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This paper presents the results of a study on the use of interactive online tasks to 
assess students’ conceptual understanding of abstract binary operations in a first-
year linear algebra course. The assessment consists of recognition, identification and 
production tasks and uses verbal, graphic and symbolic representations of binary 
operations in numerous point set contexts. The aim of the study is to directly assess 
the students’ understanding of binary operations and – more indirectly – to identify 
different profiles for the students’ procedural and conceptual knowledge levels. A 
latent class analysis revealed different levels in students’ conceptual understanding. 
Implications will be drawn for teaching abstract binary operations – and other similar 
concepts. Finally, some suggestions about conceptual qualifications for mathematics 
teacher education will be discussed.

Considering the heterogeneity in the mathematical background and 
motivation of university freshman students today, the necessity to adopt 
new tools and policies for tertiary mathematics education has become 
urgent. Acquiring a deep understanding of abstract concepts is perhaps 
the most challenging task of university level mathematics, since modern 
mathematics and its research rely heavily on abstraction, conjecturing, 
proof and creating theories. A solid structural understanding of the 
relationships between mathematical concepts and processes cannot 
be achieved without detailed knowledge of elementary concepts. Such 
central concepts are for example the function concept and its special case 
binary operation. 
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It is evident that students must have a viable understanding of the func-
tion concept before they can understand binary operations. Here, a func-
tion means a rule (or relationship, correspondence) f : A → B which con-
nects to each element x in a set A a unique value f (x) in a set B. The set 
A of possible variable values x is called the domain of f and the set B of 
all potential function values is called the co-domain. The set of all images  
f (x) is called the range of f. An internal binary operation in a set A is a two-
variable function o: A x A → A, connecting to each pair (x, y) in A x A a 
unique value xoy = o(x, y) in the same set A. An external binary operation 
in a set A is a function K x A → A, where K is a set (of scaling elements). 

Since one important aim in the linear algebra course is to introduce 
an axiomatic system and develop theory upon it, an exact approach to 
binary operations is necessary: for example, it does not make sense to 
talk about associativity of o if we cannot be sure that all results xoy are 
defined, unique and again belong to A. 

In order to emphasize the abstract nature of general binary operations, 
the set A in which the operation should constitute a function A x A → A, 
varies greatly from abstract character sets and Venn-diagrams to number 
and vector sets and their subsets, and similarly, a variety of sets appear 
as the scaling set K.

Many educational researchers have considered these concepts from 
slightly different points of view. Most studies on learning or teaching 
the function concept focus on the process of learning and difficulties 
in this process (Breidenbach et al., 1992; Carlson, 1998; Pesonen et al., 
2002, Sfard, 1991; Tall, 1992; Tall & Bakar, 1991; Vinner & Dreyfus, 1989; 
Vinner, 1991; and a review in Carlson & Rasmussen, 2008). Less atten-
tion has been paid to the concept ”binary operation” in an abstract sense. 
Brown et al. (1997) investigated the genetic decompositions of some 
notions in abstract algebra, including binary operation. Their study 
approach is qualitative and focuses on the mental constructions that 
students achieve on the action-process-object-schema scale described in 
Asiala et al. (1996). 

In a quantitative study, Pesonen et al. (2005) showed that even univer-
sity students have difficulties in recognizing a binary operation when it is 
given in a verbal form rather than in a symbolic or graphic form. Surpris-
ingly, not much research has looked for different patterns of conceptual 
abilities that occur among tertiary level students with regard to functions 
or binary operations. Since binary operations in linear algebra are two-
variable functions whose variables are usually multidimensional vectors 
they cannot be represented with traditional static figures. Therefore, the 
emphasis of the graphic representations is on interactive ”living” figures, 
in which for example vector variables in the two-dimensional Euclidean 
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plane can be changed continuously by dragging their endpoints using the 
computer mouse. According to the predefined function, which may be 
hidden from the user, the image vector changes in real time.

In our case, these figures are based on dynamic geometry Java applets 
(Javasketchpad and Geometria, see Pesonen, 2001; Ehmke, 2002), which 
we shall call dynamic sketches. A dynamic sketch can contain text, figures, 
geometric elements (points, lines, rays, segments, circles and more 
advanced constructions) and control tools: buttons and sliders can be 
used for showing, hiding, moving and animating the sketch elements. 
Dynamic sketches allow – and mostly require – the user to interact with 
the figures by mouse dragging or by using control tools. This engages the 
students with the content and problem setting and they get a ”feeling” 
for the dependencies between the given parameters. Pesonen et al. (2002) 
report our earlier experiences of using dynamic sketches that represent 
functions. Some results concerning the use of dynamic sketches with the 
same or parallel study data have been reported in Ehmke et al. (2005) and 
Pesonen et al. (2005, 2006).

