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Previous research has developed several problem-solving models and suggested that 
the teacher plays a crucial role in guiding students’ problem solving. However, less 
is known about the particularities of problem solving and teacher guidance when 
dealing with open problems which include multiple possible solution pathways. The 
aim of this study is to understand students’ open problem-solving processes and 
teachers’ ways of supporting them. Data collection involved videotaping one 9th 
grade mathematics lesson with two video cameras and capturing the screens of the 
students’ computers. Seven student pairs worked on an open problem using GeoGe-
bra under the guidance of a teacher trainee. We found that students had various kinds 
of problem-solving processes and that the teacher had a crucial role in guiding them. 
We elaborate on 9 ways how the teacher guided students to change between phases 
in open problem solving.

Previous studies have investigated students’ problem-solving processes 
and described phases that students go through when solving problems 
(e.g., Mason, Burton & Stacey, 1982; Nunokawa, 2005; Pólya, 1945; Schoe-
nfeld, 1985). Research on problem solving has also suggested that use of 
technology enhances the exploration of the problem (Healy & Hoyles, 
2001). Furthermore, teachers’ ways of guiding students’ problem-solving 
processes have been studied (e.g., Anghileri, 2006; Martino & Maher, 
1999). However, less research has focused explicitly on students’ processes 
and teacher guidance in open problem solving. A problem is said to be open 
if it has at least one of the following properties: 1) the starting situation 
is open (Pehkonen, 1997), i.e., the solver has to make selections about 
what aspects of the problem are to be investigated, 2) the end product 
is open, with multiple correct answers to the problem (Pehkonen, 1997), 
and 3) the process is open, i.e., there are multiple correct ways to solve 
the problem (Nohda, 2000).
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Open problem solving is claimed to support creativity (Kwon, Park & Park, 
2006). There is also some evidence that open problem solving enhances 
students’ mathematics achievement (e.g., Boaler, 1998). Some studies 
suggest that the value of open problem solving is in getting students more 
involved and enriching their mathematical activity (Pehkonen, 1995; Sul-
livan, Warren & White, 2000). Fewer studies have explored the particu-
larities of students’ problem-solving processes in the case of open problem 
solving. Cifarelli and Cai (2005) investigated college students’ unassisted 
open problem solving. According to them, students engage in making 
sense of the problem, posing problems, carrying out solution activity, 
and reflecting on results. Cifarelli and Cai emphasize that reflection  
on the result provides opportunities to formulate new problems.

Studies investigating the role of teacher guidance explicitly in open 
problem solving are rare. One such study is reported by Sullivan, Mousley 
and Zevenberger (2006). They found that teachers can support students 
by choosing appropriate open-ended tasks, by preparing prompts to 
support students experiencing difficulty, by posing extension tasks to 
students proceeding quickly, and by making classroom processes more 
explicit than usual. In the case of modelling tasks, which often include 
openness in the real world situation, Doerr and English (2006) found 
that teachers supported students in making sense of the task in real-
istic ways, in evaluating their models, and in creating and explaining  
representations.

The aim of this study is to understand students’ open problem-solving 
processes and teachers’ ways to support them in technology enriched 
classroom. In particular, we are interested in teacher-assisted students' 
movements between phases of open problem solving. The research 
questions that guided the study are: 1) How do students move between 
phases of open problem solving? and 2) In what ways can a teacher guide  
students to move between phases of open problem solving?

Theoretical framework

Problem-solving models
The most known mathematical problem-solving model is Pólya’s (1945) 
model which consists of four phases: 1) Understanding the problem, 2) Devis-
ing a plan, 3) Carrying out the plan and 4) Looking back. Other researchers 
have further developed the model (Mason et al., 1982; Schoenfeld, 1985). 
In all of the proposed models there is a phase related to understand-
ing the problem in which the solver has to figure out what actually is 
asked for in the problem and what conditions are given. In Schoenfeld’s 
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(1985) model, this is part of the analysis-phase, where the solver examines 
special cases, simplifies the problem and re-formulates the problem as 
ways to try to make sense of the problem. Most of the changes suggested 
to Pólya’s model, however, concern phases 2 and 3 above, which tend to 
give a too straightforward image of problem-solving process. Mason et 
al. (1982) emphasize the nonlinearity of the problem-solving process by 
claiming that the solver often has to move back and forth between entry 
and attack phases as the solver comes up with ideas, tries to implement 
them but often gets stuck and has to begin a new entry. Schoenfeld (1985) 
divides Pólya’s phase 2 into design and exploration phases and emphasizes 
a cyclic movement between these phases. Design means explicit planning 
and controlling the solution process whereas in exploration phase the 
solver uses problem-solving heuristics, examines related problems, and 
might go back to the analysis phase (Schoenfeld, 1985). All the models 
also include a phase where the solution is checked or reflected upon in 
the end of the solving process. 

