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This article reports on the mathematical activity of a group of five high school stu-
dents (15–16 year olds) who worked together on a series of challenging task in 
combinatorics and probability. The students were participants in an after-school, 
classroom-based, longitudinal research on students’ development of mathematical 
ideas and different forms of reasoning in several mathematical content strands. The 
purpose of the article is to contribute insights into how to promote growth of stu-
dents’ mathematical understanding through problem-solving activities. In particu-
lar, the article shows that problem-solving activities involving strands of challenging 
tasks have the potential to promote growth of students’ mathematical understand-
ing by providing opportunities for students to engage in reasoning by isomorphism. 
This is a type of reasoning whereby students rely on structural similarities, i.e., iso-
morphism among mathematical tasks to solve or deepen their understanding of 
the tasks. Implications for classroom teaching, and environmental conditions that 
promote reasoning by isomorphism are also discussed.

Problem solving plays an important role in mathematics education. In 
the United States, the Principles and Standards for School Mathematics 
(NCTM, 2000) of the National Council of Teachers of Mathematics 
state that by the time students complete high school they should be 
able to solve problems that arise in mathematics or related disciplines, 
apply a variety of appropriate strategies to solve problems, and monitor 
and reflect on the process of problem solving. In particular, the stand-
ards state that throughout the mathematics curricula, students should 
be able to build new mathematical knowledge through problem solving. 
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The main reason for emphasizing problem solving in the mathemat-
ics curricula is the consensus that it has the potential to foster growth 
of students’ mathematical understanding (e.g., Cai, 2010; Lambdin, 
2003; Schroeder & Lester, 1989; Van de Walle, 2003). However, problem 
solving can also promote students’ positive dispositions towards math-
ematics (e.g., Cai, 2003; Carpenter et al., 1998; Veschaffel & De Corte, 
1997), enhance transfer, and foster growth of students as autonomous  
learners (Lambdin, 2003).

The research community has contributed several insights into how 
problem solving can be used to foster growth of students’ mathematical 
learning and understanding. However, there is a consensus that this issue 
remains an open question, as more needs to be known about how students 
build ideas and what conditions support the growth of their mathemati-
cal understanding in problem-solving situations (Cai, 2010, 2003). Incor-
porating problem solving in meaningful ways in the mathematics curric-
ula is still not necessary obvious to mathematics teachers (Cai, 2010). The 
research community continues to look for contributions on best practices 
on implementing problem solving in mathematics classrooms. In 2006, 
the International Commission for Mathematical Instruction (ICMI) 
organized a study conference in Trondheim, Norway, to discuss the role 
of mathematical challenge in and outside the classroom. One question 
proposed for debate was how challenge in mathematical tasks can con-
tribute to mathematical learning (Barbeau & Taylor, 2005). In 2004, the 
10th International Congress of Mathematics Education held in Copen-
hagen, Denmark, included a Topics Study Group on Problem Solving 
in Mathematics Education. The study group invited contributions on 
how ”to explore the actual mechanisms by which students learn and 
make sense of mathematics through problem solving and how it can be  
supported by teachers” (Cai, Mamona-Downs & Weber, 2005).

The purpose of this article is to contribute further insights into how 
problem solving can be used to promote growth of students’ mathemati-
cal understanding. The article is based on the analysis of the mathemati-
cal activity of five high school students on three challenging tasks from 
a probability/combinatorics strand. The students were participants in an 
after-school, classroom-based, longitudinal research on students’ devel-
opment of mathematical ideas funded by the United States National 
Science Foundation. The tasks were challenging in the sense that the 
methods used for solving them were not obvious to the students. They 
had to come up with such methods. The tasks were problems rather than 
exercises (Schoenfeld, 1985). This article shows that problem-solving  
activities organized as strands of challenging mathematical tasks can 
help promote growth of students’ mathematical understanding by way 
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of enhancing students’ reasoning by isomorphism. This is a form of math-
ematical reasoning by analogy whereby learners make sense of challeng-
ing mathematical tasks by relying on methods used for solving or making 
sense of other tasks with similar or isomorphic mathematical structures 
as the given tasks. Implications for classroom teaching and conditions 
that support reasoning by isomorphism are discussed in the article.