Objectives
The present study focuses on the students’ conceptual understanding of 
abstract binary operations at first year university level. We attempt to 
find and classify different levels of students’ procedural and conceptual 
knowledge concerning the two abstract binary operations introduced. 
Therefore, we developed computer-based tests structurally based on the 
learning phases in concept formation used in the theoretical framework 
MODEM (see below). 

This framework and our modifications are presented shortly in the 
next section. The following sections contains the description of the study 
method (sample, design and statistical methods) and the results. The paper 
ends with a discussion and reference to the www-based appendices. 

The MODEM framework
The test worksheets and the study framework are based on MODEM 
(Model construction for didactic and empirical problems of mathematics 
education) framework for concept formation in school level mathemat-
ics (Haapasalo, 1997, 2003). The leading idea of MODEM is to divide the 
learning process into consecutive phases and use the three representation 
forms of a concept in a systematic way. These representation forms are 
verbal (V), symbolic (S) and graphic in a broad sense (G), including static 
and dynamic figures, diagrams and tables. The original five phases of 
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concept building in the MODEM framework are orientation, definition, 
identification, production and reinforcement, and the verbal-symbolic-
graphic (VSG) task types are different in each phase. 

The orientation phase forms the first phase of the systematic concept 
building. Here the students are offered opportunities to familiarize 
themselves with the concept presented in verbal, graphic or symbolic 
form. The students become familiar with the characteristic attributes 
of the concept. 

The role of the concept definition is to offer students an opportunity 
to make their own investigations, to express the investigation results 
especially in verbal forms in each case, to argue within groups about 
these results. The phase should finally end with a social agreement of 
the definition.

The next two phases of concept building utilize the principle of 
dynamic interaction. The idea is to give students a sufficient number of 
opportunities to construct concept attributes and procedural knowledge 
based on them. 

In the phase of identification the students have an opportunity to train 
themselves in identifying concept attributes in verbal (V), symbolic (S) 
and graphic (G) forms. Six different matching tasks are available: IVV, 
IVS, IVG, ISS, ISG and IGG. Note that for example an IVS task means 
identifying the same concept given in a verbal and in a symbolic repre-
sentation form, which implies that IVS tasks are equal to ISV tasks.

In the production phase students are offered a possibility to produce a 
new representation from a given presentation of the concept. The devel-
opment of production includes nine combinations: PVV, PVS, PVG, PSV, 
PSS, PSG, PGV, PGS and PGG. The tasks of identification and produc-
tion should be achievable without complicated processing of information 
on the student’s part.

In the phase of reinforcement, the goal is to train the students to utilize 
concept attributes and to develop procedural knowledge to be used in 
problem solving and applications, and finally, help them in encapsulating  
the whole thing to a conceptual entity.

We have reduced the phases of MODEM to suit better for tertiary level 
education, and have adjusted the task types accordingly. In our revised 
framework, the orientation and definition phases are replaced by an intro-
duction of the concepts in traditional lectures and an orientation text 
module in the beginning of the test worksheets, including the definitions 
of binary operations, a discussion about the reasons for such definition 
formats, etc., some solved examples and some example tasks on recogniz-
ing a binary operation. Definition recognition task (Dr) means determin-
ing whether the representation features fulfill the requirements of the 
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exact definition; a DrX task type requires the student to recognize the 
definition validity of type X representation. These tasks will be called 
recognition VSG-tasks. Here are some some examples of tasks used in 
this study.

Example 1 (DrV). 
Internal: Let A = {a, e, i, o, u, y, ä, ö}, the Finnish vowels in alphabetical 
order. The rule o assigns the result to each ordered vowel pair (v1, v2)  
in the following way: 

v1 o v2 is the alphabetic characters before the vowel v1.

Is o an internal binary operation in the vowel set A?

This operation is – for many reasons – far from being a binary operation. 
The result may be empty or consist of one or more alphabets.

External: Is the operation * an external binary operation R x A → A, 
when A is the set of real numbers and the result c * x is the square 
root of c?

Example 2 (DrS). 
Internal: Let us define a o b = (a – b)/(b + a). Is o an internal binary 
operation in the real number set R?