A different perspective on modelling problem solving than the models 
mentioned above is given by Davis and Maher (1990) and Nunokawa 
(2005). Both problem-solving models emphasize cycling through gather-
ing information from the problem situation and comparing that to the 
solver’s existing mathematical knowledge. Iterative development is high-
lighted also in the modelling cycle in which students describe a real world 
situation in a mathematical model, manipulate the model in order to 
generate predictions, translate the results into the real world, and verify 
the usefulness of the predictions (Lesh & Doerr, 2003). 

In open problem solving, the phase of understanding the problem 
is particularly important as solvers need to make selections about what 
aspects of the problem they are going to investigate. Reflection is also 
emphasized. Because the end product is open, solvers need to examine 
how reasonable their answer is and because the starting situation is open, 
solvers also need to reflect on the selections they have made and consider 
what other kind of selections they could make in the starting situation. 

Teacher’s guidance of students’ problem solving
The problem-solving literature includes advice on how a teacher should 
guide students’ problem-solving activity. Cai and Lester (2010) lists three 
main discourse factors that can help promote growth of students’ math-
ematical understanding: a) providing students with enough time to work 
on the tasks, b) avoiding to remove the challenges from the tasks by 
telling or showing students how to solve tasks, and c) listening and asking 
thought provoking questions. 
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Instead of telling directly what to do, teachers can still introduce new 
information to support students’ reasoning (Lobato, Clarke & Ellis, 2005). 
Also the idea of scaffolding is to support students but fade the support 
when students can manage without it (Pea, 2004). According to Anghileri 
(2006), scaffolding through direct interactions between the teacher and 
students includes traditional teacher explanation as well as reviewing 
and restructuring. In reviewing, the intention is to encourage reflection 
whereas restructuring aims to progressively introduce modifications to 
students’ ideas (ibid.). According to Anghileri, scaffolding also focuses 
on conceptual thinking by developing representational tools, making  
connections and generating conceptual discourse. 

Careful questioning can also promote students’ reasoning (e.g., Sahin & 
Kulm, 2008; Martino & Maher, 1999). In particular, Martino and Maher 
(1999) note that students do not often spontaneously build justifications, 
and thus, the teacher’s questioning is important in ensuring justification. 
It is also important to ask guiding questions that help students over-
come challenges in solving the problem (Sahin & Kulm, 2008). Perhaps 
the most crucial factor in guiding students’ problem solving, however, is 
listening openly to students (Davis, 1997) and attending to their reason-
ing (Francisco & Maher, 2011). According to Schoenfeld (1985), a teacher 
should also scaffold students’ metacognitions by helping them to control 
and monitor their solution process.

Teachers should support students to engage deeper and deeper in 
mathematical investigations. Hähkiöniemi and Leppäaho (2012) have 
emphasised this by characterising three levels of teacher guidance: a) In 
surface-level guidance, the teacher guides the student from the teacher’s 
own perspective without noticing a certain essential aspect of the stu-
dent’s solution, b) Inactivating guidance means that the teacher reveals 
the potential path of investigation related to the student’s solution to the 
student, and c) In activating guidance, the teacher guides the student to 
investigate the essential aspect related to the student’s solution. 

In open problem solving, the teacher’s role is particularly crucial in 
helping students to cope with the open nature of the problem. The 
teacher may need to help students narrow a multitude of pathways made 
possible by the openness of the problem situation. If the end product is 
open, it is important that the teacher guides students to reflect on the 
reasonableness of their solution.

Use of dynamic geometry software in problem solving
Dynamic geometry software (DGS) is claimed to enrich students 
problem solving. For example, Hölzl (2001) shows in his case study 
how students go beyond the use of DGS for verification purposes only.  
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Furthermore, according to a study by Healy and Hoyles (2001), using DGS 
”can help learners to explore, conjecture, construct and explain geometri-
cal relationships, and can even provide them with a basis from which to 
build deductive proofs” (p. 251). DGS can promote students’ mathemati-
cal problem solving in the same way as in experimental mathematics 
computers are used in 1) gaining insight and intuition, 2) discovering 
new patterns and relationships, 3) graphing to expose math principles, 4) 
testing and especially falsifying conjectures, 5) exploring a possible result 
to see if it merits formal proof, 6) suggesting approaches for formal proof, 
7) computing to replace lengthy hand derivations, and 8) confirming  
analytically derived results (Borwein & Bailey, 2003).