Theoretical framework

Problem solving in mathematics education
The mathematics education literature distinguishes between two main 
views on problem solving. One view takes a dualistic perspective on 
the relationship between problem solving and mathematical learning, 
isolating the development of problem-solving abilities from the learn-
ing of mathematical concepts and procedures. Two similar teaching 
approaches are associated with this view. In one approach, students are 
first taught concepts and procedures and then given mathematics prob-
lems to practice the content learned. Schroeder and Lester (1989) call 
this approach teaching for problem solving because ”Teachers concentrate 
on how the mathematics being taught can be applied in the solution of 
both routine and non-routine problems” (p. 32, emphasis added). Typi-
cally, ”Students are given many instances of the mathematical concepts 
and structures they are studying and many opportunities to apply that 
mathematics in solving the problems” (p. 32). They are expected to gain 
experience and knowledge of how and when to apply a particular math-
ematical knowledge. The other teaching approach involves first teaching 
problem solving as a collection of strategies, such as drawing a picture, 
guessing and checking, or solving a simpler problem, and then giving 
students problems to practice the strategies (Cai, 2010). Schroeder and 
Lester (1989) call this approach teaching about problem solving because 
of the emphasis on problem solving as a body of knowledge. Baroody 
(2003) describes this approach as ”One with its focus on the develop-
ment of mathematical thinking (reasoning and problem solving)” based 
on the ”assumption that mathematics is, at heart, a way of thinking, a 
process of inquiry, or a search for patterns in order to solve problems” 
(p 21). Students are expected to develop expertise in dealing with prob-
lematic situations, managing their solving process, and putting forward 
their thinking. Factors that influence the success or failure in problem 
solving include (a) heuristic strategies, (b) metacognition or monitoring; 
(c) control of affects and (d) appropriate beliefs (cf. De Corte, Greer & 
Verschaffel, 1996; McLeod, Craviotto & Ortega, 1990; Schoenfeld, 1985).
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The other view on problem solving in the mathematics education litera-
ture does not separate problem solving from mathematical learning and 
teaching. Problem solving and mathematical learning hold a dialectic 
or symbiotic (Cai, 2010; Lambdin, 2003) relationship mutually consti-
tuting and/or reinforcing each other as students work on mathematical 
tasks. Mathematical learning and understanding develop in and through 
problem solving. Problem solving also benefits from mathematical under-
standing. Schroeder and Lester (1989) call the teaching approach associ-
ated with this view teaching via problem solving. It typically begins with 
”A problem situation that embodies key aspects of the topic, and math-
ematical techniques are developed as reasonable responses to reasonable 
problems” (p. 33).

The dualistic view on problem solving is the traditional method for 
teaching mathematics, whereby teachers show and/or tell students knowl-
edge (concepts and/or problem-solving strategies) and students’ practice 
the given knowledge. It does not promote mathematical understanding 
(Schroeder & Lester, 1989; Van de Walle, 2003) and no research is cur-
rently being conducted with this approach as an instructional interven-
tion (Cai, 2010, 2003). In particular, Baroody (2003) claims that teaching 
about problem solving makes learning of mathematical content inciden-
tal since ”Learning content, such as the formal procedure for multiply-
ing fractions, is secondary to developing children’s thinking processes” 
(p. 22). The dialectic view on problem solving, however, is consistent with 
the reform movement in mathematics education. It emphasizes students’ 
building of knowledge through problem solving, which help promote stu-
dents’ mathematical understanding and ”adaptive expertise” (Baroody, 
2003). The design of the longitudinal research that provided the context 
for this study was based on the dialectic view on problem solving. The 
problem-solving sessions in the longitudinal study became sources of 
insights into the processes and conditions that support students’ develop-
ment of different forms of reasoning and growth of their mathematical 
understanding. This article shares some of such insights.

Building mathematical understanding in problem solving
In [teaching via] problem solving, learning takes place as students attemp 
to solve problems in which relevant concepts and skills are embed-
ded (Lester & Charles, 2003; Schoen & Charles, 2003). As students 
solve problems, they can use any approach they can think of, draw on 
knowledge they have previously learned, and try to justify their ideas 
in ways that they think are convincing (Cai, 2010). They can also come 
up with mathematical representations (Uptegrove, 2005) and heuristics  
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(Powell, 2003) that help solve complex problems and thus promote their 
mathematical understanding. When the problem-solving activity takes 
place in a social environment, students have the opportunity to share 
solutions with others, and thus learn mathematics through social interac-
tions, meaning negotiation, and attempts to reach shared understanding. 
In particular, students can challenge each other’s principles and stand-
ards of reasoning, which forces them to engage in higher levels of math-
ematical thinking as they try to clarify, modify or even drop incorrect 
ways of thinking (Weber, Powell, Maher & Lee, 2008). The result is more 
sophisticated perspectives on the concepts or ideas that they are building.

When working on mathematical problems, students can go beyond 
the acquisition of isolated ideas and move towards the development of 
increasingly connected and complex systems of knowledge (e.g., Cai, 
2003; Carpenter, Franke, Jacobs, Fennema & Empson, 1998; Cobb et al., 
1991; Hiebert & Wearne, 1993; Lambdin, 2003). This suggests a relational 
definition of mathematical understanding whereby it is construed as the 
ability to recognize connections among mathematical ideas. Growth of 
mathematical understanding is then characterized as the ability to make 
sense of increasingly connected and complex web of relations among 
mathematical ideas (e.g. Dörfler, 2000; Lambdin, 2003). In particular,  
recognizing connections among mathematical ideas can involve the 
ability to realize that two or more seemingly different mathematical 
tasks have similar underlying mathematical structures. This enhances 
reasoning by isomorphism, a particular form of reasoning that allows 
students to rely on structural similarity among tasks to solve or make 
sense of a challenging task. Reasoning by isomorphism can be summa-
rized in three main steps. In step one, a student faced with a challenging 
mathematical task looks for another one with a similar mathematical 
structure. In step two, the student unveils the structural similarity by 
mapping the structure of the given task onto the structure of the other 
task, i.e., by building an isomorphism that relates the structures of both 
tasks. This is equivalent to translating one task into the other task, i.e., 
making sure that solving one task is equivalent to solving the other task. 
Indeed, in step three, student tries to use the methods for solving or 
making sense of one task to solve or make sense of the other task. This 
is precisely the power of reasoning by isomorphism: allowing students 
to solve challenging tasks by relying on methods for solving or making 
sense of other [isomorphic] tasks that the students are aware of.

