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This article elaborates on the construct of contextualization, which constitutes a con­
structivist contextual view on learning. Principles of constructivism and contextuali­
zation are operationalized into a set of four analytical categories that teachers and 
researchers can use in organizing their thinking about teaching and learning mathe­
matics. The categories are discussed and verified throughout the design and analysis 
of a classroom compatible learning activity, which is thought to promote probabilistic 
reasoning. The article discusses suggestions for developing the operationalization 
and, thus, encourages future efforts that further explore the explanatory power of 
contextualization and its analytical categories.

The goal of research in mathematics education is to understand the 
nature of mathematical thinking and teaching, and to use such an 
under standing to improve mathematics instruction (Schoenfeld, 2000). 
However, research in mathematics education is exposed to criticism 
due to its missing payoffs in practice (Burkhardt & Schoenfeld, 2003; 
Sfard, 2005), and voices can be heard urging for a bridging of the gap 
between research and practice (Groth & Bergner, 2007). Burkhardt and 
Schoenfeld (2003) discuss several causes for this gap and suggestions for 
reducing it. One thing they point to is the character and use of theory 
in mathematics education. The purpose of theory is to provide a struc­
tured set of lenses through which a learning activity can be observed and 
analyzed (Niss, 2007). However, Burkhardt and Schoenfeld (2003) argue 
that most theories that have been applied to education are quite broad, 
lacking the specificity that helps to guide and understand the design and  
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analysis of learning activities. Cobb et al. (2003) adhere to this view, 
claiming ”General philosophical orientations to educational matters – 
such as constructivism – are important to educational practice, but they 
often fail to provide detailed guidance in organizing instruction” (p. 10). 
In his discussion on the dialogical approach, Ryve (2008) also problema­
tizes the shortcomings of adopting overly global constructs in the ana­
lysis of mathematical learning. Specifically, he encourages a discussion 
on the need for analytical categories of context for properly analyzing  
learning activities in mathematics. 

The analytical construct of contextualization accounts for a construc­
tivist contextual view on learning (Wistedt & Brattström, 2005), which 
has helped to account for students’ ways of dealing with learning tasks 
in a variety of settings (Halldén, 1999; Scheja, 2002; Ryve, 2006; Petters­
son, 2008). In my own research I have used the construct of contextu­
alization in studying students’ reasoning about situations demanding an 
understanding of randomness and probability (Nilsson, 2007; Iversen & 
Nilsson 2007; Nilsson, submitted). However, analytical principles and 
categories that have been used in previous studies on students’ processes 
of contextualizations have often been quite broad and are not specific 
to learning mathematics. 

Against this background, this article aims to operationalize the theory 
of contextualization into a set of analytical categories for the design and 
analysis of learning activities in mathematics.

The article is organized as follows: The next section presents some 
basic principles of constructivism. The aim is not to give an exhaustive 
account of constructivism; however, it is necessary to introduce certain 
principles in order to understand the analytical construct of contextu­
alization, which is the theme of the second part of the next section. The 
subsequent section deals with operationalizing the construct of contex­
tualization into a set of analytical categories. This operationalization is 
then discussed and illustrated within the frame of the design and analysis 
of the Game of totals (Nilsson, 2007), which constitutes a learning activ­
ity compatible with the realities of a classroom, designed to encourage 
probabilistic reasoning. In Nilsson (2007), the object of the investigation 
was the students’ probabilistic reasoning. Such elements will naturally 
be part of the current paper as well; however, based on the theoretical 
construct of contextualization, the issue here is deriving analytical lenses 
for organizing our thinking about teaching and learning mathematics. 
The Game of totals and the students’ ways of interacting with the game 
are used as means of illustration and verification.
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Theoretical considerations

A constructivist perspective
The principles of constructivism rest on Piaget’s theories on cognitive 
development (Cravita & Halldén, 1994), which relate to Darwinian evo­
lution and biological growth. An organism’s biological growth can be 
said to occur if it contributes to increasing the organism’s possibility to 
survive. In a similar manner, the occurrence of cognitive growth becomes 
a consequence of our struggle to understand the world in order to cope 
with and improve our life conditions. Hence, cognitive growth is viewed 
as the processes in which we strive to adapt our thought patterns in 
order to increase our capacity to act in and understand the world (von 
Glasersfeld, 1995).

From a constructivist perspective, there is no access to an objective 
reality independent of our knowledge of it. Our knowledge of the world 
is constructed actively by us as learners and is not passively received from 
our surroundings: ”[...] knowledge does not result from a mere record­
ing of observations without a structuring activity on the part of the 
subject” (Piaget, 1980, p. 23). Hence, the world we are striving to organ­
ize and understand is called the world of our experiences (von Glasers­
feld, 1995).

An individual’s striving for adaptation concerns his/her intention to 
continually establish and maintain equilibrium (Glasersfeld, 1995). Say, 
for instance, that you engage in a situation and find that elements of it do 
not make sense to you. A case of disequilibrium has appeared in your expe­
rience. Equilibration is the generic term for the elimination of perturba­
tions: It is through equilibration that one tries to re­establish balance, 
equilibrium; ”[…] expanding equilibration […] means an increase in the 
range of perturbations the organism is able to eliminate” (von Glasersfeld, 
1995, p. 67). Hence, that behavior is goal­directed by nature, in terms of 
one’s intentions to understand the world and eliminate disturbances in 
experiences, should be considered in the design of learning activities.