Arzarello, Olivero, Paola and Robutti (2002) have used what they 
called ascending and descending processes to describe students’ explora-
tion with DGS. In ascending processes students move ”from drawings 
to theory, in order to explore freely a situation, looking for regularities, 
invariants, etc.” and in descending processes, students move ”from theory 
to drawings, in order to validate or refute conjectures, to check proper-
ties, etc.” (Arzarello et al., 2002, p. 67). These processes describe how stu-
dents can use DGS to generate and verify conjectures (ascending) and 
then find reasons for why the conjectures are true (descending). Accord-
ing to Jones (2000), this way DGS can be used to promote the need for 
deductive justifications. Yet, despite the advantages of educational soft-
ware, several studies have pointed out that students still need teacher’s 
guidance to transit from verifying to explaining or from empirical work 
with software to deductive reasoning (Christou, Mousoulides, Pittalis &  
Pitta-Pantazi, 2004; Jones, 2000). 

Methods

Data collection
The data of this study are a part of a larger study on teacher trainee’s 
implementation of inquiry-based mathematics teaching led by the 
first author. In the study, teacher trainees were first taught principles 
of inquiry-based mathematics teaching. For example, the teacher train-
ees practiced how to guide students in hypothetical teaching situations 
(see, Hähkiöniemi & Leppäaho, 2012). Then, each teacher trainee imple-
mented one inquiry-based mathematics lesson in grades 7–12. One of 
these lessons was built around the Amusement Park Problem (modified 
from Christou, Mousoulides, Pittalis & Pitta-Pantazi, 2005):

Four towns will build together a magnificent amusement park. Investigate 
using GeoGebra what would be the most optimal and fair location for the  
amusement park. 
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The Amusement Park Problem is an open problem because the students 
have to think what an optimal and/or fair location means and how the 
towns could be located (open starting situation), there are several reason-
able locations for the amusement park (open end product), and the stu-
dents may use different GeoGebra tools and ways of reasoning to solve 
the problem (open process).

The lesson was implemented in grade 9 (age 15) and lasted 45 minutes. 
The students had computers and access to a webpage (http://users.jyu.
fi/~mahahkio/huvipuisto) including a GeoGebra applet, where a new tool 
was added to GeoGebra. The students could use the new tool to compute 
the sum of distances from a point to four other points. The lesson fol-
lowed three phase lesson structure which is general in inquiry-based 
mathematics teaching (see Stein, Engle, Smith & Hughes, 2008). In the 
launch phase (11 minutes) of the lesson, the teacher trainee introduced the 
14 students to the use of GeoGebra software with some examples because 
the students were using GeoGebra for the first time. In the explore phase 
(23 minutes), the seven pairs of students tried to solve the Amusement 
Park Problem by using GeoGebra and the teacher circulated guiding 
them. In the discuss and summarize phase (11 minutes), the teacher trainee 
presented a review of the solutions invented by the students. Different 
solutions were discussed and evaluated with the whole class. 

Data were collected by videotaping the lesson with two video cameras. 
One camera followed the teacher trainee who had a wireless microphone. 
The other camera followed one pair of students who also had a wire-
less microphone. In addition, the seven student pairs’ computer screens 
were recorded using a screen capture software programme and students’ 
written solutions were collected. Altogether, nine videos of the lesson 
were collected.

Data analysis
Data were analysed using Atlas.ti video analysis software. We prepared 
for the analysis by segmenting the lesson videos for launch, explore, and 
discuss and summarize phases. We also described the pairs’ solutions and 
solution attempts and transcribed all the episodes in which the teacher 
discussed with each pair of students. Solutions were defined to result in 
a suggestion for the location of the amusement park whereas in solution 
attempts the students’ engaged in task-related mathematical activity but 
did not reach an answer. After this, we repeatedly watched the students’ 
solutions and solution attempts and tried to identify phases described in 
previous problem-solving models (Pólya, 1945; Schoenfeld, 1985). Although 
some phases such as exploration (Schoenfeld, 1985) could be found in 
data, none of the existing problem-solving models satisfactorily explained 
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the students’ actions. Thus, in combination of literature review and data 
analysis, we formulated a new set of phases that described the students’ 
problem-solving processes (see table 1). Preliminary definitions of the 
phases were modified several times as we coded the students’ solutions and  
solution attempts and negotiated differences among two coders.

We summarized students’ movement between the phases in diagrams (see 
figure 1). Based on all the different routes in students’ problem-solving 
processes, we constructed a model for open problem solving (see figure 
2). Then, we analyzed the teacher’s role in the model. We identified those 
transitions between phases that were initiated by the teacher’s actions. 
From each of these transitions, we examined the teacher’s questions or 
other actions that might have triggered the students to change a phase. 
By comparing the teacher’s actions in the episodes, we found differences 
and similarities among them. Through this analysis, we identified nine 
ways in which the teacher guided the students to change phases in their 
problem-solving process.