At a more refined level, reasoning by isomorphism can help students 
develop problem-solving schema, an abstract knowledge of underlying 
similar or isomorphic mathematical structures of a common class of 
problems (Nunokawa, 2005; Weber, Powell & Maher, 2006). A schema 
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involves three processes that enhance problem-solving skills: categorizing  
problems into types or classes based on their common mathematical struc-
ture after reading just a few words of the problem statement, identifying 
important aspects of a problem that should be addressed first, and retriev-
ing a mathematical technique (e.g., equations or procedures), suited for 
solving (parts of) the problem (Weber, 2001; Weber et al., 2006). For 
example, the Pythagorean theorem formula or equation is often used to 
a solve class or category of problems whose mathematical structure can 
be reduced to finding sides of right triangles. Similarly, Pascal’s triangle 
is also often used as procedure to solve several counting/combinato-
rial tasks. One distinction between experts and less successful problem 
solvers is that the former usually display more sophisticated forms of 
reasoning by isomorphism or schemata. Therefore, scholars call for more 
opportunities in the curricula for students to develop powerful prob-
lem-solving schema (De Corte, Greer & Verschaffel, 1996; Nunokawa, 
2005; Reed, 1999). This article shows that strands of challenging tasks 
can promote students’ reasoning by isomorphism and foster growth of 
students’ mathematical understanding.

Conditions that promote growth of mathematical understanding
The research literature distinguishes between two types of conditions 
that promote students’ mathematical understanding in problem solving. 
The first typ is the nature of the mathematical tasks used in problem 
solving. There is agreement that, if tasks are to promote students’ concep-
tual understanding, foster their ability to reason and communicate math-
ematically, and capture their interests and curiosity, they must be intel-
lectually challenging,(e.g., Cai, 2003, 2010; Marcus & Fey, 2003). Lappan 
and Phillip (1998) developed a set of 10 criteria that help tasks promote 
growth of students’ mathematical understanding. Cai (2010) argues 
that researchers and curriculum developers alike agree on the first four 
criteria: important mathematics in the task, higher-level of thinking,  
conceptual development, and opportunity to assess learning.

The second type of condition that help promote mathematical under-
standing in problem solving is the classroom discourse during problem 
solving. Classroom discourse refers to ”ways of representing, thinking, 
talking, and agreeing and disagreeing that teachers and students use to 
engage in instructional tasks” (Cai, 2010, p. 3). In particular, Cai (2010) lists 
three main discourse factors that can promote growth of students’ math-
ematical understanding: (a) providing students with enough time for 
them to work on the tasks, (b) avoiding removing the challenges from the 
tasks by telling or showing students how to solve tasks, and (c) listening  
and asking thought provoking questions.
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Research has suggested several ways in which the conditions above 
influence growth of students’ mathematical understanding. Cai (2010) 
argues that story or word problems have limited impact because they 
are often not problematic enough for students. However, he recognizes 
that teachers can modify standard textbook problems in ways that help 
them promote students’ mathematical understanding and problem-solv-
ing abilities. Nunokawa and Fukuzawa (2002) call for problem-solving 
tasks that ask students to justify their solutions, particularly through 
”proofs that explain” (Hanna, 1995), i.e., proofs that justify why a solu-
tion is or is not correct. Nunokawa (2005) suggests selecting situations 
that bridge the old and the new knowledge, scaffolding students’ activi-
ties in problem solving, and bringing in appropriate sociomathemati-
cal norms such as the expectation that mathematics is a sense making  
activity (Cobb & Yackel, 1998; Yackel & Rasmussen, 2003).

Research suggests that students develop schemata and related forms of 
reasoning such as isomorphisms through induction, i.e., ”through solving 
many problems that are related to the targeted mathematical knowl-
edge” (Nunokawa, 2005; p. 329). Reed (1999) recommends greater time 
spent showing students how problems with different story content may 
have the same solution. However, he warns that, while this approach can 
be successful in helping students categorize problems by common solu-
tion, it is not as successful in enhancing their ability to use an example 
solution to solve isomorphic problems. Other researchers have tried to 
induce schemata through superficially different problems, hoping that 
students will build schemas as they learn to transfer solution strategies 
(e.g., Novick & Holyoak, 1991). However, there is evidence that in such 
cases students have difficulties engaging in such forms of reasoning when 
non-superficial problems are involved (e.g. Lobato & Siebert, 2002). As a 
result, more recently, there have been suggestions for using complex tasks 
(see e.g. Weber, 2005; Weber, Powell & Maher, 2006). This was the case 
in this study which used challenging tasks as a context for a research 
on conditions influencing students’ development of mathematical  
reasoning and growth of their mathematical understanding.

Research context

Research setting
The longitudinal research that provided the context of the study reported 
in this article took place in a working class community in the United 
States. The study began in second grade and continued through high 
school and college (e.g., Francisco & Maher, 2005; Maher, 2004, 2005; 
Powell, 2003). Approximately twenty-five students started the study. 
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However, over time, the research team followed the mathematical behav-
ior of a focus group that included the five students in this study. The one 
female and four male students were known as Romina, Ankur, Brian, 
Jeff, and Mike. The goal of the longitudinal study was to understand how 
students build mathematical ideas and different forms of reasoning and 
justification while completing challenging tasks in several mathematical 
strands. The study differed from teaching experiments where researchers 
have particular concepts that they want students to construct, often by 
traversing an anticipated learning trajectory (e.g., Simon, 1995). In the lon-
gitudinal study, there were no specific ideas that students were expected 
to learn nor were there particular stages that they were supposed to trav-
erse. Students’ ideas and ways of reasoning were the result of investiga-
tions, not of preconceived goals. For this reason, the researchers called the 
research sessions learning rather than teaching experiments. The informal,  
after-school setting with no fixed curriculum allowed such a focus.

