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This paper intends to contribute to the process of theoretical networking within the 
mathematics education research community. Some key elements of the Anthropo-
logical Theory of Didactics are recalled and used to deal with the issue of French 
students’ transitional difficulties in mathematics between Collège (lower secondary 
school) and Lycée (upper secondary school). The intention is showing how this theo-
retical framework, in contrast with a theoretical framework of Advanced Mathemati-
cal Thinking, provides tools to analyse the changes between these two institutions 
and thus supports the following assumption: An increasing autonomy as problem 
solvers as well as mathematics learners is required from the upper secondary school 
students. This hypothesis led to a clinical investigation on high school students’ 
homework. This paper addresses the hypothesis by drawing on the case of three 
high-achieving students.

The general issue this paper deals with is the following: From one grade 
to the next one, former successful students begin to face important diffi-
culties in mathematics. In France, this first experience of failure involves 
a significant number of students at two crucial steps of secondary school: 
grade 10, which is the first year in the so-called lycée (upper secondary 
school), and grade 11 for the students following a scientific course of 
study 1. French teachers often attribute these difficulties to an insufficient 
autonomy to face the upper secondary school requirements. Such tran-
sitional difficulties appear in other countries, especially between upper 
secondary school and university and afterwards within undergraduate 
courses.

Corine Castela 
Université de Rouen
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In the English speaking research community, this issue has largely been 
approached from a psychological cognitive point of view. Students’ dif-
ficulties are interpreted in terms of transition to advanced mathematical 
thinking (AMT) or at least of lacking some thinking skills that are con-
sidered as essential mathematical ways of thinking. What is this AMT 
to which students’ cognitive abilities are compared with? The topic has 
been widely discussed and is still a debated point. I will here differentiate 
two types of approaches. The first one, largely drawing on AMT ideas is 
focusing on mental acts during mathematical activities insisting on indi-
viduality and contingency: A high-achieving mathematician is someone 
who is able to cope with the task ”surprises”. This approach necessar-
ily puts forward the individual and deals with abilities, beliefs, affect, 
meta-cognition. The second one emphasizes the ideas of invariance and 
genericity: Every new task has something in common with others and 
what the mathematics expert knows about those may supply him with 
useful tools. Within the latter trend, research papers are interested in 
resources, described as formal and informal knowledge about the content 
domain. They generally refer to generic mathematical ways of think-
ing, that is, ways of thinking recursively used within the community 
of mathematics experts. This is especially the case when the presented  
elaborations directly aim at curriculum design. 

Like other researchers (Grugeon,1995; Praslon, 2000; Bosch, Fonseca 
& Gascón, 2004 ; Winslow, 2007), I tackle the transitional issue I previ-
ously introduced within the anthropological framework developed by 
Yves Chevallard (1992, 1999, 2006). This anthropological theory of didac-
tics (ATD) focuses on the institutional conditions and constraints of the 
processes of knowledge creation, teaching and learning in didactic con-
texts. Within the ATD research field, studies are interested in social 
objects, so the approach of transitional issues radically differs from the 
cognitive one that is usual in AMT. That is the first aspect I intend to 
illustrate in this paper, presenting my own work on the French students’ 
difficulties in the transition between upper secondary grades. The next 
sections deal with the following questions: 

From grade 9 to grade 11 scientific course.

–	 What changes occur in the way mathematics are taught? 

–	 What changes occur in the mathematical tasks that lead to  
students’ success or failure?

–	 What has changed in the way three high-achieving scientific grade 
11 students work on mathematics at home?
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As the Nordic research community may not necessarily be familiar with 
the ATD, I will at first focus on the key notion of praxeology, giving 
varied mathematical examples (for a detailed introduction see Barbé, 
Bosch, Espinoza & Gascón, 2005). This will give me the opportunity 
to explore the connections between praxeologies and notions from 
the ”resources” approach of the AMT field, such as ”ways of think-
ing” (Harel & Sowder, 2005), or ”habits of mind” (Cuoco, Goldenberg & 
Mark, 1997). I will show that, at least for certain issues, the ATD and the  
cognitive AMT approaches may converge on the same inquiring track. 

I will then present the idea of process of study or didactic process which 
is a model for the teacher’s or students’ actions along the process of rec-
reating a mathematical praxeology at the classroom level and at the indi-
vidual one. This notion is used to describe the evolution of mathematics 
teaching from lower to upper secondary school in France. The following 
section uses the tools proposed by A. Robert and collaborators (2002; 
2005) to analyse the parallel evolution of the students’ mathematical 
tasks. Based on interview data, I then show how high-achieving students 
manage to face the new conditions and requirements through an adap-
tation of their private study process. Finally, some ideas are put forward 
for the didactic institution to assume better its responsibility to help 
students succeeding in their study at this level. 