Framing the 
problem

Students make selections about what aspects of the 
problem they are going to investigate. The selections that 
the students make may not be explicitly stated. In the 
Amusement Park Problem, the students made choices 
about possible locations for the four towns or about the 
criteria for assigning a location to the amusement park.

Exploring the 
solution

Students engage in task-related mathematical work in 
search for a conjecture for an answer to the problem. The 
exploration does not always result in a conjecture. In the 
Amusement Park Problem, the students, for example, used 
GeoGebra to draw perpendicular bisectors.

Conjecturing Students suggest, i.e., conjecture a possible answer to the 
problem. The conjecture is not necessarily written down. 
In the Amusement Park Problem, the students suggested 
the location of the amusement park.

Investigating 
the conjecture

Students explain how they arrived to the conjecture or 
examine whether it is reasonable or not. In the Amuse-
ment Park Problem, the students, for example, explained 
how they used GeoGebra tools and how they found the 
location for the amusement park or measured distances 
from the conjectured amusement park to the towns.

Justifying Students explain why their conjecture is a reasonable. 
Students’ explanation can be more or less mathematical, 
but for them the explanation justifies the conjecture. In 
the Amusement Park Problem, the students, for example, 
explained that there is equal distance from the amuse-
ment park to the towns. 

Table 1. The phases of open problem-solving processes
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Results

Students’ open problem-solving processes
All the students’ conjectures for the location of the amusement park are 
presented in table 2. Altogether, the students presented 20 conjectures. 
The various conjectures illustrate that the problem really was an open 
problem. The students arrived at these conjectures through different 
routes as presented in figure 1.

The students’ problem-solving processes were different from each other. 
Their problem-solving processes did not always proceed linearly in order 
from phase to phase as in Cecilia’s and Carol’s solution 2 (figure 1). Some-
times students began directly to explore the solution or they skipped a 
phase (see, e.g., George & Gabriel in figure 1). In many cases, the students 
did not justify their conjecture, but continued to build another solution 
(see, e.g., Alice & Ann in figure 1). Sometimes the students constructed 
immediately the conjecture on the basis of framing the problem so that 
they could intuitively see the location of the amusement park (see, e.g., 
George & Gabriel in figure 1). Also, the students often returned to a  
previous phase (see, e.g., Ian & Irene in figure 1).

Conjectures f

Center of a square (5 solutions) or a rectangle (2 solutions) 7

The intersection point of the diagonals when the towns are placed in 
the vertices of a non-symmetric quadrangle

1

The point where the total distance to the towns seems to be smallest 1

Midpoint of a segment connecting midpoints of diagonals 1

The towns are dragged in order to get the midpoints of diagonals to 
overlap and the amusement park is placed in this point

1

Intersection point of perpendicular bisectors of diagonals 2

Intersection point of two perpendicular bisectors (equidistance to 
three towns)

1

The midpoint of a circle that passes through three intersection points 
of the perpendicular bisectors of the four towns

2

The towns are on a straight line and the amusement park is placed on 
the midpoint of the outer most towns (1 solution) or on the midpoint 
of the inner most towns (1 solution)

2

The towns are on a straight line and the amusement park is placed 
on the perpendicular bisector of the outer most towns outside the 
segment connecting the towns

2

Table 2. Students’ conjectures
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Based on all the different routes in students’ solutions and solution 
attempts, we constructed a model of open problem solving presented in 
figure 2. In the optimal route (full arrows in figure 2), a solver begins by 
framing the problem, goes through the phases, and continues to the next 
solution by framing the problem differently. The model also accounts 
for the possibility of returning to a previous phase and skipping a phase 
(dashed arrows in figure 2).
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Figure 2. An open problem-solving model.
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Teacher guides students to change between phases
As indicated by figure 1, the teacher had essential role in guiding the 
students to change phases in their solution processes. In this section, 
we elaborate on nine ways in which the teacher guided the students to 
change phases in their open problem-solving processes.

Teacher guides students to narrow the starting situation
The teacher often guided the students to frame the problem (see figure 1).  
For example, Mary and Mark had started to explore solutions without 
thinking how the towns are located. The students seemed to work ran-
domly in the exploring the solution phase, but the teacher guided them 
to change to the framing the problem phase of solution 1 by asking them 
to locate the towns so that the problem is easy to solve:

Teacher: 	 How is it going Mark and …?
Mark: 	 It’s really not going at all.
Teacher: 	 What do you have? Do you have some idea what you are trying to do 

here?
Mark: 	 No. Just experimenting. 
Teacher: 	 Right. Well, it’s not bad. Would it be a good idea to try something a 

little simpler? Now you have placed the towns a bit randomly. But if 
you would first look for, for example, a situation where the locations 
of the towns in relation to each other are simpler?