The students worked on the mathematical tasks in particular con-
ditions. They were encouraged to work collaboratively in small group 
and to always justify their solutions. Researchers received their contribu-
tions positively and avoided making judgments about their mathematical 
validity. Instead, they encouraged the students to be arbiters of the valid-
ity of each other’s ideas based on whether they thought that the argu-
ments presented ”made sense.” The students were given extended time 
to work on the tasks, and opportunities to revisit and refine their math-
ematical ideas and reasoning. The researchers saw their role as facilitat-
ing the students’ mathematical activity within a constructivist approach. 
They avoided telling or showing the students, spent most of the time 
listening to the students’ ideas, and tried to promote the students’ math-
ematical reasoning through interventions such as ”Tell me more”, ”What 
do you mean?”, ”Why do you think that way?” or ”Convince me you got 
the right answer?” The researchers often moved out of the students’ view 
and learned from studying the videos of the sessions the problem-solving 
strategies that students had used.

The mathematical tasks
In the longitudinal study, the tasks were challenging, open-ended, well 
defined, and often involved manipulative objects such as unifix cubes, 
dice, Cuisenaire Rods, and educational software. The students worked 
on each task for approximately one hour and a half. However, often 
they chose to stay longer. Over the course of the study, a large data-
base of videos, students’ written work, researcher notes, still photos, and 
other forms of information about the students’ work on the tasks was  
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collected by the research team. The video data, now in digital format, and 
accompanying metadata are currently archived at the Robert B. Davis 
Institute for Learning at Rutgers University. As part of the design of the 
longitudinal study, the tasks were organized into strands, i.e. a sequence 
of tasks that looked different but had similar underlying mathemati-
cal structure. This was intended to enhance the researchers’ ability to 
trace the students’ development of particular ideas and forms of reason-
ing over time (e.g., Maher, 2005; Maher & Martino, 1996). There were 
several strands. The probability and combinatorics strand included the 
World Series Problem and two other tasks: Tower Problem and the Pizza 
Problem. ”World Series” is an American name for the playoff games that 
lead to the champion of baseball league in America. Below is the state-
ment of the three problems in the order they were implemented in the 
longitudinal study:

Five-Tall Tower Problem
Work together and make as many different towers five cubes tall as pos-
sible when selecting from three colors. See if you and your partner can 
find a way to convince yourself and others that you have found all pos-
sible towers five cubes tall. Extensions of the problem included increas-
ing the number of colors while keeping the height of the tower and vice 
versa or establishing lower and upper bound for the number of colors in 
towers of fixed height (suggested by a student).

The Pizza Problem
A local Pizza shop has asked us to help them keep track of pizza sales. 
Their standard ”plain” pizza contains cheese with tomato sauce. A cus-
tomer can then select from the following toppings to add to the whole 
plain pizza: peppers, sausage, mushrooms, and pepperoni. How many dif-
ferent choices for pizza does a customer have? List all the possible differ-
ent selections. Find a way to convince each other that you have accounted 
for all possibilities. Extensions of the problem included asking students 
to consider additional pizzas where half of the pizza is a topping and the 
other half of the pizza is another topping.

The World Series Problem
Two teams played each other in at least four and at most seven games. The 
first team to win four games is the winner of the World Series. Assuming 
that the teams are equally matched, and there are not ties, what is the 
probability that the World Series will being won in a) four games b) five 
games c) six games and d) seven games.
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Data analysis
The analysis of the students’ work on the three tasks above proceeded 
in a manner consistent with the Powell, Francisco, and Maher’s (2003) 
methodology for studying students’ development of mathematical ideas 
in problem-solving situations. A central aspect of the methodology is 
the identification and subsequent articulation of the significance of 
solution-critical episodes. These are instances of students’ mathematical 
behavior that provide insights into their progress or lack of in solving 
or understanding the task (Maher, 2005; Maher & Martino, 1996). The 
analysis focused on the students’ work on the World Series Problem. The 
students’ mathematical activity on the Tower and Pizza Problems was 
examined whenever the problems were referenced in the World Series 
Problem. Four main steps were involved in the analysis: (1) viewing the 
videos of the students’ work on World Series Problem several times to 
have strong sense of the content; (2) identifying solution-critical epi-
sodes; (3) describing the particular isomorphisms, if any, used by the 
students to try to address mathematical challenge, and (4) discussing 
analyses of the students’ mathematical behavior until disagreements 
were resolved among the researchers.

Results
The sections below describes the critical episodes in the chronological 
order in which they occurred along with accounts of the extent to which 
the students used reasoning by isomorphism to address challenges they 
encountered in trying to solve the World Series Problem. In the text, p (n), 
(n = 4, 5, 6, and 7), stands for the probability of the series ending in n games.

Critical episode one: Romina’s guess

Romina: They can go all seven or they could go all four. So, it would be A, A, 
A, A and B, B, B, B –Team A and Team B?