The praxeological point of view on mathematics

The praxeological model of human activities and cultural resources
The anthropological theory of didactics considers that every activity 
an individual is engaged in is at first determined by social constraints 
and conditions. So every issue is approached from a social point of view. 
Human societies collectively struggle to overcome the problematic situ-
ations their members face, aiming at a certain regularity and efficiency. 
They create and accumulate strategic resources adapted to the generic 
aspects of problems. The notion of praxeological organisation or praxeol-
ogy is a general model for these cultural resources as well as for human 
activities. 

A praxeology is composed of two blocks. The practical block (or know-
how) associates a type of tasks T and a technique τ. τ is a ”way of doing” 
which is endowed with a certain efficiency for a certain subfield within 
the set of T tasks. An important point to take into account is that, even 
if some techniques are algorithmic, i.e. always efficient for the T tasks 
without any adaptation by the actor, others are not. Nor are they nec-
essarily routine procedures, that is ”well-codified but non-algorithmic  
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techniques for solving specific classes of problems” (Schoenfeld, 1985, 
p. 58). For instance in mathematics, what Schoenfeld calls ”problem-solv-
ing strategies” are techniques, they are associated to very general types of 
tasks. We will elaborate more precisely on this point in the following.

The second block is the knowledge block. The ATD supposes that 

human practices rarely exist without a discursive environment, the 
aim of which is to describe, explain and justify what is done. [...] 
This discourse is structured in two levels: the technology [θ] (a ’logos’ 
– discourse – about the ’techne’), which refers directly to the tech-
nique used, and the theory [Θ] that constitutes a deeper level of  
justification of practice.	 (Barbé et al., 2005, p. 237)

In short, a praxeology is a quadruplet [T, τ, θ, Θ] composed of a type of 
tasks, a technique, a technology and a theory. ”The word ’praxeology’ 
indicates that practice (praxis) and the discourse about practice (logos) 
always go together” (ibid., p. 237). The word ”theory” refers here to organ-
ized knowledge fields with an inner developing dynamics. Theories are 
not directly concerned with practice – etymologically, the term theoros 
refers to a spectator. However they may produce results which give rise 
to techniques. These results belong to the technology of the considered 
techniques. But there are also occurrences when no theory exists, at a 
given historical time, to produce and to explain a technique which was 
created by communities of practitioners while coping with the tasks of 
the type. The ATD assumes that in that case, the social elaboration of 
the technique is generally accompanied, perhaps with some delay, by a 
technological development. According to Chevallard’ s definition, this 
discourse provides some arguments to legitimize the technique within 
the community and justify its efficiency and its relevance. In my concep-
tion of this theoretical tool, it also expresses the knowledge accumulated 
by practitioners through their experiences, and it aims at making easier 
the implementation of the technique. The teaching activity provides 
us with a lot of such praxeologies with scarce theoretical support, but 
a developed professional technology. We could use the term folklore to 
name this pragmatic part of the technology, in the etymological meaning 
of this English word: it is the science (lore) of the folk. As human the-
oretical effort is developing, part of this folklore may be incorporated 
in some theory which will thus complete the praxeology. A theoreti-
cal part θ th, that is pieces of knowledge justified by a theory, enters the 
technology, but the pragmatic component θ p, depending highly on the 
practice community and its experience with the type of tasks, remains 
essential.That is why I propose the following description of a praxeology:  
[T, τ, θ p – θ th, Θ] (Castela, 2008).
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Mathematical Praxeologies 
With the mathematical praxeologies, ATD proposes a general model of 
mathematical activity, strongly connecting practice and theory, problem 
solving and theoretical elaboration. Praxeologies also describe the resources 
a mathematical community may build and use while coping with math-
ematical tasks. This approach puts forward the complexity of knowledge 
involved in mathematical activity. Hence, it belongs to the research trend 
that does not reduce to theoretical knowledge the resources considered 
as useful for problem solving (cf. Schoenfeld, 1985; Lester, 1994, and for 
a review of papers in English, Carlson & Bloom, 2005; in French, Dorier, 
Robert, Robinet & Rogalski, 1997, and Castela 2000, 2008). The efficient 
mathematician is not viewed as being only someone with a in-depth 
knowledge of mathematical theories, gifted with a great creativity. As evi-
denced by Schoenfeld’s studies (1985), he is also someone possessing more 
well-connected knowledge, who is, moreover, able to access its resources, 
to adapt and regulate their use in the solving context. Recently, Carlson 
and Bloom (2005) and Martignone (2007) have confirmed the importance 
of well-connected knowledge that appears to influence all phases of the 
problem-solving process.

So we hypothesize that mathematicians create common praxeol-
ogies to face their professional work. The question is the following: 
How is it possible to find evidence for these praxeologies? The answer 
depends on the nature of the traces the implementation of the technique 
leaves behind and on the forms of expression and dissemination of the  
knowledge block. I will illustrate what I mean with two examples. 

The first one is borrowed from Iannone and Nardi’s presentation at 
CERME 7 (2007, p. 2307).