Mary: 	 But these [towns] are already [located] quite simply.
Teacher: 	 Move them so that it would be easier to solve first. Drag the points to 

such locations. [...] Solve first, for instance, some easy situation. And 
then change it more difficult.

After the teacher’s guidance, the students dragged the towns so that 
they formed a rectangle. They found the location for the amusement 
park by drawing the intersection point of the diagonals of the rectangle. 
They justified the solution by writing ”Most fair because the distance 
from the amusement park to each of the towns is the same”. So, in this 
episode, the teacher helped the students return to framing the problem, 
which resulted in the pairs’ first solution to the problem. It should be 
noted that the teacher did not tell the students how to exactly frame the 
problem, but let the students to think about this. The teacher guided 
the students to frame the problem so that it is easy to solve. This means 
that the teacher helped the students narrow the open starting situation 
of the problem. 
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Teacher guides students to widen the starting situation
Another type of guidance happened in situations where a student pair 
had already built a conjecture and investigated or justified it. Then, the 
teacher guided them to re-frame the problem differently, i.e., to widen 
the starting situation. For example, George and Gabrielle had built solu-
tion 1 in which the amusement park was placed in the midpoint of a 
square using the grid. The students had also drawn a circle through the 
towns and measured individual distances from the amusement park to 
the four towns. Then the teacher guided them to change to the framing 
the problem phase of solution 2 by asking them to move one of the towns:

Teacher: 	 What if you move, let’s say, the point C [a town]? [Students drag the 
point outside the circle.] […] What would now be a smarter location? 
Can you find a point which would be equally far away from all of those 
[towns]?

Gabrielle: 	No. Or maybe you can. But ...
Teacher: 	 Think about it for a while.

In the above episode, the teacher and the students utilized the dynamic 
character of GeoGebra and visualized by dragging possibilities for 
framing the problem. Although, in this situation the towns did not form 
any regular pattern, we considered this as framing the problem because 
the towns are purposefully placed in these locations.

Teacher guides students to use a reasoning-based strategy
In solution 2, Ian and Irene drew four perpendicular bisectors for four 
pairs of towns and placed the amusement park on one of the intersec-
tion points of these perpendicular bisectors. The students’ explanation 
for selecting one of the intersection points of the perpendicular bisec-
tors was based only on visual appearance of the figure. The teacher did 
not ask them any further about the criteria for selecting this location 
for the amusement park. Instead, the teacher guided them to change to 
exploring the solution phase of solution 3 by asking them to think about 
another solution method:

Teacher: 	 Okay. Good. You are on the right track. Well. Could you find a way, 
sort of, to always find the point, the certain right point? Like, basically, 
these can locate, like this could be one centimeter toward this direc-
tion. Then, how would you invent the point in a handy way? Could 
you find a sort of general way of solving the problem?

Irene: 	 Well, I don’t know.
Ian: 	 Well, if you put the perpendicular bisectors to each and every place.
Irene: 	 Yeah.
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Ian: 	 And then the intersection point.
Teacher: 	 Do it. Let’s see what it will be. [...] [Ian draws perpendicular bisectors 

to five pairs of towns.]
Teacher: 	 Now we have a problem. They all don’t intersect in the same point. 
Irene: 	 So, it should be placed there, in the middle [points to the interior of a 

triangle formed by the three intersection points of the perpendicular 
bisectors].

Teacher: 	 How do you get that?
Ian: 	 With some circle.
Irene: 	 Yeah.
Teacher: 	 Try it. This is. Hey, this is amazing. 

In this episode, the teacher asked the students to think about a solu-
tion strategy which is not dependent on these particular locations of the 
towns. Thus, the teacher tried to guide the students toward a solution 
strategy which is based on reasoning instead of empirical experiment-
ing. The teacher also pointed out that there is a problem because the per-
pendicular bisectors do not meet in a single point. However, the teacher 
did not notice that it is very difficult to find a mathematical criterion for 
drawing the circle suggested by the students. Instead, the teacher could 
have tried to guide the students to investigate, for example, when all the 
perpendicular bisectors would intersect in a same point which could lead 
to rich mathematical reasoning.