External: Is the operation * an external binary operation R x A → 
A, when A is the set of all vectors R2 with both coordinates strictly 
positive and

Example 3 (DrG). 
Internal: In the dynamic sketch in figure 1 (left side) you see two 
points x and y and the result x o y of an operation o. Is this a binary 
operation in the disc seen in the figure? 

External: In the dynamic sketch in figure 1 (right side) you see a 
plane vector u, a number c on the real line and the result c * u of an 
operation * . Is this a binary operation in the whole plane R2? 

The answers can only be found by examining the real dynamic sketches 
by dragging the variables x and y or c and u, and seeing what happens to 
the images x o y or c * u. Therefore further examples containing graphic 
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representations are found in the www-appendix 1 (the link is given in 
appendix).

Identification (I) should consist of matching between all pairs of the 
three representations called Identification VSG-tasks IVV, IVS, IVG, ISS, 
ISG and IGG. We have limited this phase to only IVS, IVG and ISG tasks 
because of limited amount of test time. 

Example 4 (IVS). 
Match the verbal description on the left to the corresponding rep-
resentation on the right in figure 2.

The production (P) phase consists of Production VSG-tasks PXY, in which 
a given representation of type X has to be expressed in form Y. Because 
of the shortage of time we used only PGV and PGS tasks. 

Example 5 (PVS). 
Express in a symbolic form this verbal expression concerning real 
numbers: 
The ordered pair is mapped to their distance from each other.

Figure 1. Screenshots of two dynamic sketches

Figure 2. An IVS task entity
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Example 6 (PSV). 
Express in a verbal form this rule concerning real numbers: 

a o b = (a – b)(a + b).

Table 1 summarizes the different task types that are use in this study. 
The phases on the left correspond to the revised phases in the MODEM 
framework and the task types indicate the VSG-task type. The number 
of tasks indicates the total amount of the tasks given to the students, and 
the last column contains references to the corresponding examples above, 
which we have taken from the task pool. 

Methods: sample, design and statistical analysis

Sample
The study was carried out in a first-year course on linear algebra in the 
students’ second semester. Most of the students (n = 92) were first-year 
mathematics or physics majors, but about one fifth of them were 1st to 
3rd year computer science students. More than half of the students will 
qualify themselves as secondary or upper secondary school teachers. 

Study design
The course in linear algebra can be divided into three parts: (1) concrete 
but generalized treatment of the systems of linear equations and the 

Phase Task type Representation 
format

No. of tasks Reference to 
examples

D e f i n i t i o n 
recognition

DrV Verbal 16 Example 1

DrS Symbolic 22 Example 2

DrG Graphic 16 Example 3

Concept 
identification

IVS Verbal <-> Symbolic 12 Example 4

IVG Verbal <-> Graphic 3 see Appendix 1

ISG Symbolic <-> Graphic 3 see Appendix 1

Concept 
production

PVS Verbal --> Symbolic 8 Example 5

PSV Symbolic --> Verbal 6 Example 6

PGV Graphic --> Verbal 6 see Appendix 1

PGS Graphic --> Symbolic 6 see Appendix 1

Table 1. Combined description of tasks in the two binary operation tests
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elements of matrix algebra, including matrix inverse and determinant, 
(2) abstract linear space, subspace, linear functions and their represen-
tations, inner product space, (3) eigenvalues and eigenvectors, matrix  
diagonalization and quadratic forms. 

In the beginning of the course, the students’ knowledge of one and 
two variable functions was measured using two computer-based tests 
designed for other purposes. However, by these tests the students got 
acquainted with assessment tests of such kind. 

Soon after the definition of linear space in the lectures, including the 
definitions of the internal and external binary operations, the students 
did two computer-based tests about these binary operations. The test 
”Binary Operations 1” consisted of a collection of dichotomous yes-no 
definition recognition tasks (DrV, DrS, DrG). The test ”Binary Opera-
tions 2” contained the identification and production tasks (IXY, PXY) 
about internal binary operation, followed by a condensed pool of all 
three task types about external binary operation. Later in the course, 
the students performed a traditional paper-and-pencil examination with 
four tasks. These tasks refer to general conceptual and procedural know-
ledge. Table 2 summarizes the test instruments used in the experiment 
entity.

Statistical analysis

The statistical analysis of the students’ responses to the tasks was carried 
out in three steps. The first step was to combine all items that belong to 
the same task type to sub scales. By this, we built eight sub scales with 
regard to the eight task types that are given in column 3 of table 2: DrV, 

Test no. Label Item type Test mode Used in 
this study?