Based on discussions with mathematicians, both as researchers and 
university teachers, about the roles of syntactic and semantic knowl-
edge in proof production, this study shows that for the participants 
both types of knowledge have to interact in sort of ”a cyclic process 
based on drawing on syntactic and semantic knowledge in turn and 
often simultaneously. [...] Semantic knowledge is of great importance, 
for example, when an act of choice is involved in proof production.

 This work converges with Weber and Alcock’s study (2004, p. 232): 

When writing a proof semantically, one can use instantiations of 
relevant objects to guide the formal inferences that one draws, just 
as one could use a map to suggest the directions that they should 
prescribe.
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These studies reveal a technique used by mathematicians to guide the 
proof process (type of tasks: Mathematical proof producing). This tech-
nique is generally undetectable from the written proof which is the very 
final product to be broadly disseminated. Nor will it be described in any 
paper or mathematics book. That does not affect the existence of this 
praxeology, only the size of professional circles within which it is spread. 
This kind of praxeology emerges in small research teams and is passed 
on from an expert to his thesis students, at the moment when it appears 
useful. The technology is oral, it does not need much formal elaboration. 
As for the theory, I will consider that none is involved in the semantic 
proof monitoring but it is not a point I want to discuss here.

For the second example, my argument is based on a classical geometrical  
situation. 

The altitudes of a triangle intersect

Idea of one possible proof

Let ABC be a triangle. The proof is obvious if ABC has a right 
angle. In the following we suppose that it does not.

Let A’ (resp. B’) be the intersection point of ABC altitude from the 
vertex A (resp. B) with (BC) (resp. (AC)).

(BC) ⊥ (AA'), (CA) ⊥ (BB'), (BC) and (CA) are not parallel, so (AA’) 
and (BB’) intersect in one point H. 

Let us show that H is a point of the altitude from C. 

CH . AB  = CH . (CB  –CA) = CH . CB  –CH . CA 
= (CA + AH) . CB  – (CB  + BH) . CA = CA . CB  – CB  . CA

since AH . CB  = BH . CA = 0 

Two praxeologies are involved in this proof.

Praxeology P 1

T1	 Proving that three distinct lines intersect in one point.

τ1	 Introduce the intersection point of two lines and prove that it 
belongs to the third line.

Θ	 Affine geometry or Elementary geometry
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θ1
th	”If two lines are not parallel, they have one and only one 

common point” (direct corollary of the Euclid parallel  
postulate).

θ 
1
p	 references to other examples (concurrency of segment or angle 

bisectors, of radical axes ...); in fact, τ1 is especially relevant 
when the lines are defined by an equality or any equivalence 
relation; do not forget to prove that the first two lines are 
secant.

Praxeology P2

T2	 Proving a vector relation

τ2	 Split up the vectors into sums of other ones using the existing 
points.

Θ 	 Affine geometry or elementary vector geometry. 

θ2
th	Parallelogram relation AC = AB  + BC ; vector characterization 

of some point properties (parallelogram, midpoint, ...) 

θ 
2
p	 to use efficiently the parallelogram relation, it is necessary 

to base the decompositions on the aimed relation as well as 
on hypotheses; if you want to prove an equality, you may 
start trying to transform one of the equality member, always 
keeping in mind the second member you want to get; when 
there are many points or vectors, determine which ones have 
been independently given (sort of basic points) and use them 
to express every vector you have to deal with. 
  If there is a dot product, this technique is still efficient 
because of the dot product bilinearity; vector decompositions 
based on orthogonality hypotheses are often interesting.

These praxeologies are rather basic geometrical ones that experienced 
geometers as well as scientific upper secondary school students in France 
may use (the interview with Louison below gives some evidence for the 
difficulties a student meets with the second technique). So the tech-
nology above gathers, in some artificial way, elements of what could be 
the practical science of these different communities, but without claim-
ing to be exhaustive. The technique is a routine procedure for a specific 
type of problems. Its implementation is clearly evidenced in the proof 
text. It appears in other well-known examples referred to in the technol-
ogy, so that even if not a single word had be written to present explic-
itly this technique, we can reasonably consider that it belongs to the  
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mathematics experts’ common culture. That is why references to exam-
ples are included in the technology though it may be objected that it is 
not a discourse: these references work as kinds of (web)links, the minimal 
explicit form of a practical contextualised knowledge. On an individual 
level any personal experience with the technique may be referred to. At 
a social level, the fact that the considered examples are well identified, 
for instance by a name, is important.

To sum up, praxeologies produced and used in the mathematical  
activity may be roughly classified in two groups: 

–	 Praxeologies regarding mathematics experts’ heuristic activities. 
These techniques are generally theoretically unjustified, they are 
legitimized by the mathematicians’ repeated experience of a rea-
sonable efficiency (example 1).

–	 Praxeologies emerging in written mathematical works. The tech-
niques are justified by some theoretical elements, at least in the 
end, as mathematics progress (example 2). 