Teacher guides students toward more precise solution
In their solution 3, Cecilia and Carol had used the tool which gave the total 
distance from the amusement park to the four towns. They had approxi-
mated a point where the sum of distances seemed to be a minimum when 
the teacher asked them to justify why they selected that point. Then the 
teacher guided Cecilia and Carol to change a phase from justifying to 
exploring solution by asking how the students could get the location of 
the amusement park precisely:

Teacher:	 Why this point?
Carol:	 Because we moved it and there it was smallest. [The sum of distances 

from the amusement park to the towns is 18.717. See figure 3a.]
Teacher:	 All right. Okay, good. But, how could you get it exactly? Now, it seems 

that you have estimated that it is there. How could you use your rea-
soning to get it just precisely to that point? […]

Carol:	 Could we do the intersection of lines [intersection of diagonals of the 
quadrangle]?

Teacher:	 Try it.
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Carol:	 It would be approximately there.
Teacher: 	 Try it. [Students draw the diagonals. The amusement park is not in 

the intersection point.] Try now. Try now. [Students drag the amuse-
ment park to the intersection point.]

Students: 	 It is! [The sum of distances from the amusement park to the towns is 
18.687. See figure 3b.]

Teacher:	 Hey. Absolutely amazing!

In the above episode, the teacher changed the students from empirical 
justification to exploring the solution by guiding them to find a more 
precise location for the amusement park instead of just a rough estima-
tion. Visual estimation gave the students the idea of drawing the diago-
nals because the amusement park seemed to be close to the intersection 
point of the diagonals. Using GeoGebra, the students found that the 
total distance was even smaller in the intersection point of the diagonals.

Teacher guides students to test a conjecture in different situations
The teacher also guided the students to change to investigating a conjec-
ture by guiding them to test it in a different situation. As shown in the 
previous section, Cecilia and Carol had arrived to the conjecture that the 
amusement park is placed at the intersection point of the diagonals in 
which the total distance to the four towns is minimum (solution 3). Then 
the teacher guided Cecilia and Carol to change a phase from conjectur-
ing to investigating the conjecture by asking them directly to ”investi-
gate whether it is always like that, if you drag this”. After the teacher left 
the students they dragged one of the towns in different location, then 

Figure 3. Screen captures of Cecilia’s and Carol’s preliminary (a) and more precise 
(b) conjecture in solution 3

a b
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dragged the amusement park to different locations and noticed that the 
total distance is again minimum in the intersection point of the diago-
nals (see figure 4). Cecilia and Carol repeated this testing with two more 
different quadrangles. 

Finally, based on the same result with four quadrangles, which all hap-
pened to be convex, they wrote their answer: ”The amusement park is in 
the intersection point of the segments connecting the towns and the sum 
of distances from the towns is as small as possible. It works with every 
quadrangle.” Thus, by the teacher’s suggestion the students utilized the 
dragging feature of the software and empirically tested their conjecture. 

Teacher guides students to explain their solution
Often when students had built a conjecture the teacher asked them to 
explain how they arrived to their conjecture. For example, in solution 3, 
Ian and Irene had placed the amusement park in the midpoint of a circle 
that passed through three intersection points of the perpendicular bisec-
tors of the four towns. Then the teacher guided them to change a phase 
from conjecturing to investigating the conjecture by asking them to 
explain and draw what they did:

Teacher: 	 What do you have? Yeah. Okay. You drew a circle and you took the 
midpoint of the circle, which is the amusement park [reads written 
answer]. Yeah.

Figure 4. One of the quadrangles that Cecilia and Carol used to test their conjecture
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Irene: 	 So, first we did the perpendicular bisectors to all of these and then it 
was something like that. And then we adjusted a circle to all the three 
intersection points and then the mid…

Teacher: 	 Hey, would you draw it? If we would took a look at it? […] [Students go 
backward with GeoGebra until the solution 3 is on the screen.] This 
would be the optimal point?

Irene: 	 Yes. But I’m not sure. 
Teacher: 	 Well.
Ian: 	 It could be a bit more to this direction.
Irene: 	 Higher.

In this episode, the students explained that they had drawn perpendicu-
lar bisectors, selected three intersection points of the bisectors, drew a 
circle through the three intersection points and took a midpoint of the 
circle. The teacher also asked them to show the corresponding GeoGebra 
figure. In this case, the students also started to be critical about their con-
jecture. It would be hard to justify mathematically why the amusement 
park should be placed in the midpoint of the circle and the teacher started 
to guide them toward another solution method but then ran out of time. 

Teacher guides students to reflect critically on a conjecture
The teacher also tried to initiate David and Diana to reflect critically on 
their conjecture (solution 2), in which the towns are on a straight line and 
the amusement park is placed on the perpendicular bisector of the outer 
most towns outside the segment connecting the towns:

Teacher: 	 But is it then optimal, in a way, all the citizens have to travel there?
Diana: 	 It is because it is fair to all of them. 
Teacher: 	 Well, we come to the thing that what is most optimal. But would 

it nevertheless be nice if all would perhaps have a short distance to 
there? So is it reasonable to build it there so that everybody has to 
[travel]?