Jeff: Wait, what’s the – wait – wait –
Romina: So those are the only possibilities for four?
Jeff: Mm hm.
Romina: So, in four games, would it be, like, one-half of a chance? Or would 

we have to write it out with -- using all seven?
Jeff: See, I think that it’s the hardest to win it in four games. Definitely 

the hardest
Romina: Yeah, exactly.
Jeff: So, it wouldn’t be one-half.
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In this episode, Romina calls one Team A and the other Team B and sug-
gests that the probability of the series ending in four games, p (4), could 
be one-half because there are only two ways in which the series can be 
won in four games: AAAA and B B B B. Jeff, however, argues that winning 
the series in four games is ”hardest,” suggesting that one-half is too high 
a value for p (4). The students agree with him and drop Romina’s sug-
gestion. The students used reasoning by contradiction to decide to drop 
Romina’s suggestion. Indeed, if p (4) is one-half as Romina suggested, 
then the other probabilities would have to be smaller than p (4). This is 
a contra diction since, intuitively, the students believed that is harder to 
win the series in four games than it is to win the series in five, six or seven 
games. So, they decided to abandon Romina’s idea.

Critical episode two: Brian’s multiplicative strategy

Brian: Isn’t it the odds of winning one game, times the odds of winning 
one game, times the odds of winning one game?

Ankur: It’s a fifty percent chance of winning the first game.
Romina: [It’s] One-half
Brian:  So, it’s like, half times a half – no, wait – remember the odds get 

harder to win two [games] in a row, like a coin flip?
Romina: Yeah, that’s how you do it
Brian: Yeah.
Romina: [Computing p (4)] Four – hold on – four times –
Brian: That’s one-sixteenth.
Romina: [computing p (5)] Is it one thirty-two? Oh, never mind, I get it. 

Now, would you have, for five games, like, would it be like that 
[ ½ · ½ · ½ · ½ · ½ ]? [pauses and looks at her paper]. Wouldn’t you have 
easier odds of winning in six games than in four?

Jeff: Yeah.
Romina: Doesn’t it get less, though?
Jeff: That’s why it’s wrong.
Romina: Okay [crosses out what she has written].

In this episode, Brian suggests computing the probability of a team 
winning the series in n games, p (n) (n = 4, 5, 6, and 7), by multiplying 
the odds [sic probability] of a team winning one game n times. After 
Ankur and Romina add that the probability a team winning a game is 
one-half or fifty percent, respectively, Brian suggests computing p (n) 
by multiplying  one-half n times. However, he reminds his colleagues 
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that, ”like in a coin flip,” it should be harder to win games in a row than 
winning the same number of games if losses are allowed in-between. 
The students try Brian’s suggestion. However, when Romina announces 
after computing p (4) and p (5) that the odds of winning the series are not 
getting easier, the students decide to drop Brian’s suggestion.

 Mathematically, the statement ”like a coin flip” suggests a form of 
reasoning by isomorphism, i.e. an implicit mapping or isomorphism 
between the World Series Problem and the Coin Problem. Indeed, if we 
make the event ”Tossing heads” [one side of coin] equivalent to ”Team A 
wins a game” and ”Tossing tails” [the other side of coin] equivalent to the 
event ”Team B wins a game,” then the probability of team A winning the 
series in n games is equivalent to the probability of getting four heads 
in n tosses of [a fair] coin with the last toss being heads. This probabil-
ity can be computed as An

4 (
1
2 )

n where An
4 denotes the number of ways 

we can get four heads in n tosses of a coin with the last toss being heads. 
Now, in n tosses of a coin, there are certainly more ways of getting four 
heads if some tails are allowed in-between than there are ways of getting 
four heads in a row. So, Brian is right to remind his colleagues that the 
odds of winning games in a row should be harder. However, his multi-
plicative strategy above suggests that he retrieved only the part ( 12 )

n of 
the formula above. Now, by this formula, the odds of winning the series 
do not get easier with the number of games. Consequently, the students 
decide to drop Brian’s suggestion. So, an isomorphism helped promote 
growth of students’ mathematical understanding. More specifically, the 
isomorphism with the Coin Problem helped the students understand 
that the probabilities of a team winning the World Series are equiva-
lent or isomorphic to the probabilities of tossing four heads in the coin 
problem. This allowed the students to reject the formula ( 12 )

n as a way of 
computing the probabilities of a team winning the World Series because 
it does not make the odds of winning the series easier with the number of 
games, as should be the case by the isomorphism with the Coin Problem.

Critical episode three: the brute-force strategy

Romina: You know how we do this thing [indicates strings on her paper]? 
Wouldn’t we just do that? Say we did that, right? Whatever the prob-
ability would be like, say, the probability of someone winning and 
then it would be like B, B, B, B.

Jeff: Oh. Yeah. Then that would be that number and that number. Yeah, 
that’s what I was thinking, but –

Ankur: So, then we got to do it like that
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Jeff: Well, wait. Before we do that, let’s look at, um, how do you get to 
that point in the first place? To finding out ‘Cause there’s like a lot 
of different combinations – two to the seventh. Is that two to the 
seventh?

Romina: Isn’t it – yeah, two n?
Jeff: Yeah. All right, so say it’s two to the seventh
Ankur: For this, you’ve gotta find all possibilities with –
Brian: Yeah, it’s the order you win, though, too.
Romina: Yeah, I know.