In the following, I will use Chevallard’s phrase ”Punctual mathematical 
organisations” (MO) for the second group which is strongly connected to 
mathematical academic knowledge 2 and ”Mathematicians’ praxeologies”  
for the first one.

Praxeologies, ways of thinking and habits of mind
The ATD is interested in mathematical resources as social production. 
Praxeologies are considered as objects existing independently of indi-
viduals, especially revealed through visible gestures with material tools 
or signs and at least partly justified and described by discourses. But as 
seen before, these public manifestations are not so evident for the Math-
ematicians’ praxeologies which live in a somewhat esoteric way within 
the small communities of mathematics experts. Hence establishing the 
existence of a given praxeology may need some work.

Most of AMT-based studies start on the contrary from an individual 
cognitive point of view. Let us quote Harel & Sowder (2005) to represent 
this approach: 

In our usage, the phrase way of understanding, conveys the reason-
ing one applies in a local, particular mathematical situation. The 
phrase way of thinking, on the other hand, refers to what governs 
one’s ways of understanding, and thus expresses reasoning that is 
not specific to one particular situation but to a multiple of situations. 
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A personal’ s ways of thinking involve at least three interrelated 
categories: beliefs, problem-solving approaches, and proof schemes. 
		  (Harel & Sowder, 2005, p. 31)

Thus the phrase ”ways of thinking” refers to the mental resources an 
individual produces to face generic aspects of problematic situations. Yet 
the examples the authors give in the referred paper may be considered as 
widely shared knowledge within the mathematics experts’ community.

Let us now consider the expression ”habits of mind” used by Cuoco, 
Goldenberg and Mark (1997). Apparently the notion sounds very much 
as a psychological cognitive notion. But they write:

We believe that every course or academic experience in high school 
should be used as an opportunity to help students develop what we 
have come to call good general habits of mind.
	 Good thinking must apparently be relearned in a variety of 
domains [...] high school graduates should be accustomed to using 
real mathematical methods. They should be able to use the research 
techniques that have been so productive in modern mathematics 
[...]. We are after mental habits that allow students to develop a rep-
ertoire of general heuristics and approaches that can be applied in 
many different situations.	 (p. 377)

So these habits of mind clearly appear to be widespread techniques, 
broadly experienced in the research communities. Again this paper 
refers to social knowledge that we may describe within the ATD as 
praxeologies, Punctual mathematical organisations and Mathematicians’  
praxeologies. 

How is it that the researchers I have just mentioned could not avoid 
leaving their initial individual psychological approach for a social point 
of view? How is it that esoteric praxeologies should appear in broader 
circles? The reason here is the common curriculum design project, as 
referred to in the title of Cuoco et al. (1997). The fact is that to be imple-
mented as a curriculum objective, an individual cognitive skill or resource 
needs to be a socially shared skill or resource, i.e. to be a praxeology. This 
praxeology needs its technology to be developed: To support firmly the 
relevance of teaching this praxeology, to introduce teachers who are not 
necessarily mathematics experts to the considered technique, to give 
them possible situations to train students, and to elaborate a discourse to 
speak about this technique with classes, not only in a one to one conver-
sation between peers. It comes from this necessity that the psychologi-
cal cognitive approach of AMT may meet the ATD approach on some 
points in practice.
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From french grade 9 to grades 11–12 scientific course: what 

changes in mathematics teaching?
Let us now begin with the transitional issue this paper will tackle from 
the anthropological point of view. We will, at first, consider that stu-
dents’ difficulties may result from changes in the way mathematics is 
taught. According to the praxeological approach, teaching mathematics 
is giving the students opportunities to recreate for themselves mathe-
matical praxeologies, especially the praxeologies directly connected with 
concepts and theorems, that is, mathematical organisations (MO). I will 
focus the comparison between the considered institutions on the MO 
recreation process.

Re-creation of a mathematical organisation in a didactic context
In the ATD, the process of recreation of a mathematical organisation is 
modelled by the notion of process of study or didactic process. This process 
is organized into six distinct intertwined moments: the moment of the 
first encounter, the exploratory moment, the technological-theoretical 
moment, the technical moment, the institutionalisation moment and the 
evaluation moment.

The second moment concerns the exploration of the type of tasks Ti 
and elaboration of a technique τ1 relative to this type of tasks. [...] The 
third moment of the study consists of the constitution of the tech-
nological-theoretical environment [...] relative to τi . In a general way, 
this moment is closely interrelated to each of the other moments. 
[...] The fourth moment concerns the technical work, which has at 
the same time to improve the technique making it more powerful 
and reliable [...] and develop the mastery of its use. 

(Chevallard, 1999, pp. 250–255,  
English translation in Barbé et al., 2005, pp. 238–239)

I will use this model to evidence a major change from lower secondary 
school to grade 10 and 11 in mathematics teaching.