Diana: 	 It is.
David: 	 Like Ideapark [shopping centre] was built in the middle of some forest. 
Teacher: 	 Well hey, this is ok solution, but then you can, if you don’t want to 

look for other solutions, then what about the other situations then, if 
the towns are not in a line?

In this episode, however, the students held on to their conjecture and the 
teacher let them continue exploring another solution.
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Teacher guides students to return to justification
Often students did not spontaneously justify their conjectures (see figure 
1). Thus, the teacher had a crucial role in guiding the students to justify 
their conjectures. In some cases the teacher even returned the students 
from building another solution to justifying their previous conjecture 
(Jack & Joe and Mark & Mary in figure 1). For example, in solution 1, 
Jack and Joe placed the towns in the vertices of a square, then took the 
midpoints of the both diagonals, and placed the amusement park to the 
coincident midpoints. Then Jack and Joe continued to explore another 
solution but the teacher returned them back to the solution 1 by simply 
asking ”What is your argument that this is the most optimal?” In this 
case, the students’ argued that all the towns had equal distance to the 
amusement park. Similar thing happened when the teacher returned 
David and Diana as well as Ian and Irene to investigate the conjecture 
(see figure 1).

Teacher launches justification by listening and trying to understand
Another type of guidance happened when Cecilia and Carol initiated 
themselves a discussion with the teacher about their solution 2:

Students: 	How do we explain this [solution 2]? 
Teacher: 	 [Reads the written answer.] Hey, hey, amazing. So the park would be 

in? [...] How did you, hmm?
Carol: 	 We did the segment, the segment and then the perpendicular bisec-

tors for them and there is the intersection point of the perpendicular 
bisectors [points to the figure].

Cecilia: 	 And then these have the same distance [points to the two towns con-
nected by a segment] and these have the same distance [points to the 
other two towns connected by a segment].

Teacher: 	 Okay. Would you draw them? Let’s see. [The students draw their solu-
tion, see figure 5.]

Carol: 	 We calculated the distances. To these two it is the same and to these 
two it is the same. Then it would be a kind of fair to all of the towns.

Teacher: 	 Yeah, okay. Alright, so in your opinion it would be the most optimal 
location because all of them would have equal distance.

Carol: 	 No. These two have smaller distance than these. But anyway, none of 
the towns has a longer distance in its own.

Teacher: 	 Uhm. Uhm. Yes, I think that I understood. I think that I understood. 
[…]

Cecilia: 	 But how do we explain this situation?
Teacher: 	 Just like you explained to me before. [The students write their justi-

fication when the teacher asks them to write it.]



Nordic Studies in Mathematics Education, 18 (2), 47–69.

Teacher-assisted open problem solving

63

In this episode, Cecilia and Carol had a conjecture and presumably the 
teacher had difficulties to understand their conjecture. The teacher asked 
Cecilia and Carol to explain and draw their solution 2. The teacher even 
proposed the incorrect justification, but Cecilia and Carol did not accept 
this and explained again their justification. In this episode, the students 
and the teacher seemed to be equal ”mathematicians” and the teacher 
valued the students’ explanation by admitting that ”I think that I under-
stood”. This episode illustrates the teacher’s role in asking and listening 
students’ explanations. Cecilia and Carol had already investigated the 
conjecture by measuring the distances shown in figure 5. However, the 
teacher’s presence launched justification of the conjecture even though 
the teacher only had to listen to them and ask questions to understand 
their justification.

Discussion
The students had various kinds of routes in moving between phases in 
their open problem-solving processes. They often skipped a phase or 
returned to a previous phase, which highlights the cyclic and recursive 
nature of problem solving (cf. Nunokawa, 2005; Davis & Maher, 1990; Sch-
oenfeld, 1985). The results illustrate how open problem solving includes 

Figure 5. Screen capture of Cecilia’s and Carol’s solution 2. The perpendicular 
bisector of BD happened to coincide with the diagonal AC
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framing the problem in the beginning of a solution process. Thus, the 
students not only try to understand the problem but also participate in 
setting their own questions, an important aspect of mathematical think-
ing emphasized by Cifarelli and Cai (2005). In addition, after solving the 
problem, students continue by framing the problem differently. This 
highlights the very nature of open problem solving in which students are 
supposed to pose more general problems based on their previous solution 
(Nohda, 2000). Similar to modelling tasks (Lesh & Doerr, 2003), students 
had several different ways to approach the problem. Mousoulides (2011) 
used the same task in a modelling activity and found that students built 
models that resemble the solutions presented in this article. 