In this episode, Romina suggests listing game combinations as strings 
of As and Bs and then computing the probabilities by dividing the 
number of series-winning game combinations (such as B B B B) by the 
total number of possible game combinations (such as ABAA). Jeff points 
out that there are ”a lot of combinations” and they might not be able to 
actually list all of them. He suggests that there could be as many as 27 
game combinations. Romina agrees that there would be ”a lot of game 
combinations,” but thinks that there would be around 27 combinations, 
instead. An impasse follows. Ankur intervenes to state that the series-
winning game combinations cannot be computed as either 2n or 27. Brian 
explains that this is because the order of wins matters when computing 
series-winning game combinations, but not when computing all possible 
number of game combinations. The students agree and decide to actu-
ally list the series-winning game combinations (see figure 1). However, 
they still lacked a method for determining the total number of game 
combinations, i.e., the sample spaces or denominators of the probability 

Figure 1. The students listed favourable game combinations.
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ratios. They came up with a method in the next episode and it involved 
an isomorphism.

Critical episode four: the Tower Problem

Romina: Should it [the probability ratio] be over seven, though?
Ankur: It’d be over, like, total possibilities of –
Jeff: Yeah, the total possibilities is eight, right?
Ankur: They have eight ways of winning but it’d be over I’d be over – the 

total possibilities of two, like two – two colors and five things.
Mike: It should be over – over seven, ‘cause it’s four out of seven games.
Ankur: But this one wouldn’t be over seven.
Jeff: It wouldn’t be.
Ankur: It wouldn’t. None of this would be over seven.

In this episode, Romina asks ”Should it be over seven, though?”, i.e., if the 
denominator of the probability ratio p (5) should be seven. Mike claims 
that the denominator should be seven ”because it’s four games [a team 
needs to win] out of seven [possible games].” Ankur, however, argues 
that the denominator should be equal to ”the total possibilities,” i.e., the 
number of all possible game combinations in the five game series. Jeff 
asks if the number is eight, referring to the eight game combinations that 
the students had listed for a series ending in five games. Ankur explains 
that the eight games represent the number of ways the series can be won 
in five games, i.e., the number of favourable outcomes, the numerator of 
the ratio p (5), and not the number of all possible game combinations or 
denominator of the ratio. In particular, Ankur adds that the denominator 
of p (5) is ”equal to the total possibilities like in two colors and five things” 
(emphasis added). This statement suggests an isomorphism between the 
World Series Problem and the Tower Problem. If we make the event ”A 
red unifix cube” equal to ”Team A wins a game” and ”A yellow unifix 
cube” equals to ”team B wins a game,” then the number of all possi-
ble game combinations in an n -game World Series is equivalent to the 
number of all possible towers five cubes tall when choosing from two 
colors. In previous years, the students had come up with a convincing 
argument that there are 2n such towers (see Maher & Martino, 1996). In 
this episode, Ankur implicitly suggests computing the denominators of 
the probability ratio p (5) as 2n.
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Critical episode five: Pascal’s triangle
The students listed the series-winning game combinations by brute 
force, determined the number of all possible game combinations as 
2n and came up with the solution: p (4) = 2

16 , p (5) = 8
32 , p (6) =20

64 , and  
p (7) = 

40
128 .  They liked that the probabilities added up to one. However, 

Ankur immediately pointed out that, ”We can’t prove that we have [listed] 
all [favorable]  the possibilities.” Romina also noted that they could not 
explain why p (6) and p (7) were equal. The students found this counter-
intuitive. They expected p (7) to be larger than p (6) because the ”odds 
should get easier with the number of games played”. However, they still 
decided to present their solution to researchers:

Researcher: How do you know you’re not double-counting?
Jeff: That’s the big question.
Mike: All right, I just found, like, if you take the fourth number in each one 

[circles these entries]- that way, if you double each number, ‘cause 
you have two teams, you can get the possibilities of four games. Four 
games, um, equals two, right? You got eight, twenty and forty, like 
they said [see figure 2]. I don’t know how I’m going to explain it

Researcher:  You’re – you’re doing fine.
Mike:  But, um – Do you guys see anything?
Jeff: Well, obviously, there’s something going on with the one, four, ten 

and twenty.
Ankur: Yeah.

So, the researcher asks the students how they can be sure that they had 
not double-counted when listing series-winning game combinations in 

Figure 2. The students noticed a connection between Pascal triangle and World Series 
Problem.
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their solution. This is an issue that Ankur raised earlier and which the 
students could not explain. Jeff acknowledges the issue by saying, ”That’s 
the big question”. As the students showed signs of not knowing what do, 
Mike suddenly intervenes to say that he had noticed a connection with 
Pascal’s triangle: the numbers of series-winning game combinations in 
series ending in four, five, six, and seven games were the same as twice the 
fourth numbers on the third, fourth, fifth, and sixth rows of Pascal’s tri-
angle, respectively. He circles the numbers and shows them to researcher 
(figure 2). However, he also says, ”I don’t know how I am going to explain 
it,” thus admitting that he cannot explain/justify the connection. In the 
next episode, the students eventually explain the connection and once 
again rely on an isomorphism.