From such a perspective, knowledge can be characterized as a tool, 
instrument or resource (von Glasersfeld, 1989). Such an instrumen­
tal metaphor of knowledge gives us reason to reflect on the viability 
of knowledge. The ability to establish and maintain equilibrium is a 
question of the viability of an actor’s knowledge. So, whether knowl­
edge is abandoned or preserved depends to a great extent on its viability 
in helping us understand a phenomenon or achieve goals in a certain  
situation (von Glasersfeld, 1995).
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Piaget (1985) highlights assimilation and accommodation as two funda­
mental processes involved in knowledge formation. Assimilation is the 
process by which new experiences are incorporated into already exist­
ing mental structures: ”[...] we construct our knowledge of our world 
from our perceptions and experiences, which are themselves mediated 
through our previous knowledge” (Simon, 1995, p. 115). Accommodation, 
on the other hand, refers to instances when existing structures are not 
able to make sense of new information. For sense to be made of the infor­
mation – that is, for equilibrium to be established – previous knowledge  
structures may be re­organized.

Previous research on learning mathematics has mainly focused on the 
process of accommodation, i.e. on students’ misconceptions (Smith et al., 
1993) and how they may be changed through teaching aimed at stimulat­
ing so­called ’cognitive conflicts’ (Posner et al., 1982). With the analytical 
construct of contextualization we are striving to account for students’ 
sense­making activities; how and why a certain way of reasoning takes 
form and what it contains in terms of mathematical potential. This does 
not ignore the idea of accommodation. However, it has proven crucial to 
emphasize the principle of assimilation, in terms of understanding the 
major impact students’ current points of reference and goals of direction 
may have on how they understand and deal with new sensations and 
sources of inspiration (Halldén, 1999). 

Contextualization – a constructivist contextual view on learning
There are two specific sources of the development of the analytical con­
struct of contextualization. The first refers directly to the process of 
assimilation. Halldén (1999) argues that little interest has been directed 
to two of the conditions for learning proposed by Posner et al. (1982); 
that a new concept must be intelligible and appear initially plausible (for 
the learner). Halldén shows the importance of taking into consideration 
these two conditions when analyzing learning as well as how the con­
struct of contextualization could be a useful tool in such an analysis. The 
second source of the development of this contextual view on learning 
refers to the criticism from sociocultural researchers that constructivist 
theories do not adequately take into account the situational character of 
cognition (see, e.g., Ryve, 2006). On account of this, research conducted 
within the frame of contextualization has focused not only on the con­
ceptual requirements of a given task but also on beliefs about the imme­
diate setting as well as the appreciation of the discursive rules and social 
requirements (Scheja, 2002). 
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Meaning-making in personal contexts
To allow for an adequate understanding of contextualization, it is nec­
essary to explain what is meant by context in this model. In sociocul­
tural research on learning, context refers to the physical and discursive 
setting in which a learning activity takes place (Janvier, 1989; Säljö, 2000). 
In constructivist research, context does not refer to the spatiotemporal 
setting of the learning activity but to a mental device, shaped by personal  
interpretations of the activity (Cobb, 1986). 

To speak about students’ processes of contextualization is to speak 
about how learners struggle to render a phenomenon or concept intel­
ligible and plausible in personal contexts of interpretation (Caravita & 
Halldén, 1994). This idea rests on the principle that we always experience 
something in a certain way, from a certain set of premises and assump­
tions (Säljö et al., 2003). Talking about how students contextualize a phe­
nomenon is a way of organizing and conceptualizing the learners’ view 
of the phenomenon and what this view implies for their understanding 
of and subsequent interaction with the phenomenon. 

Modeling students’ meaning­making in terms of contextualization has 
proven particularly useful as it covers the idea that conceptual elements 
are not pure, isolated items that are added to already existing elements in 
a strictly linear manner. Instead, it adheres to a view on understanding as 
being in the form of a comprised system of linked, interrelated and coor­
dinated knowledge elements and bits of information (diSessa & Sherin, 
1998; Petersson & Scheja, 2008). Connected to this, the notion of context 
also emphasizes principles of guiding and framing, which makes us alert 
to how different knowledge elements make the activation of others either 
more or less likely (cf. Shelton, 2003). Content­related principles and ideas 
are brought about and assimilated on the basis of how they fit into the 
construction of a network of interpretations (Halldén, 1999), of which 
situational and social elements are a part (Janvier, 1989). Sense­making, 
in terms of rendering a phenomenon or a task intelligible and plausible, 
thus involves creating consistency and coherence in personal contexts 
of interpretations, that is, in the way the phenomenon is experienced 
by the learner (Caravita & Halldén, 1994). From this contextual view, 
conceptual understanding is not only regarded as context­dependent, in 
the sense that context is only there to support the development of con­
ceptual structures; context is considered an integral part of the students’ 
conceptual understanding. Learners develop personal contexts, of which 
conceptual principles are a part, helping them organize and overcome 
dissonances in their experiential world.
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A view on learning in which conceptual understanding is considered from 
the perspective of contextualization makes us attentive to the fact that 
learning difficulties do not have to imply conceptual limits of a specific 
subject matter. The problem may be that the students have contextual­
ized the study situation in a way that causes principles of and relation­
ships between mathematical ideas to not appear relevant or meaningful 
to them (Caravita & Halldén, 1994). Learning in such a view concerns 
coming to understand why a contextualization seems relevant to the 
learning activity at hand. We may talk about learning and understand­
ing as processes of contextual awareness (Wistedt 1993; Nilsson & Iversen, 
2008), in which students reflect on the premises and (implicit) assumptions 
of their reasoning (Marton et al., 1992). Hence, learning is viewed as the 
extension of the learner’s conceptual repertoire as well as a differentiated  
organization of contextualizations (Caravita & Halldén, 1994).

