provided students 
with insights that fed into the modelling approach to probability, which 
generated the data. Moreover, insights gained from the context of real 
life and students’ personal experiences (subjective probability) informed 
the designing of the modelling approach to probability in the Sampler 
(for example density curves drawn in the Sampler), and, in turn, gener-
ated statistical knowledge that provided users with feedback to improve 
the model. When students were engaged with interventions based on the 
modelling approach to probability, for example manipulating Tinker-
Plots tools that conventionally would be regarded as abstract constructs. 
Hence, they created mental models out of an amalgam of the context 
reality, expert knowledge, and their own subjective beliefs, from which 
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they then designed TinkerPlots models that generated sample data that 
in turn resembled as much as possible the real-world phenomena it was 
intended to model.

The modellers constructed the on-screen models of the phenomena 
that in turn fed in to their mental models. We suggest that students’ 
engagement in mentally modelling the given phenomena show that they 
were predominantly able to describe the factors that influenced the data 
generation and the properties of these factors, since they were able to 
reconstruct the phenomena. 

From the first study, we found that a good co-ordination of signal and 
noise requires a fairly good knowledge of the phenomenon at hand, so 
that modellers can make ”optimal” choices when designing a model that 
will generate sample data that resembles as much as possible the real-
world phenomena it is intended to model. The way students express this 
relationship between signal and noise shows the adequacy of the mental 
model they hold when dealing with the physical structural situations 
represented in the tasks (Batanero, Henry & Parzysz, 2005). The first 
activity dealing with the relation of signal and noise involves elements of 
abstraction and simplification of reality with respect to the real situation 
studied. Such activities could enhance the comprehension of students’ 
mental modelling and might help students move to the second model-
ling stage (Batanero et al., 2005) so they could develop chance models 
that are represented in a symbolic system suitable for probability calcu-
lus. Depending on the problem and the education and experience of the 
thinker, the notions of signal and noise can be part of the way we think 
about the world and thus be integral part of our mental models of the 
context reality. 

Computer simulations such as TinkerPlots must lead researchers to 
consideration of students’ construction of mental models when asso-
ciating a probability distribution with a random experiment, with the 
important part played by building links between variation, theoretical 
models, simulations, and probability. These are the areas where sophisti-
cated understanding and application of chance can be useful to students 
in decision making and modelling when modelling everyday phenomena.
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Notes

1	 Aspects of the Basketball simulation and the Virtual school study reported 
here have also been discussed in Prodromou (in press). 

2	 When Rafael was asked about the word ”exemptions”, he shifted to using 
the word ”exceptions.”
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