Critical episode six: the Pizza Problem
In previous sessions in the longitudinal Study, Mike used Pascal’s triangle 
to solve the Pizza Problem. Using a binary notation where ”1” stood for 
adding a topping and ”0” stood for adding no topping, Mike was able to list 
all 16 pizzas as permutations of zeros and ones. He eventually discovered 
that the number of pizzas with k toppings (k = 0, 1, 2, 3…n – 1) when choos-
ing from n toppings was Cn

k , i.e., the entry on the nth row and kth column 
of Pascal’s triangle. Mike was also able to explain the addition rule in Pas-
cal’s triangle in terms of pizzas. So, to stimulate Mike’s thinking about 
the connection between Pascal’s triangle and the World Series Problem 
(see previous episode), the researcher decides to ask Mike to explain again 
the addition rule in terms of pizzas. Mike starts by saying that the row 1 
3 3 1 represents the three-topping pizzas, and the numbers represent the 
numbers of pizzas with three, two, one, and zero toppings, respectively:

Researcher: Mike showed me something last time that I guess you all didn’t hear. 
Mike, you see that addition of ten, you know, the six and four? Or 
the twenty? Why do you add them together? You had an explana-
tion and you were using pizzas to explain it to me. You were talking 
about toppings on pizzas. Any of you ever heard this before?

Mike: Yeah, I remember. Right. [Pointing to the row with entries 1 3 3 1] This 
is like a three-topping pizza. There will be one with, uh – [Ankur and 
Romina ”Plain”] Plain, right? Three with just two toppings, three 
with, uh, just one topping, three with just two and one with all  
toppings.

The researcher insists on the addition rule and asks Mike to explain 
how the ”1” and the ”3” in the row 1 3 3 1 combine to make four in terms 
of pizzas. Mike chooses to explain how the ”3”s in the same row add to 
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make a 6 in the following row of Pascal’s triangle. He explains that this 
is because one can make pizzas with two toppings (when choosing from 
four toppings) by either adding or not adding topping to pizzas with one 
and two toppings (chosen from three toppings), respectively. Since there 
are 3 pizzas on each group they add and make 6 pizzas:

Researcher:  Show me the one and the three giving you the four, in terms of 
pizzas. Can you tell me that?

Mike: I’m trying to think. I had it last time I talked to you. I had it so 
good. All right. You’re going to add a topping to every single pizza 
on there, right? There’s going to be twice as many pizzas. But these 
three pizzas – three of them got a topping, went there, and three of 
them didn’t, went there. One of them had a topping, right there, and 
one of them didn’t, went there. ‘Cause these three pizzas are going 
to turn into six pizzas. – Now I got it, right? That’s why they add.

All of sudden Mike is able explain the connection between Pascal’s tri-
angle and the World Series Problem which he had not be able to in the 
previous episode. He starts by saying that the numbers 1 3 3 1 represents 
the number of ways of winning zero, one, two, and three games in the 
world series, respectively. He also suggests that if we divide one of the 
numbers by the sum we can get the probability (For example, if we divide 
”1” by 8 (1 + 3 + 3 + 1) we get the probability of a team winning the series 
in three game, i.e. p (3)). Ankur builds on Mike’s reasoning and adds an 
explanation of Pascal’s triangle in terms of strings of As and Bs which 
they used to list series-winning game combinations:

Mike: Now with the one, three, three, one [entries 1 3 3 1], that circled one 
is, I guess, you win those three games in a row. There’s only one pos-
sibility. You know what I’m saying? Like, how many is up there? One 
plus three- No. That’s just three games. All right. Your probability 
of winning three times in three games. The first one you have a one 
out of eight chances of losing all three. And the second one, you have 
three possibilities of winning one: you could win it the first time, 
the second time or the third time. The third one would be winning 
twice. And there’s only one other, one way to win three times.

Ankur: Actually, I was going to say that the ”1” represents winning three  
games in a row, or like three A’s. And then, if you go to the right, 
that’s like getting another A, and there’s only one way to get four 
A’s. If you go to the left that’s like getting a B, and that’s like three 
A’s and a B, and there’s four different ways you can write that.

This episode shows that revisiting the connection between the Pizza 
Problem and Pascal’s triangle helped Mike explain the connection 
between Pascal’s triangle and the World Series Problem. This suggests an 
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indirect isomorphism between the World Series Problem and the Pizza 
Problem built via Pascal’s triangle. In the isomorphism, a win or loss of 
a game in the World Series Problem corresponds to adding or not adding 
a topping in the Pizza Problem, and different types of game combina-
tions correspond to different types of pizzas. The isomorphism helped 
Mike arrive at an explanation of why they could use Pascal’s triangle to 
compute series-winning game combinations.

Discussion
The previous section described several episodes in which students relied 
on isomorphisms with other problems to make sense of or solve [parts 
of] the World Series Problem. In episode two, an isomorphism with 
the Coin Problem helped the students realize that the probability of 
winning the World Series in n games is equivalent to the probability of 
obtaining four heads in n tosses of a fair coin with the last toss being 
heads. This helped the students understand that the probabilities could 
not be computed as ( 12 )

n. In episode four, an isomorphism with the 
Tower Problem helped the students realize that there are as many game 
combinations in an n-game World Series as there are towers n cubes tall 
when choosing from two colors. This allowed the students to compute 
denominators of the ratio p (n) as 2n. In episodes six, an isomorphism 
with the Pizza Problem allowed the students to understand that in an 
n-game series, there are as many series-winning game combinations as 
there are pizzas made when choosing from n toppings. This allowed the 
students to explain why the series-winning game combinations and the 
probabilities in the World Series Problem could be computed through 
Pascal’s triangle. These episodes support the main claim in this article 
that problem-solving activities that involve strands of tasks have the 
potential to promote growth of students’ mathematical understanding 
by way of fostering reasoning by isomorphism.