Lower secondary school mathematics teaching: A well developed 

process of study
From grade 6 to grade 9, mathematics teaching rhythm is moderate, a 
limited amount of theoretical objects and correlated MOs are introduced. 
Hence, teachers have time enough to organize the different moments of 
study. In particular they give their students the opportunity to handle 
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with a rich sample of variants of a given type of tasks. The common work 
on the students’ productions is a moment when a collective folklore may 
be elaborated. In short, the teacher creates good conditions for the MO 
appropriation by the students within the math class. This point clearly 
appears in Felix’s study on grade 9 students’ homework (Felix, 2002). Inter-
viewed on the way they prepare periodic assessment in mathematics, two 
high-achieving students claim that, when it comes to exercises, they only 
read the solutions given by the teacher to make sure that they have under-
stood the solution. They are sure that they need no more learning. They 
add that assessment tasks are always similar to the previously studied 
exercises. Felix concluded that for these students, the learning process 
essentially happens during classroom time. So I will retain the follow-
ing: Although in France the explicit mathematics syllabus is expressed in 
terms of theoretical objects and most of the related MOs remain implicit 
during the lower secondary school years, the didactic process of recreation 
of these MOs is institutionally organized by teachers.

Mathematics teaching in grades 11–12 scientific course of study:  

A mere starting of the didactic process 
The mathematics syllabus for the scientific course of study introduces a 
great number of concepts and theorems, each of them central to several 
MOs which still do not appear as explicit objectives. The teaching 
rhythm strikingly increases. Consequently, the teacher no longer has 
enough time to develop the didactic process for the new MOs. Except for 
the basic fundamental ones, he hardly enters the fourth moment, which 
reduces the opportunity for the class community to elaborate the tech-
nological environment, especially its folklore component. For instance, 
when working on the barycentre associativity, the teacher shows that it 
may be used to prove that three lines intersect in a common point and 
that three points are on the same line, but the he will not vary the exer-
cises involving these techniques. Hence, students lack the opportunity 
to really become aware of the subtleties of the technique. To sum up, the 
teaching system focuses on theoretical knowledge and leaves it to the 
students to develop the process of study for the new MOs. Yet assessing 
tests in mathematics consist mostly of exercises or problems for which 
students are expected to write complete solutions (cf. the section below 
for some examples of such exercises and a detailed analysis of what they 
require from students). So students’ success in grade 10 and still more in 
the scientific course at grade 11 and 12 highly depends on their autonomy 
as ”MO developers”. As seen previously, it was not the case at the lower 
secondary school level.
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What changes in the school mathematical problems?
Let us now tackle the mathematical activities required from students, 
intending to examine what aspects of these tasks may produce a higher 
degree of difficulty. I will not elaborate further on the obvious fact that 
new theoretical objects and new techniques are involved, and that they 
are taught in the previously described conditions. My intention in this 
section is to focus on difficulties regarding familiar MOs which stu-
dents previously successfully used. If I worked in another framework 
(see e.g. Rasmussen et al., 2005; Zazkis & Applebaum, 2007), I would say 
that I am interested in evidencing advances in mathematical thinking. 
Within the ATD, I will present tools for analysis to evidence advances in  
mathematical problems. 

Analysing mathematical problems in a given school context: examples
Problems or exercises? This point cannot be eluded. Most research papers 
which deal with problem solving agree with Schoenfeld’ s definition:

A problem is only a problem (as mathematicians use the word) if you 
don’t know how to go about solving it. A problem that has no ’sur-
prises’ in store, and can be solved comfortably by routine or familiar 
procedures (no matter how difficult!) is an exercise.
		  (Schoenfeld, 1983, p.41)

This dichotomy is much too rough to be efficient in our study which 
needs a more fine-graned scale to differentiate the tasks given to students. 
Even if a technique is familiar, the conditions of its use may change a 
lot from one task to another, thus requiring a variety of activities from 
the student. To follow, three examples which come from French text-
books will illustrate this claim and let us see what kind of tools are used 
to analyse evolutions. The words ”exercise” and ”problem” will be used 
without any particular discrimination in this paper. 

What the following exercises have in common is that they use what in 
France is referred to as the Théorème de Thalès 3. They appear at different 
moments of the curriculum, from grade 8 to grade 10.

The exercise in example 1 appears in the chapter where the Thales 
theorem is taught for the first time. The derived technique to calculate a 
missing length is not yet familiar. The students are required to use it in 
different conditions: variations affect triangle orientation in the sheet, 
point names and given lengths. In particular, the second case introduces 
the necessity of an intermediary step (calculating LK).

In grade 8, the students’ pragmatic folklore will probably include some 
elements regarding the presence of two triangles, whose correspondent 
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sides are associated in the ratios. Such an observation could prevent errors 
such as considering LN

NK
 in the second figure because these two lengths 

are given.
This type of tasks appears frequently all along grades 8 and 9, so that 

when they leave the lower secondary school, most students recognize 
on their own that the Thales theorem may be relevant from the type of 
drawing we have above. At this level, this knowledge belongs to the Thales 
MO related to the type of tasks ”Calculate the length of a segment”.