Operationalizing the construct of contextualization
The theoretical discussion above concerns the general principles of 
knowledge building. That conceptual understanding develops through 
a process of contextualization does not tell us anything about what kinds 
of contextualizations students actually develop. However, the model 
makes us aware of underlying structures in their thinking. It gives us 
reason to look at certain aspects of the design and observation of a study 
activity. The construct of contextualization supplies us with ideas about 
how certain thinking processes should be supported, in order to estab­
lish conditions for students to develop their understanding of mathe­
matics. A basic idea of contextualization is that learning mathematics 
pre­supposes that the learner develops contextualizations, networks of 
interpretations, in which a mathematical treatment appears relevant and 
meaningful. 

Based on constructivism and the construct of contextualization, a set 
of four interrelated categories seems crucial to consider in the analysis of 
learning activities. The categories do not claim to present a complete list 
of important aspects to consider in an analysis of processes of contextu­
alization, but rather have a local focus in the sense that they attend to 
learning and conditions for learning in direct connection with an activ­
ity. The categories should be considered tools that teachers and research­
ers could use for organizing our thinking about teaching and learning 
mathematics within the frame of contextualization. Given these consid­
erations, the following categories appear to be central in the design and 
analysis of mathematical learning activities.
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1. Students’ problem encounters and the mathematical potential of the 
problems. Constructivism implies that behavior is goal­directed: 
”Humans naturally seek to understand interactions” (Jonassen 
et al., 2000, p. 107)”. That learners constantly interpret and try to 
understand experiences should be used in teaching and taken into 
account when analyzing learning.  
 A problem that students encounter should be meaningful to 
them, i.e. it should be both intelligible and plausible (Posner et al., 
1982). The problem should originate from the students’ interest in 
understanding the situation they act within. Hence, to promote 
meaningful learning the students should be challenged to develop 
and solve problems they have formulated from their own needs and 
willingness to understanding their experiences. We can connect 
this line of reasoning to the devolution process of the theory of 
didactical situations (Brousseau, 1997). A devolution process aims 
at making the student responsible for his/her own learning. Having 
the student develop and engage in problems that are meaningful to 
him/her may serve as a good starting point for such a process. 
 However, it is not enough that students develop problems for 
which they are responsible. Research on students’ contextualiza­
tion has shown that they often engage in problems different from 
what the teacher intended (Halldén, 1988, Wistedt, 1993). Hence, 
this first analytical category concerns the problem context of 
the students: the problem the students develop, the mathemati­
cal content involved and the potential of the problem context for 
deepening the mathematical treatment of the situation. Hence, the 
situation should be explorative and demand investigations rather 
than simply requiring the application of a ready­made method. 

2. Issues of familiarity. The principle of assimilation stresses that 
new knowledge has to be compatible with pre­knowledge to some 
extent. A study activity should seem initially intelligible and plau­
sible to the learner (Posner et al., 1982). If students are familiar 
with a phenomenon they may have an intuitive understanding of 
it, from which they can develop subsequent explorations and con­
textualizations. However, it is also important to challenge what 
students may take for granted. A situation may be familiar in a way 
that a mathematical treatment does not become present, even if 
this would be preferable from a normative view (Wistedt, 1994). 
Situations that challenge students’ taken­for­granted conceptions 
may inspire them to contextualize the situations differently and 
perhaps more mathematically relevantly. 
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3. Variation in contextualizations. This analytical category refers to 
the following three subcategories:

a. Students’ mathematical possibilities. The current contextual 
view implies that learners’ conceptual resources are depend­
ent on the personal context within which they are operating. 
Different contextualizations support different solution strate­
gies and bring into play different sets of knowledge elements. 
Hence, to offer students the possibility to apply different 
solution strategies, thereby also providing the researcher with 
more material for exploring the repertoire of the students’ 
mathematics, one has to establish a situation that encourages 
the students to vary their ways of contextualizing a learning 
activity.

b. Connections between contextualizations. Mapping and coor­
dinating different ways of reasoning about a learning object 
is essential to conceptual development. By reflecting on and 
coordinating different ways of reasoning about a phenomenon, 
learners may avoid the constraints imposed by one idea and be 
able to utilize the opportunities for reasoning and perception 
from another (Carey & Spelke, 1994; Parnafes & diSessa, 2004).

c. Discussion and argumentation. Discussion can encourage stu­
dents to take a more reflective stance regarding their math­
ematical reasoning and can require them to consolidate their 
thinking by verbalizing their thoughts (Weber et al., 2008). If 
students interpret a learning situation in different ways they 
may be challenged to debate whether a particular strategy is 
appropriate. Provoking students to be explicit about the pre­
conditions of their reasoning may facilitate processes of con­
textual awareness (Wistedt, 1993; Pettersson & Scheja, 2008). 

4. Reflection on viability. In the present contextual view on learn­
ing, cognitive growth is viewed as a consequence of our struggle to 
understand our experiences of the world. We develop and accept 
ideas that seem functional to us, in our aspiration to establish con­
sistency and coherency in our experiences. According to contex­
tualization, a major aim of a teaching activity in mathematics is to 
have the students organize personal contexts in which mathemati­
cal elements and relations make sense, i.e. are perceived as being 
of help in organizing their experiences. Thus, the activity should 
support instances in which the students are challenged to explore 
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the implications and viability of their contextualizations. This 
could mean that the activity explicitly requires from the students 
that they perform predictions, which are based on their contextu­
alizations. The situation should then offer feedback to the stu­
dents, against which they can judge the efficiency of their thinking 
models and predictions (Thompson, 1985). Moreover, if the stu­
dents find it necessary to reconsider a certain line of reasoning, the 
activity should challenge the students anew, to make predictions 
and try out the sustainability of their thinking. Hence, the activ­
ity should be iterative to some extent. In iterations, students are 
offered the possibility to reflect on the viability of a previous line of 
reasoning and to use this experience in subsequent interaction. 