The results offer insights into the processes that were involved in the 
students’ mathematical reasoning. First, the isomorphisms came as the 
students tried several problem-solving strategies or approaches, drew on 
prior knowledge such as tasks with similar mathematical structures as the 
World Series Problem, and tried to prove that their solutions were correct. 
This supports claims that these processes help promote students’ math-
ematical learning and understanding in problem-solving contexts (Cai, 
2010). In particular, the isomorphisms were the result of the students’ 
application of one particular heuristic- solving a similar problem. This 
is further evidence that heuristics help promote students’ mathematical 
reasoning (Powell, 2003). Second, as mentioned above, coming up with 
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a binary notation, where ”1” stood for ”adding a topping” and ”0” stood 
for ”adding no topping,” helped Mike list all 16 pizzas as permutations or 
strings of zeros and ones. In turn, the strings helped Mike ”see” the isomor-
phism between the Tower Problem and Pizza Problem. This supports the 
idea that mathematical representations can help foster students’ mathe-
matical reasoning and understanding (Uptegrove, 2003). Third, this study 
clearly supports the idea that students build schemata and isomorphisms 
through induction, i.e., by working on several tasks involving the same 
mathematical knowledge (Nunokawa, 2005). However, the results do not 
support findings that suggest that students have difficulty using example 
solutions to solve isomorphic problems (Reed, 1999). Indeed, they used the 
formula 2n, example solutions for the tower and pizza problems, to solve 
parts of World Series Problem.

The results of this study also suggest insights into conditions that 
enhanced the students’ mathematical reasoning. First, the tasks were 
obviously challenging to the students. This supports suggestions for 
using strands of complex rather than just simple or easy tasks in trying 
to promote students’ development of schemata and reasoning by isomor-
phism (e.g., Weber, 2005; Weber, Powell & Maher, 2006). Second, social 
and not only ”purely” mathematical conditions also influenced the stu-
dents’ reasoning. As described, the researchers gave the students plenty 
of time to work on the tasks; avoided removing the challenges involved 
in the tasks by telling or showing students how to solve the tasks; and 
spent most of their time listening to the students and asking questions 
to stimulate their thinking. The influence of the researcher’s question-
ing on the students’ thinking is particularly evident. In episode four, 
the researchers’ insistence that the students prove that they had not 
double counted their series-winning game listings stimulated the stu-
dents’ pursuit of a justification for the claim. In Episode 6, the researcher 
invited Mike to ”retrieve” his explanation of the Pascal’s triangle addi-
tion rule in terms of pizzas. Mike was later able to build on his explana-
tion to come up with an explanation for the connection between Pascal’s 
triangle and World Series Problem. The influence of social factors on the 
students’ thinking is evidence that the classroom discourse is essential 
for fostering growth of students’ mathematical understanding in prob-
lem-solving settings (Cai, 2010). The key role played by the researcher 
is an example of the importance of scaffolding students’ activities in 
problem solving. The researcher’s insistence on a proof promoted the 
idea of mathematics as a sense making activity, a key sociomathemati-
cal norm for promoting students’ mathematical reasoning and under-
standing (Cobb & Yackel, 1998; Yackel & Rasmussen, 2003). The Pizza 
Problem worked as a springboard for the students to eventually get to a 
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valid explanation of the connection between Pascal’s triangle and the 
World Series. This is an instance of how selecting situations that bridge 
the old and the new knowledge is an important scaffolding intervention 
that help promote students’ development of schemata and reasoning by 
isomorphism (Nunokawa, 2005).

There is one potential implication for classroom teaching that follows 
from this study. K-12 mathematics teachers often complain that they do 
not have enough time to cover the great amount of content they are often 
supposed to teach (Francisco & Maher, 2011). The extent to which this 
is a valid complaint depends on several factors. However, this study sug-
gests that teachers may want to consider organizing the mathematical 
content that they are supposed to teach in strands as opposed to isolated 
material. This has the potential to help teachers reduce the amount of 
material to cover, which may help teachers address the problem of too 
much content to cover. It can also provide opportunities for students to 
revisit the same ideas several times in different mathematical contexts, 
which help students build durable forms of understanding.

Finally, three key lessons or insights can be drawn from this study. 
The study shows that general factors that support students’ mathematical 
learning in problem-solving situations also help promote students’ reason-
ing by isomorphism. The study also shows that strands of challenging  tasks 
can indeed help promote students’ development of schemata and reason-
ing by isomorphism, but the classroom discourse is crucial. In particular, 
the study suggests that if the conditions in which students engage in math-
ematical activity and the perspective taken on problem solving emphasize 
students ability to show what they can do in challenging mathematical 
situations as opposed to simply how well they can repeat back what they 
have been told or shown by teachers/researchers, students are capable of 
powerful forms of reasoning such as reasoning by isomorphism. Finally, 
this study suggests that reasoning by isomorphism is a complex process. 
The isomorphism between the World Series and the Tower Problem was 
partial as it helped determine only the sample spaces, and not the actual 
probabilities. The isomorphism between the World Series Problem and 
the Pizza Problem was built indirectly via Pascal’s  triangle. In the iso-
morphism with the Coin Problem, the students correctly recognized the 
similarity of structure between the problems but retrieved the wrong 
formula or technique. This suggests that the field of mathematics educa-
tion would benefit from more research on the conditions and processes 
involved in students’ building of reasoning by isomorphism and how it can 
help promote growth of students’ mathematical understanding.
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