The second example appears in a chapter which intends to work again 
on the whole geometric knowledge taught previously. Hence, when 
they face a task, students cannot guess from the chapter context which 
theorem to use. But, as pointed out before, the drawing may be here con-
sidered as a good fit for the Thales theorem. However we will not consider 
that the procedure goes on here as a simple routine, especially because 
of the following analysis. When calculating AM, this procedure leads 
to the equality 7,5AM = 3(AM + 3,6). Students have to recognize a linear 
equation to finish this question. Solving the equation 7,5x = 3(x + 3,6) is 
mere routine in grade 10. But here, the usual symbol x for the unknown 
is missing; the general class context refers to geometry and not algebra. 
Hence students are completely in charge of identifying the type of math-
ematical question involved and mobilising the relevant technique. I will 
consider that facing this responsibility will be supported by an evolution 
of the corresponding MO: what is at stake is the perception of the type 

Example 1. Triangles and parallel lines 

For both joined figures, calculate the requested length.
Left figure: (TR) // (HJ), 
HJ = 9, TR = 4, GJ = 9, calculate GR.
Right figure: (NP) // (KM), 
LN = 5, NK = 7, NP = 4, calculate KM.

(Hatier 4e (2002), Collection triangle mathématiques. Grade 8, chapter 12, p. 195)
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of tasks itself, that shall be characterised by the research of an unknown 
quantity and not by the presence of the symbol x, which is usually the 
very point lower secondary school students keep in mind.

The third exercise belongs to a chapter which deals with functions, 
i.e. a rather new subject for students. In this precalculus context, the 
first questions are geometric ones and require calculating some lengths 
depending on the variable x. Several techniques have been taught relying 
on Pythagoras and Thales theorems or using trigonometry. Here, unlike 
what we found in the second example, there is no strong indication that 
one of these procedures might be more relevant than the others – the 
drawing is complex, the Thales configuration is not especially visible, 
and the text does not refer to parallel lines or to a right-angled triangle. 
Hence the solver needs to mobilise the different procedures he knows 
and check by himself if one or another is efficient. Then he has to adapt 
it to the x context.

A more complex organisation of knowledge than the one technique 
Punctual mathematical organisations considered in the second section of 
this article would help the student to face the initiatives required by the 
orienting and planning phases of this solving process (Carlson & Bloom, 
2005). Dealing with the general type of tasks Calculating a length, this 
MO connects several one technique punctual MOs, eventually develop-
ing their technology to describe their efficiency conditions: The Thales 
technique requires knowing that some straight lines are parallel, some 
points on the same line; and the Pythagoras theorem and trigonometric 
techniques need a right-angled triangle.

Example 2. Configurations of the plane 

We know that AB = 3; BC = 4,5; MN = 3,6
BM = 1,5; AD = 2,5
The straight lines (BD) and (CE) are parallel.
Calculate AE, AM and CN.

(Hachette Seconde (2000), Collection Déclic Maths. Grade 10, chapter 9, p. 247)
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From lower secondary school to grade 11: advances in mathematical 

problems
The analyses presented here originate in Robert’s works (see for example 
Robert & Rogalski, 2002). According to her proposals, the level of diffi-
culty of an exercise or problem concerning the use of a given technique 
is assessed through two questions. First, is the related MO in some way 
present in the exercise wording? Secondly, is the technique efficient in 
its familiar simplest form or does it need some adaptation? Of course, the 
analysis must take into account the task context. For instance, we will 
consider that, in grade 8, the Thales procedure is not used in its common 
form in the first example, at least in the right case; while in grade 10, this 
exercise would be a routine one. 

We can now give at least a partial answer to our second question: What 
changes in mathematics tasks that lead to students’ success or failure? 
The evolution we met through the three examples analysed before is par-
adigmatic of what happens from grade 9 to grade 10 and still more from 
grade 10 to the scientific course of study in grade 11 where the rhythm 
of introduction of new objects becomes greater. Knowledge taught in 

Example 3. Functions: generalities.

ABCD is a square with AB = 3. E is a point situated on the half-line [D,C] so 
that DE = 7. Let M be a point on [B,E] so that EM = x and let H be M orthogonal  
projection on (DE).
This problem aims at studying the area of the trapezium ADHM.
1.	 Calculate BE.
2.a	 Express the distances MH et EH as functions of x, and then the distance 
	 DH.
2.b	 Infer from these results an expression of the distance DH according to x.
3.	 Express the area of ADHM as a function of x . [...]

(Magnard Seconde (2004), Collection Abscisse. Grade 10, chapter 9, p. 292)



corine castela

Nordic Studies in Mathematics Education, 14 (2), 5–27.20

the previous years is considered familiar. These resources are involved in 
exercises where they need to be coordinated between them (example 2) 
and more and more often with completely new objects and techniques 
(example 3). In this latter case, it is often left to the student to perceive 
the relevance of some familiar technique. This responsibility becomes 
especially demanding when several techniques have been taught for the 
same type of questions. This case becomes more frequent in the upper 
grades, as more mathematical knowledge has been studied.