Illustration and verification of the analytical categories 
The purpose of this section is to discuss the four categories within the 
frame of a certain learning activity, based on the Game of totals (Nilsson, 
2007). The section begins with a description of the rules of the Game 
of totals and the setting of the data collection. The analytical catego­
ries are then connected to the design of the activity. The section ends 
with a presentation and analysis of a transcript from the activity of two  
students playing the game. 

The Game of totals – rules of the game and setting of the activity
The Game of totals is based on the total of two dice and aims to offer stu­
dents the opportunity to reason about probability when they are dealing 
with compound random events. The game consists of a playing board, 
two dice and a set of markers. In Nilsson (2007), the playing board was 
numbered from 1 to 12 (figure 1).
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Figure 1 . The second  setup  of Group A   
Figure 1. The second setup of group A
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Two teams compete in the game, in which they are to distribute, based 
on the total of two dice, a set of markers among the 12 numbers on the 
playing board. If one or both teams have at least one marker in the area 
marked with the sum of the dice, they are allowed to remove exactly 
one marker from this area regardless of which team rolled the dice. The 
team that first succeeds in removing all markers from the board wins 
the game.

The activity was carried out in the students’ ordinary classroom. Eight 
seventh graders (12 and 13 years old) were divided into four groups of 
two students each. The observation took about 70 minutes, of which ten 
minutes were spent on presenting the game rules.

The group discussions, which were tape­recorded and fully tran­
scribed, took place in each corner of the room. When the groups had 
finished their discussions the teams entered the playing board, placed in 
the middle of the classroom, and started playing against one of the other 
teams. In order to capture the diversity of the students’ reasoning, they 
were asked to refrain from commenting on the game while at the playing 
board. However, spontaneous reactions during play were videotaped.

The observer was present during the session, playing the role of an 
active observer. The observer introduced the game to the students and 
sometimes intervened during the small­group discussion, asking the  
students to clarify their reasoning.

Connecting the design of the activity to the four analytical categories
The activity does create opportunities for categories one, two and three 
in a rather natural way. In the small group, the students were encouraged 
to discuss and argue for winning strategies. It is a rather open activity in 
which the rules of the game constitute overall conditions for the students’ 
explorations. The students are responsible for the activity. There are no 
pre­given questions or problems; the situation requires investigations 
and problematizations from the students. At the age of 12–13 years, stu­
dents in the Swedish school system have never been formally educated on 
compound random phenomena. Hence, there is no ready­made strategy 
for them to adopt in this situation. As such, the situation is open to their 
probabilistic reasoning and variation thereof. In addition, the idea of 
using dice as random generators is based on the fact that it offers oppor­
tunities to generate interactive relations between everyday experiences 
and a certain desired mathematical aspect (Truran, 2001). 

The students were not able to base any of their decisions on how their 
opponents bet, as each team’s small­group discussion took place in a  
separate corner of the classroom. Such a setting would also facilitate 
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variation, as the groups were not able to simply imitate other groups’ 
approaches. 

With specific reference to promoting reflections on viability, the 
fourth category, and to the intended mathematics of the game, we turn 
to examine more closely the design of the four dice setups that were 
arranged for the game (Nilsson, 2007). 

Possible probabilistic structures
A system of four specifically designed dice was arranged for the game. 
The dice were designed to bring to the fore several aspects of probability 
and simultaneously give the students the opportunity to encounter small 
differences in mathematical structure between different situations. The 
overall guiding principle of the system was to challenge the students to 
base probability predictions on sample space composition. It was assumed 
that the idea of the game, depleting one’s quota of markers, would provide 
information about students’ ideas regarding the implicit probability dis­
tribution of the total of two dice. Specifically, it was assumed that the game 
would challenge the students to perform additional thinking when dis­
tributing their markers, i.e. encourage them to reproduce the probability  
distribution of the total of two dice with the number of markers. 

Empirical evidence is understood to encourage students’ probabil­
istic reasoning (Steinbring, 1991). However, we conjecture that if stu­
dents’ notions of, for instance, equiprobability (Lecoutre, 1992) are to 
be challenged, the part­part relation between the observed frequencies 
has to stand out noticeably. When rolling two ordinary numbered dice a 
number of times this might not be the case, as the probabilities between 
consecutive totals are too similar (e.g., the probability for 6 is 5⁄36, whereas 
the probability for 7 is 6⁄36, leading to a difference in probability of only 
1⁄36). Below, a design is presented in which the probabilities between con­
secutive totals differ by as much as 1⁄4. To further encourage the students 
to reflect on a certain line of reasoning by matching it to empirical evi­
dence, they were asked to start their next discussion by reflecting on 
how they would place the markers if they played the game again with 
the same pair of dice.

The dice were presented to the students in the following order:

Round 1 (yellow set) – The faces were marked with one and two dots, 
distributed as (111 222) and (111 222). The symmetry of the dice 
reduces the calculations of the 36 possible outcomes (ordered pairs) 
to the four equally probable outcomes (1,1), (1,2), (2,1) and (2,2). 
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Based on sample space composition, the probability (P) for the 
three possible totals 2, 3 and 4 appear as P(2) = P(4) = 1⁄4 and P(3) = 1⁄2.

Round 2 (red set) – Included two different dice, each with a distribu­
tion of two outcomes among the faces as (222 444) and (333 555). 
The aim of the design was to let the students encounter a com­
pound event in which an outcome, in this case the sum 7, could be 
arrived at in two distinctly different ways (2 + 5 and 3 + 4). The dice 
give four equally likely outcomes: (2,3), (2,5), (3,4) and (4,5). The 
probabilities of the totals are P(5) = P(9) = 1⁄4 and P(7) = 1⁄2.