According to the results, the teacher had a crucial role in guiding or 
scaffolding the students through the problem-solving process. Partic-
ularly, the teacher guided the students to change between phases. For 
example, the teacher helped the students change to framing the problem 
by helping them narrow or widen the starting situation. Narrowing the 
starting situation is similar to the well-known problem-solving strategy 
of solving an easier problem or looking for special cases, techniques that 
help problem solving (Schoenfeld, 1985). Narrowing also resembles to 
giving enabling prompts to students experiencing difficulty with the 
task, which Sullivan et al. (2006) found effective type of guidance. Both 
help students to start working with the problem. Sullivan et al. (2006) 
also described posing extension tasks to students proceeding quickly. 
This is similar to widening as in both cases students extend their  
previous thinking. 

The teacher also helped the students change to exploring the solution 
by guiding them to use reasoning-based strategies and to look for a more 
precise solution. Using the terms of Anghileri (2006), the teacher tried 
to scaffold students’ problem solving by restructuring their mathemati-
cal thinking. The teacher also had a crucial role in pushing the students 
to justify or investigate the conjecture by guiding them to explain their 
solution, reflect critically on a conjecture, test the conjecture in differ-
ent situations and justify the conjecture. Some students were even in 
exploring another solution when the teacher invited them to return to 
justify their previous solution. This is further evidence that students 
need teacher guidance to transit to justifying their conjecture (Martino 
& Maher, 1999). Especially when DGS is used, a teacher needs to make 
sure that students also explain why their conjecture is true instead of 
just relying on empirical observation (Christou et al., 2004; Jones, 2000).

In most cases, the reported teacher’s ways of guiding affected posi-
tively to students mathematical activity. Narrowing the starting situa-
tion helped the students build their first solution and to continue from 
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that. Guiding to widen the starting situation, to search for more precise 
solution, and to test a conjecture all helped the students expand their 
thinking. Different ways of guiding to investigate or justify a conjecture 
resulted in students to look back on their solution and conceptualize their 
thinking. On the other hand, when the teacher guided the students to 
use a reasoning-based strategy and reflect critically on a conjecture, he 
was not successful in actually promoting students reasoning. Although 
we do not have empirical evidence, we believe that in other conditions 
also these two ways of guiding could affect positively to students’ activ-
ity. All this is further evidence of the importance of teachers’ scaffolding 
role in promoting students’ problem solving (Anghileri, 2006; Martino & 
Maher, 1999; Sullivan et al., 2006).

The observed ways of guiding are related to the open nature of the 
problem. Guiding to frame the problem is specific to open starting situ-
ation in which students need to make selections. Open process empha-
sizes multiple strategies, and thus, is related to guiding to exploring the 
solution. When the end product is open, it is particularly important to 
examine how reasonable the achieved solution is. Similarly, Doerr and 
English (2006) found that certain teacher moves were related to specific 
features of modelling tasks.

We developed the open problem-solving model to describe students’ 
movements between phases and to help examine teacher guidance spe-
cifically in open problem solving. We did not include at all the phase of 
devising a plan unlike Pólya (1945) and Schoenfeld (1985) because in the 
observed classroom conditions the students seemed not to create a plan 
and then implement it. In this aspect, our model is similar to the model 
by Mason et al. (1982). Instead of devising a plan and implementing it, the 
students in our study seemed to engage in unstructured exploration (cf. 
Mason et al., 1982; Schoenfeld, 1985). In particular, the use of DGS empha-
sized exploration. As previous research has shown, DGS makes explora-
tion easy and fast and students can easily create conjectures (Arzarello 
et al., 2002; Healy & Hoyles, 2001). Similar to Arzarello et al.’s (2002) 
ascending and descending processes our model emphasized the work 
before (exploring the solution) and after (justifying or investigating the 
conjecture) creating the conjecture. Like the modelling cycle (Lesh & 
Doerr, 2003) also the proposed model emphasizes iterative development 
of more general solutions. The open problem-solving model can be used 
to study how teachers orchestrate students’ problem-solving processes. 
Furthermore, the study also offers some concrete ways how teachers can 
do this. As an implication for practice, we believe that the model helps 
teachers to conceptualize open problem solving and prepare for guiding 
the students.
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This paper reported a rare study addressing the particularities of stu-
dents’ problem solving and teacher guidance when dealing with open 
problems. Yet, these issues require further research. For example, the 
study described specific ways in which the teacher can guide students’ 
open problem solving. More research could suggest other ways and the 
particular conditions they could be used. Also, in different conditions, 
students may move differently between the phases. In this study, stu-
dents’ used particular educational software. Further research would help 
clarify the role of the technology in open problem solving. For example, 
more insights are needed on the role of technology in open problem 
solving and how the teacher can guide students in such environments.
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