To sum up, the problems in grades 10 and 11 require that students take 
more and more initiatives on their own using familiar resources. Within 
the anthropological epistemology of mathematics, this higher degree of 
autonomy requires that previous MOs evolve. The characterization of 
the type of tasks may be renewed, sometimes restricted (e.g. trying to 
describe the type of tasks especially well adapted for a given technique), 
sometimes enlarged (e.g. considering the tasks ”Solving an equation” and 
”Proving an inequality” as referring to one type of tasks). The technology 
is developed to take into account the experienced adaptations. Moreover 
MOs relative to the same type of tasks T shall be organized into a new 
superstructure connected to T in order to support a broad summing up 
of the relevant resources when a T task appears in a problem. But in the 
conditions we have described in the third section, it is very difficult for 
teachers to spend some time in class going back to objects that have been 
taught in previous grades. These objects generally remain implicit on the 
didactic scene. Hence, in grade 10 and still more in grades 11 and 12 in the 
Scientific course, students must not only develop the new MOs intro-
duced by the teacher in connection with the new theoretical knowledge, 
but they should also feel the interest to go back over old familiar MOs 
and achieve the renewing process on their own.

About scientific high-achieving students’ homework
From the previous analysis, I infer that success in mathematics highly 
depends on the students’ homework, especially in the scientific course of 
study. Some previously successful students ignore this new self-teaching 
charge or fail to face it; therefore they encounter increasing difficulties 
in mathematics. Others manage to adapt their homework to their new 
responsibilities. In order to investigate grade 11 scientific students’ work, I 
have interviewed the students of one class who were willing to contribute 
to a research on homework in mathematics. I met ten students – about 
one third of the class – between January and May. Only two were boys, 
which may be due to my own gender and to the fact that perhaps boys are 
more reluctant to talk about themselves in a face to face discussion. The 
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interview was semi-structured with a focus on moments of stimulated 
recollection. The general question was the following: Tell me what you 
have done to prepare yourself for the latest test in mathematics. 

Among the students, three girls, Louison, Paula and Juliette, were 
especially high-achieving – with respectively averages of 15, 17.5 and 17 
out of 20. I will present here the salient points I have drawn from their 
interviews.

Going back over what has been organized by the teacher
Louison and Paula spontaneously brought up the accelerated learning 
pace from grade 10 to grade 11. At the beginning of the year, they felt 
stressed because they could not understand everything that was going 
on in class and this was new for them. For the first weeks, Louison had to 
work at home on these shortcomings, before the following mathematics 
lesson; but later on, this problem disappeared. Paula encountered such 
difficulties all year long. She copes with them only when working for the 
tests but she had to totally change this preparing homework. As for Juli-
ette, such adaptation occurred in grade 10. Louison claims having always 
worked as we will see now.

Louison and Juliette begin studying the theoretical part of their notes, 
intending to understand the proofs and to memorize the results. Paula 
does not, she considers that this learning is achieved through her working 
on exercises. As for this aspect of preparation, the three girls have the 
same method. At first, they solve again almost every exercise studied with 
the teacher. While the successful grade 9 students interviewed by Félix 
(2002) have no doubt on their learning during the class, these students 
have experienced the necessity to make sure that they are really able 
to find the solution. Doing so, they give themselves the opportunity to 
tackle the original task prescribed by the teacher. This one often requires 
more initiatives than the one effectively worked on in class, where, as evi-
denced by Robert and Rogalski (2005), the teacher gives hints to speed up 
the solution process. If they do not succeed, they study the teacher’s solu-
tion and try again to solve the exercise. Louison and Juliette especially 
go back over their errors. Paula does not.

In summary, something that has not been anticipated from the pre-
vious analysis appears here. Due to the accelerated pace, the learning 
process regarding the activities initiated during the class has to be com-
pleted at home by a deliberate return to exercises. Among the interviewed 
students, only those with particular difficulties (with an average grade 
under 8 out of 20) appear not to do this type of work.
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Developing the new MOs or going back over previously taught ones
The three girls generally do not solve new exercises because they would 
not have any way to check their production validity. Only Paula practices 
somewhat more, using exercises from the textbook, even without solu-
tions, in the case of basic techniques she feels she may control by herself. 
In fact, it appears that they do not consider it necessary to extend the 
technical work (the third moment of the didactic process) beyond the 
limits established by the teacher.

But Paula and Juliette systematically complete their written work on 
solutions by a verbal phase in which they describe the solution. In doing 
so, they begin to decontextualize some generic elements of the solu-
tion and to elaborate a personal technology. They are clearly aware that 
each exercise intends to introduce them to a given type of tasks with an  
associated technique.