Round 3 (blue set) – The totals possible is the same as for the yellow 
set; however, in the blue set the four sides were marked (1111 22) 
and (1111 22). The aim was to challenge the students’ notion of 
sample space and the way this influences the outcomes of a random 
phenomenon. The design gives P(2) = 4⁄6 · 4⁄6 = 16⁄36 = 4⁄9,  
P(3) = 2(4⁄6 · 2⁄6) = 16⁄36 = 4⁄9, P(4) = 2⁄6 · 2⁄6 = 4⁄36 = 1⁄9.

Round 4 (white set) – These dice were a mix of the red and the blue 
sets. The dice displayed (2222 44) and (3333 55), giving the prob­
abilities P(5) = P(7) = 4⁄9 and P(9) = 1⁄9.

In the first two rounds the students were asked to distribute 24 markers, 
and in the last two rounds they played with 36 markers. There are several 
reasons for the choice of number of markers. First, based on the results of 
earlier studies there was reason to assume that the students would adopt 
equiprobability thinking regarding the three possible totals (Lecoutre, 
1992). The choice of numbers of markers would enable them to express 
such an approach exactly: 8 respectively 12 markers distributed on each 
of the three possible totals. Second, the choice of markers would also 
enable the students to imitate the underlying sample space structure of 
the setups. Third, it was also important that the number of markers be 
large enough so the game would produce distinct differences between 
the frequencies of the totals, with the possibility to challenge the via­
bility of the students’ reasoning and provoke them to reconsider their 
approaches. 

In the third and fourth settings the underlying probability distribu­
tion corresponds. The idea behind the design of these dice was to further 
challenge the students’ different ways of modeling the underlying sample 
space when making probability estimates. If, for instance, students’ 
equiprobability responses are assimilated to the fair distribution of a 
single die (Pratt, 2000), how will they react to a warped design? 
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The case of Tom and Louise
The work of Tom (T) and Louise (L) (group A), throughout the four 
rounds of the activity, is shown below. Tom and Louise’s work is in 
many respects representative of the activity as a whole, and focusing on 
only one pair of students allows us to illustrate the analytical potential 
of the categories in greater detail. After the presentation of the four 
rounds, we turn to analyze the students’ activity by means of the four  
analytical categories. 

Round 1 – The yellow set
This is a new game situation for the students, and during the first round 
the group has difficulty making sense of it. Particularly, they struggle to 
understand how they would be able to get the higher numbers on the 
playing board with the dice they are using. Group A asks the observer 
(O) to clear things up:

T: Look if I now roll … a three, how can we come over here then [points to the 
high numbers on the board]?

O: You don’t have to put on all. It’s a little trick.
L: Okay, so we use these [dice] and the ones we’re playing against use their 

own dice?
O: They have exactly the same kind of dice as you do.
T: But if we put them [the markers] over here [six and above] you will not be 

able to get there. 
O: So you have to do smart setups and you have found out that it is not so wise 

to stake on some [referring to the numbers on the playing board].

Even with the observer’s concluding support, the group is still puzzled 
about how to distribute the markers. After a period of silence, Tom 
suggests that they distribute their markers on some numbers. Louise  
continues:

L: But you can’t distribute here [referring to the high numbers on the board], 
or can you? 

T: Why?
L: I don’t know.

The rest of the discussion is a bit unclear. We do notice, however, that the 
observer reminds the group that they are playing based on the totals of 
the two dice. Even so, the group decides to choose two numbers each with 
higher totals and to distribute six markers on each of the four numbers 
chosen (figure 2).
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Round 2 – The red set
During their first match, the group realizes almost immediately that 
they will lose; their competitors had markers only on possible outcomes. 
Based on this experience, in the second round group A develops what I 
describe as an extreme value approach (Nilsson, 2007): 

L: [Laughs] Okay, it can be nine at the most!
T: Yes, and so at minimum it can be …
L: … three plus two.
T: … two, … five!
L:  Yes.
T: Then we take … then we take from two to five then!
L: Two to five? It can be nine at the most!
T: Yes of course, five to nine I mean.

Based on the extreme value approach, the possible outcomes constitute 
all totals between the lowest and highest possible totals. Without discus­
sion, the students start to distribute their 24 markers uniformly among 
the five identified outcomes. They do not explicitly motivate why nine 
should only have four markers (figure 3).
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Round three – The blue set
After only a few throws, the group recognizes their failure in round 2. 
Louise introduces the third round:

L: [Laughs] How much can it be? Now we have to think. Think now.

The group members now recognize the importance of correctly identify­
ing possible and impossible events for the total. Tom inspects each single 
die and discovers that there are only one and two dots on the sides. 

T: It can go from one to four, cause 2 + 2 is 4, 1 + 2 is 3 and 1 + 1 is 2. From two 
to four.

L: Yes … okay, then we should stake on?
T: Just check that there is no empty square.

Their attention is completely focused on controlling the sample space. 
The observer sees that the group’s strategy again tends to be equiproba­
bilistic and therefore asks the students if they can see any differences 
between these dice and the yellow ones.

T: Wait, there is a little difference among the twos.
L: There are few more twos on that one [referring to the yellow die].
O: Does that matter? 
T: Yes, we should probably put more on two and not so many on four. Look, 

there are a lot of ones and not so many twos. 

Although there appears to be no explicit systematization in their strat­
egy, this change in perception stimulates the group away from distrib­
uting the markers uniformly among the possible outcomes. When the 
students notice that there are more sides displaying one dot than sides 
displaying two dots, they distribute the markers for the blue setting with 
23 markers on two, 8 markers on three and 5 markers on four.

Round 4 – The white set
The group begins this round by restricting possible outcomes by means 
of the extremes. They determine that the highest outcome is nine and 
the lowest is five. They then turn to the distribution on the single die and 
its implications for the distribution of markers.

L: Okay, then look here. One three, two threes … there are four threes and 
two fives [Holding up one of the dice].