1 Function test 1 Tasks about functions of one 
variable

Computer-based no

2 Function test 2 Tasks about functions of two 
variables

Computer-based no 

3 Binary Operations 1 DrV, DrS, DrG Computer-based yes

4 Binary Operations 2 DrV, DrS, DrG, IVS, IGS, IGV, 
PGV, PGS 

Computer-based yes

5 Examination Procedural and conceptual 
tasks

Paper & Pencil yes

Table 2. The test instruments
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DrS, DrG, IVS, IGV, IGS, PGV and PGS. For each student we calculated 
his or her mean score for each sub scale, providing us with each student’s 
response pattern consisting of these eight characteristic values.

In the second step, the response pattern of each student was used to 
group students with similar patterns in classes. The statistical method 
we used to identify such groups (or classes) was the probabilistic test pro-
cedure called Latent Class Analysis (LCA) (Hagenaars & McCutcheon, 
2002). This procedure dates from Lazarsfeld and presents a test model for 
latent categorical classes in which the probability of different response 
patterns is analyzed. A response pattern consists of the manner in which 
an individual answers, i.e. the pattern of solving or not solving correctly 
task types. The aim of LCA is to find out the probability for a person to 
belong to a certain class if he/she has a specific response pattern. In prin-
ciple, the person belongs to all classes, but with a different probability in 
each case. Each person is ultimately assigned to the class for which he/
she shows the highest probability of belonging to (Rost, 1996; von Davier 
& Rost, 1996). We used the WinMira software (von Davier, 2000) for  
applying the LCA in this study. 

In the third step of the data analysis, we evaluated differences between 
the groups identified in the previous step. Therefore, we calculated the 
mean scores of eight task types (DrV, DrS, DrG, IVS, IGV, IGS, PGV and 
PGS) and finally evaluated the mean scores of the final examination for 
each group as a validation of the results of the latent class analysis.

Results
The main objective of our study was to find and classify different levels 
of students’ understanding of binary operations. Therefore, a latent class 
analysis was calculated sequentially each time with a predefined number 
of 2, 3, 4, 5 classes. 

For each analysis, the model fit and the bootstrap results were eval-
uated. Finally, the three class solution showed the best model fit and 
was accepted. The average probability of a student to belong to a special 
group was high: for class 1 p1 = 0.90, for class 2 p2 = 0.81 and for class 3 
p3 = 0.86.

Figure 3 represents the profiles of the three student groups identified by 
using the LCA. The horizontal axis contains the eight task types, and the 
vertical axis shows the average probability of solving these task types. We 
labeled the classes as follows: procedure-bounded (dashed line), procedure- 
oriented (thick line) and conceptual student group (normal line). 

These three profiles characterize the student groups according to their 
response patterns in the eight different task types. These group-specific 
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response patterns describe different levels of understanding the abstract 
concept of binary operation.

Procedure-bounded students (dashed line, comprising 44 % of the 
sample) show very low probabilities of solving the recognition and pro-
duction tasks, but higher probabilities of solving identification tasks. 
However, students in this group have the lowest solution probabilities 
compared to the other two groups. Students seem to get stuck to simple 
procedural thinking procedures like identifying equivalent mathematical  
expressions given in different representation forms (see table 1).

Students in the procedure-oriented group (thick line, 36 % of the sample) 
can solve identification and production problems very well, but they  fail 
in the recognition tasks. The term ”procedural-oriented” refers to our 
interpretation that students in this group possess more advanced pro-
cedural abilities (like the ability to solve production tasks, see table 1). 
Their good performance in identification and production tasks shows 
some kind of informal conceptual insight instead of knowing or refer-
ring to the exact definition of the concept. One possible explanation for 
this different behavior was found in a closer look at the test questions, 
see appendix 2. Solving tasks that belong to the identification and the 
production phase requires the translation of mathematical expressions 
between two different representation forms as given in examples 4–6. 
For these task types, more procedural knowledge than conceptual under-
standing is needed. Tasks that belong to the concept recognition phase, 
however, require more conceptual understanding of the definitions of 
binary operations.

Figure 3. Three profiles of students’ response patterns in the binary operation test
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The conceptual students (normal line, 21 % of the sample) show a high 
probability to solve all task types. Students of this group differ from the 
two other groups in that they can solve not only identification and pro-
duction tasks but are also good in concept recognition (see figure 3). This 
indicates that they have procedural and conceptual knowledge on the 
concepts (Gray & Tall, 1994; Hiebert, 1986). 