Louison generally stops working when she can solve every exercise. 
She is confident in her ability to adapt what she knows to the specificities 
of the assessment test. More over, like all the students, she expects that 
the test will not be much different from the class exercises. However, it 
may happen that an exercise appears to be especially difficult. In that 
case, she struggles to draw from the solution elements of the teacher’s 
efficiency. She gives a very convincing sample dealing with the monitor-
ing of the parallelogram relation with vectors. On this occasion, she goes 
back to a grade 10 MO:

L:		  Sometimes I have difficulties knowing what to do, which vectors to use, 
which ones to add ... So, I remember it, I mean I had begun to ... there were 
lots of calculations ... and I was totally lost. So I studied how the teacher 
did and he did it directly, so I looked at how he did it and after I try to do 
it alone.

Int:	 Okay, can you explain to me how you have picked out what he did, and 
how it was smarter than what you had done?

L:		  Well I started with vectors that were not really linked to the question [...] 
the parallelogram relation is really convenient but it can be used with lots 
of vectors and we can write a full page of calculations whereas it takes 
just two lines for the teacher. If we don’t use the clever vectors, we can’t 
manage it.

I:		  We can try to go into details ... in your reflection, did you find the reason 
why it was so tricky?

L:		  Yes, I do. Well in fact, what I did ... I used to begin quite randomly and I 
tried to get to the end, while the teacher ... he began with the conclusion 
and tried to come back to the ... so it is inevitably faster [...].

I:		  Did the teacher explain all that? or did you figure all that out on your 
own?
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L:		  Oh no, he didn’t, I found that alone, I don’t ... well the teacher, he does his 
stuff, he writes the solution and after he does something else, he doesn’t 
take time to ...

Thus, these high-achieving students take upon themselves, through 
their homework, a certain development of the technological-theoretical 
moment. The other students with middle or weaker results I interviewed 
never refer to this working mode, which, in the limit of this clinical study, 
appears to favour success in mathematics. This confirms the outcomes of 
a previous investigation regarding university students (Castela, 2004).

Conclusions and perspectives
In this paper I propose a double diagnostic to explain the difficulties 
which former successful French students encounter in mathematics in 
grade 10 or later, in grades 11–12 of the Scientific course of study. First, 
the mathematical problems require the solver to take more and more 
initiatives. To face this demand, the student’s familiar resources should 
evolve. Second, at the same time, the teaching system partially leaves it up 
to the students to re-create for themselves the Mathematical Organisa-
tions at stake in the syllabus. Hence, an important autonomy as a learner 
appears to be demanded from the students. This generally requires some 
evolutions of the homework that many students are probably unable to 
imagine on their own. Therefore I consider it necessary at this point of 
my investigation to think of experimental proposals to help students to 
adapt their style of working. Teachers should provide the students with 
means to extend the MOs developing, especially some more exercises 
with solutions in order to sustain the technical work and the technologi-
cal elaboration. Some training to the study of solutions should be organ-
ized, aiming at the detection of techniques, for new MOs as well as for 
previously taught ones. Such work would bring to light the importance 
of praxeologies. We may hope that students would transfer this working 
form to the developing of more general mathematical organisations. At 
the same time, conditions should be institutionally created to favour col-
lective study in small groups, so that the self-teaching responsibilities 
may be socially faced. 

Regarding possible connexions between the ATD approach and some 
studies of the AMT field, I will emphasize the following point. As I 
am interested, from an anthropological point of view, in the resources 
involved in mathematical activities, I cope with praxeologies mathemat-
ics experts do not widely share outside of small professional communi-
ties. These more or less esoteric praxeologies are very closed to objects 
like ways of thinking or habits of minds which, though introduced in the 
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AMT field from a psychological cognitive point of view, refer to generic 
aspects of the mathematics expert’s competency. The intention to design 
a curriculum aiming at improving students’ achievement in mathemat-
ics regularly leads researchers to move away from a strictly psychologi-
cal approach. Social dimensions are required to legitimate curriculum 
choices. I hope I have contributed to show that the ATD provides a rele-
vant framework to face such necessity as well as efficient tools to describe 
the components of the curriculum.
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Notes

1	 During the last two years in the upper secondary school students have to 
choose a specific course of study. This choice is not totally free. For the 
science course of study, it highly depends on the student’s results in science 
in grade 10 (Seconde): those who follow this course of study (Première, Ter-
minale Scientifiques) were generally rather successful in mathematics.

2	 In this paper, we will only consider the most elementary level of Mathe-
matical Organisations, the punctual ones which are based on a unique type 
of tasks T. Punctual MOs referring to several types of tasks are then inte-
grated in more complex organisations: a local OM is composed of punctual 
OMs sharing the same technology; local OMs with common theory are 
integrated in a regional MO (see Barbé et al., 2005, p. 237–238).

3	 What is in France considered as the Thales theorem is the following one: 
”Let d and d’ be two straight lines with O in common. A and B are two 
points on d, A’ and B’ two points on d’. If the straight lines (AB) and (A’B’) 
are parallel, then OA/OB = OA’/OB’ = AA’/BB’ ”. Students do not learn any 
more general result, for instance that OA/AB = OA’/A’B’.
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