T: Okay, here are four twos … wait … 
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L: And two fours.
T: We have to have a lot of fives.
L: Yes … no, not a lot of fives.
T: Yes, but look, I have two here, I have four twos here … 
L: Yes, that’s right.
T: … and you have four threes.

Louise suggests that they should place a high number of markers on five. 
She then returns to the sample space for the resulting totals. In the dis­
cussion, Louise holds the die with four sides marked one and two sides 
marked three and Tom the die with four sides marked two and two sides 
marked four.

L: It can’t be six, for example. It can’t be six!
T: I’ll draw a line over that then. Are you sure of that? Do I not have a four?
L: You don’t have a three and not a one?
T: I have a two … it can be …
L: It can be seven, so it can.
T: Wait, you have a three and I have a … no …
L: It can’t be eight!
T: Yes. 
L: No, it can’t be eight.
T: But it can’t be seven either!
L: Yes, three plus four.
T: You had that, aha.

When adding up the three possible outcomes, Tom concludes that the 
totals are the same as for the red set of dice. He proceeds:

T: And, the most [markers] here then, on five. How many on five?
L: It is 36 divided by … 
T: Maybe, twen …, sevente …, eighteen maybe. Eighteen on five!

Louise fills in eighteen markers on five on the playing board. The next 
outcome to be discussed is seven: 

T: If we put ten on seven, then we are up to 28. 
L: Hmm, but how big … ?
T: I have four. Wait, how many threes do you have?
L: A lot, four!
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T: I have two fours on this one.
L: It will be … the most it can be … one, two three … 

Louise does not develop her last line of reasoning any further. However, 
the discussion results in the group thinking they should put more markers 
on five, resulting in a setup of 22 markers on five, eight markers on seven 
and six markers on nine.

Category 1 – Students’ problem encounters and the mathematical 

potential of the problems

This episode reflects the natural curiosity and willingness to understand 
their experiences that children develop when captured by an activity. In 
the students’ attempts to develop winning strategies, two overall problem 
contexts emerge throughout the four rounds. 

During the first two setups, most of the students’ activities were under­
standable if we ascribed to the students the efforts of trying to discern 
impossible totals from possible ones (cf. Fischbein, Nello & Marino, 1991). 
To accomplish this, several students adopted a strategy that considered 
the extremes of possible totals. In the identification of the lowest and 
highest possible totals, all possible totals were viewed as being constituted 
by these extremes and the numbers between them. 

In the two first rounds, all four groups come up with setups reflect­
ing equiprobability thinking (Lecoutre, 1992). To understand this, we 
have to take into account that the students’ focus is not on the chance 
of the totals, but on possible totals. The students bring to the fore, and 
thus base their judgments on, single outcomes of resulting totals. In the 
problem at hand, the students have not made different representations 
of resulting totals available. Of course, I had reason to believe that they 
would have difficulties taking into account the order of the dice, i.e. the 
difference between the outcomes (1,2) and (2,1) in the first setting (Fis­
chbein et al. 1991). But, still focusing only on possible totals, none of the 
four groups reflect on the distinct different ways to arrive at seven in the 
second round, i.e. 5 + 2 and 3 + 4. Consequently, having the distribution 
of markers allocated to a context in which each outcome is represented 
only once, it is possible to understand why the students consider each 
total to be equally likely to appear.

For Tom and Louise, and one other group, the problem of identifying 
possible totals is still the main subject of investigation at the beginning 
of round 3. They again come to speak in terms of equiprobability. The 
observer makes the choice to intervene in the situation as he notices that 
these two groups are not reflecting explicitly on the design of the third 
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pair of dice on their own. From this point on, all groups are implicitly 
or explicitly aware of how the single dice in the third and the fourth 
rounds differ from the two previous settings. What role does this kind of  
information play in the students’ reasoning? 

In the two last rounds, the students notice that they can construct 
the totals in a different number of ways. Thus, they start to consider the 
differences in rate at which the piles of markers on possible outcomes 
should vanish. The students perform some kind of matching procedure 
between the distribution of individual dice and the number of represen­
tations of the totals, which can be spoken of in terms of a number model 
(Nilsson, 2007). This strategy reflects a kind of additive thinking; the 
totals are evaluated against the amounts of numbers of the single dice, 
taken together. Taking a concrete example: Students in round 3 perceive 
that they should be able to get more of the sum two than of the sum four 
since there are considerably more ones than twos on the single dice. This 
model could be viewed as a generalization of the fairness resource (Pratt, 
2000). By this resource, the chances of the totals are considered to be 
equal since the outcomes of the single dice are equally probable. However, 
when the features of the dice are made available to the students, number 
model thinking shows that the students, rather spontaneously, find it 
necessary to consider and reflect on the number of favorable outcomes 
when reasoning about the chances of compound events.

Category 2 – Issues of familiarity
In the beginning, we note that the students are struggling to understand 
the game. They are particularly confused about the relationship between 
the dice they are currently using and the numbers on the playing board. 
What it actually is that is troublesome for the students is not easy to 
put one’s finger on. It may be an issue of a low as well as high degree of 
familiarity. The game as such is not familiar to the students; they have 
not played it before, and are not completely clear about its rules. 