To validate this classification of students’ conceptual and procedural 
understanding, we compared the results of the three groups in a later 
examination (see table 3). The examination consisted of four traditional 
paper-and-pencil problems. Two of them required procedural know-
ledge and the other two also conceptual knowledge of the course content. 
Procedural knowledge and skills were sufficient in tasks 2 and 3 (solve 
a 3 x 4 system of linear equations and find the inverse of a 3 x 3 matrix). 
In task 1 the students had to ”explain shortly and exactly” what is an 
internal binary operation and what associativity means. In task 4 they 
had to prove two assertions concerning matrix algebra (see appendix 3 
for the original pdf-format exam sheet). For each examination task, the 
maximum result was 5 points. The mean values and standard deviations 
of the three groups are given in table 3.

The results of the group comparison validate our interpretation of the 
latent class analysis. There are significant differences between the three 
groups for the two conceptual examination tasks. The students in the 
conceptual group have significantly higher scores in the two concep-
tual tasks than students in the procedure-bounded group. Concerning 
the two procedural examination tasks, there are no significant group  
differences.

Group 1 
Procedure-bounded

Group 2
Procedure-oriented

Group 3 
Conceptual

Mean SD Mean SD Mean SD

Task 2 (Procedural) 3.71 0.90 3.58 1.01 3.95 1.00

Task 3 (Procedural) 4.06 1.32 4.15 0.95 4.18 1.11

Task 1 (Conceptual) 1.49 0.78 1.85 0.95 2.82 1.43

Task 4 (Conceptual) 1.77 1.46 2.40 1.39 3.24 1.34

Table 3. Mean and standard deviations of the examination tasks in the student groups
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Conclusions and discussion
In this study, we used computer-based tests to assess first-year linear 
algebra course students’ conceptual understanding of abstract binary 
operations. The assessment consisted of recognition, identification and 
production tasks using verbal, graphic and symbolic representations of 
binary operations in numerous point set contexts. The data analysis sepa-
rated the population into three groups who showed quite different levels 
of expertise in the abstract concept ”binary operation”. This classifica-
tion was in apparent accordance with their success in a later more general 
examination. 

The students in the procedure-bounded group and in the procedure-
oriented group were showing a lack of knowledge on the concepts. That 
can prevent a student from reaching higher levels of abstraction in learn-
ing further abstract mathematics. Also, for students who will qualify 
themselves as mathematics teachers it is a question if a process-bounded 
level of knowledge is sufficient enough. We should make sure that sec-
ondary school mathematics teachers possess viable conceptual under-
standing of the basic mathematical concepts like functions and binary 
operations. Therefore, our first recommendation based on the results 
is that a stronger focus on students’ understanding of mathematical  
concepts is needed. 

A second conclusion is to adjust the theoretical framework towards 
tertiary level mathematics context. Since the concept recognition phase 
appeared to be very difficult and the best predictor of students’ future 
abstraction ability, it should be postponed to a later phase after iden-
tification and even after production, as a part of reinforcement phase 
in learning abstract concepts. On the other hand, a diagnostic pre-test 
of concept recognition could be carried out in the beginning, since the 
identification of the different levels of conceptual and procedural under-
standing provides us with an appropriate basis for planning adaptivity 
criterions. Then those students who already succeed in the pre-test can 
skip further training in concept recognition and move to more chal-
lenging topics. For those who fail in the pre-test supplementary learning 
exercises should be given. 

Limitations of this study can be seen in the small sample size and that 
only one university is involved. Therefore, this classification should be 
validated in other samples and other universities. On the school level the 
study of Humberstone and Reeve (2008) could identify four profiles of 
arithmetics-algebra competence, that are somehow comparable to the 
profiles that we found in this study. However, their students’ sample 
was much younger. Also, there are several slightly different ways to 
characterize levels of mathematical understanding according to various  
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frameworks, e.g. Asiala et al. (1996), Gray & Tall (1994), Sfard (1991), 
Carlson & Rasmussen (2008, chapter 3) for an overview of the research 
literature. Here, it would be interesting to compare how similar the 
classifications of a population would be when made according to each  
framework.

The focus of our further research is in identifying the students’ fail-
ures in mastering the concept of binary operation more precisely. There-
fore, we want to develop recognition tasks that are more systematically 
constructed. These tasks require the student to identify violations against 
the definition of a mathematical function like missing images, non-
uniqueness, and inconsistencies between the domain, co-domain and 
the expression of the rule. By this systematic assessment approach mis-
conceptions that put obstacles in the way of understanding the function 
or binary operation concept could be more deeply identified.
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