However, we may also find arguments that it is a relatively high degree 
of familiarity that causes the students to act as they do in the first two 
rounds. That learning should depart from a student’s experience and 
pre­knowledge is crucial in the present view on learning. Hence, a high 
degree of familiarity with and pre­understanding of an activity are 
desired, to develop and establish consistency in a context of interpre­
tations. However, the problem may be that an activity’s features entice 
students to consider factors irrelevant to the intended mathematics (Car­
avita & Halldén, 1994, Wistedt, 1994). In the current case, a high degree 
of familiarity refers to how the students perceive the game activity and 
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allocate it to a context, which centers on their everyday experiences with 
dice games. In the first two rounds, there is no discussion about chance. 
The focus is instead on resulting totals. In everyday games, however, one 
is rarely expected to make fine­grained analyses of the probability of dif­
ferent outcomes. Players often want to know what numbers of the dice 
should be thrown (or should not be thrown) to reach (or avoid) a certain 
area on a playing board. Hence, the focus in many everyday game situ­
ations is on the possible totals, articulated, for instance, in terms of ”I’d 
better not roll a …” (recall, for instance, the game of Monopoly). Keeping 
to the idea that the activity centers on students’ familiarity with everyday 
dice games, we are also in a good position to understand why the group 
adopts the extreme value approach. With ordinary dice, gaps among the 
totals never appear. Hence, the students may not have had experience 
with dice situations in which there are gaps in the set of the totals and, 
consequently, they interpret the set of possible totals of the present game 
to be without gaps as well.

Category 3a – Variations and students’ mathematical possibilities
Tom and Louise’s activity explicitly shows the crucial importance of 
taking students’ contextualizations of a phenomenon seriously, in order 
to do justice to and make sense of their understanding. For instance, as 
the students place markers on impossible events, we could claim that 
Swedish students, 12 –13 years old, are not able to calculate 1 + 2, 3 + 4 
and so on. However, taking into account the students’ way of contextu­
alizing the game we find that this is not the case. When Tom and Louise 
vary their way of contextualizing the game in round 2, we find evidence 
that the students not only are able to perform these simple calculations, 
but also show that they understand the difference between possible and 
impossible events. 

However, regarding possible and impossible events, we again notice 
how a contextualization seems to hold the students back. By means of 
the extreme value approach, they place markers on impossible events 
in round 2 as well. The extreme value approach establishes no motives 
for them to take a closer look at the dice. However, when the group 
becomes aware of the strategy’s shortcomings and makes the features of 
each single die available for consideration, the question of what should 
count as possible outcomes is no longer an issue.

We may adopt a similar argument regarding the students’ ability to 
evaluate differences in chance of the totals. When they become aware 
of the distributions of the single dice, they show the ability to evaluate 
difference in chance in terms of favorable outcomes. 
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Category 3b – Variations and connections between contextualizations
A leading principle in the design of this activity was to facilitate possi­
bilities for students to develop and connect between theoretical/combi­
natorial and frequency reasoning about probability. During the activity, 
however, we notice that frequency information is given low priority. For 
instance, none of the teams carries out samples within the small group, to 
be used for elaborating on what regulates the totals in the long run. Time 
should not be considered crucial in the absence of samples. There was 
naturally not enough time for 1000 throws; however, there was enough 
time to conduct samples up to at least 50 throws.

The absence of samples may be explained by how the students per­
ceive norms and discursive roles of the activity; do they perceive the situ­
ation as permitting them to try the dice before the game or would that 
be cheating? 

Frequency information is mainly in play when competing against 
another team and, thereby, in relation to the evaluation of a thinking 
route. I will return to this in the next section. 

With reference to the fairness resource (Pratt, 2000) and the number 
model (Nilsson, 2007), studies on people’s reasoning about the total of 
two dice indicate that the physical shape of ordinary dice more or less 
orients students to take into account only the numbers displayed on the 
individual dice. Hence, the case may be that the regularities (familia­
rity) of the dice in one way or another constrain the students’ reasoning. 
Hence, a natural question would be: How would the students react if they 
played the game with asymmetrically shaped dice?

Category 3c – Variations and discussion and argumentation 
The students discuss matters during the game. The question, however, is 
to what extent their discussions promote learning with understanding 
in terms of enhancing their contextual awareness. 

Issues of conflicting views do not truly appear in the students’ discus­
sions. We find no instances in which Louise advocates a view different 
from Tom’s, or the other way around. The members of the group seem 
to agree on the overall principles of how the game should be approached. 
When the students seem to be at odds, this mostly concerns the  
calibration of number of markers on the outcomes. 

However, even if the students do not display great differences in 
contextualizations, we do find instances requiring clarification of and  
argumentation regarding a thinking route. 
The first occasion occurs in the beginning of the activity when the observer 
is asked to approach group A’s table. Note, however, that it is Tom who asks 
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the observer for clarification. In an attempt to keep from giving too much 
information, the observer never puts the students in a position where they 
are asked to explain how they think. This might support the students 
in determining on their own what should count as possible outcomes in 
the first two rounds. Actually, Louise does ask Tom at the end of round 
1 why he wants to place markers on high numbers. However, Tom avoids 
answering her question, probably because he does not know the answer, 
by posing a counter­question. Louise’s question is not based on a strong 
personal idea. This is probably why she drops it instead of demanding 
that Tom clarify his approach. A complementing interpretation of what 
Louise does with Tom’s reaction is that she perceives him as not having 
a good explanation.

In rounds 3 and 4, several occasions of implicitly or explicitly formu­
lated questions appear. However, it is not that the students are disagree­
ing or adopting different views about underlying principles of the game; 
it rather concerns making sure that they are working with information 
appropriate to their thinking models. Taking a concrete example: In the 
third round, Toms asks ”Are you sure of that?”, when Louise claims that 
they are not able to arrive at the sum of six. At this moment the students 
know what should count as a possible outcome in the game. It is not what 
the question is about, but rather a kind of control. They are not making 
any premature conclusions. Nevertheless, we do get a glimpse of why a 
learning situation should promote questioning and argumentation: Tom’s 
question leads Louise to externalize and make her thoughts explicit, and 
rather immediately he is convinced.

Category 4 – Instances of reflection on viability 
The structure of the game activity requires the students to explicitly for­
mulate predictions about winning the game, through the distribution of 
markers. In playing against another team, the students are offered oppor­
tunities to reflect on such predictions by means of empirical evidence. In 
the play, the students are not only informed about how well their own 
model works, but are also exposed to how well the setup of another team 
works. Such experiences and feedback may play an important role for 
students in changing and developing an understanding of a phenomenon 
(Thompson, 1985). 

The empirical evidence, which appears during the first two matches, 
immediately challenges the viability of Tom and Louise’s first two setups. 
After only a few throws, they understand that they will lose. Based on 
these experiences, they reconsider their approaches for the next game. 
However, what the game interaction did challenge was Tom and Louise’s 
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understanding of possible and impossible outcomes with reference to the 
resulting totals, but the game did not challenge the viability of the stu­
dents’ equiprobabilistic approaches, applied in the two first rounds. From 
the outcomes of these rounds, there appears to be no reason for the stu­
dents to question their equiprobabilistic approaches. If they had played 
the game with uniformly numbered single dice again, they would prob­
ably distribute their markers uniformly again. As said above, the reason 
the students turn away from equiprobability thinking is the way they 
interpret the effects of the askew distribution on the single dice. 

To summarize, the number model indicates that the students are able 
to understand the role of the number of favorable representations in 
the probability of events. However, when the single dice are distributed 
uniformly, the totals of the dice are understood to be of a uniform kind 
as well. The current study verifies that such a belief is rather strong. 
Hence, our analysis of viability motivates why we should pay serious 
attention to increasing the power of empirical evidence in the game, in 
order to challenge equiprobability thinking and to encourage students to 
reflect on the structure of the underlying sample space. Accomplishing 
more distinct frequencies should therefore be of decisive importance in  
re­designing the game. 

Concluding discussion
This article adds to a larger project with the purpose of theoretically 
deriving and empirically testing analytical tools, for organizing our 
thinking about teaching and learning mathematics. This enterprise is 
fueled by voices arguing for the need to bridge the gap between research 
and practice (Groth & Bergner, 2007). The current project particularly 
strives to specify and operationalize global theoretical principles into 
more useful and concrete lenses for investigating mathematical learning 
activities (Burkhardt & Schoenfeld, 2003; Niss, 2007). 

Applying the analytical construct of contextualization in learning 
mathematics means that we reject learning as a linear process. New 
mathe matical principles are not isolated elements that are simply added 
to already existing elements in a strictly hierarchical order. Conceptual 
ideas are activated and prioritized on the basis of how well they fit into 
a context of interpretations (Halldén, 1999). The purpose of the present 
article was to operationalize this constructivist contextual view on learn­
ing into a set of analytical lenses for organizing thinking about teaching 
and learning mathematics. 

Four analytical categories were outlined and tested within the frame 
of the design and analysis of a classroom compatible learning activity. 
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How the categories help in organizing and motivating the design of the 
Game of totals (Nilsson, 2007), with its four specifically designed pairs of 
dice, is described. The categories are then applied to the analysis of two 
students interacting with the game. 

In line with the network metaphor of contextualization, we note how 
Tom and Louise’s way of associating the game to everyday dice game 
activities appears crucial to the problems they encounter and the strate­
gies they develop. Such an observation points to the reflexive depend­
ence of the categories. However, there appears to be no reason to define a 
hierarchical order between the categories in advance. For instance, later 
in the activity we notice how other aspects take the role of leading the 
students’ reasoning. 

The outcomes of the current article provide reasons for future efforts 
to elaborate and adjust the categories. A particular issue in this work 
would be to reflect on the character and meaning of category two, issues 
of familiarity. At present, the focus of this category is rather general. As 
associations and recognition may appear at different levels and in relation 
to different knowledge elements, the explanatory power of the category 
would probably increase if it were divided into a set of sub­categories. A 
good starting point would probably be to consider the division between 
conceptual, situational and cultural frames of references, used in previous 
analyses of students’ processes of contextualization (e.g., Halldén, 1999; 
Scheja, 2002; Wistedt & Brattström, 2005; Ryve, 2006; Pettersson, 2007; 
Nilsson, 2007; Iversen & Nilsson, 2007). The need to refine the lenses 
through which we investigate mathematical teaching and learning is also 
in line with and supports Ryve’s (2008) suggestion regarding the need 
to develop and extend the range of contextual resources for the proper 
analysis of mathematical activity. 

At game level, the analysis also supports reasons to reflect on issues 
of familiarity and, particularly, whether the game should be more ’unfa­
miliar’ to the students. Making the game more unfamiliar, everyday­
oriented interpretations may be constrained, stimulating reflections on 
the specifics of the actual situation. The outcomes of the analysis also 
imply the need to further reflect on how the activity could better encour­
age variations in reasoning and generate challenging frequencies against 
which predictions could be tested and thinking models objected to for 
reconsideration and variation. 

Given these considerations, the present article encourages future 
research to develop and refine the current set of operative categories for 
organizing our thinking on teaching and learning mathematics. There is 
a need for elaborated examples, in which the explanatory power of con­
textualization and its analytical categories are investigated and developed 
through its confrontation with a teaching episode.
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Sammanfattning
Denna artikel elaborerar kontextualiseringsmodellen, som är en kon­
struktivistisk kontextuell modell för lärande. Principer avseende kon­
struktivism och kontextualisering operationaliseras i fyra analytiska 
kategorier, som lärare och forskare kan använda för att organisera under­
visning och lärande i matematik. Kategorierna är diskuterade och ver­
ifierade genom utformningen och analysen av en klassrumsliknande  
aktivitet, som syftar till att stimulera resonemang om sannolikhet. 

Förslag på hur operationaliseringen kan utvecklas diskuteras och 
artikeln inbjuder, i anslutning till sådana förslag, till framtida insatser, 
där kontextualisering och de analytiska kategoriernas förklaringsvärde 
ytterligare utforskas.


