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Defining moments in the 
graphing calculator solution 

of a cubic function task

JILL BROWN AND GLORIA STILLMAN

A case study investigated cognitive, mathematical, and technological processes  
undertaken by senior secondary students as they searched for a complete graph of 
a difficult cubic function using a graphing calculator. Intensive qualitative macro- 
analysis identified several defining moments in the solution process. Those related to 
use of scale marks and identification of key function features are presented. Students’  
understanding of scale marks varied and this impacted on the efficiency and elegance 
of their solution. A range of calculator features was used in identifying key feature  
coordinates. These were not always used successfully or with an understanding of 
the mathematics underpinning their operation.

Understanding what constitutes a complete graph of a function, that is, 
a graph showing ”all the relevant behaviour” (Demana & Waits, 1990, 
p. 216) has always been important for senior secondary students (Lein-
hardt, Zaslavsky & Stein, 1990; van der Kooij, 2001). The examiner’s 
report for the first pure mathematics paper in the University of Melbourne 
matriculation examination for 1948, for example, lamented that ”the 
graphing of functions was rarely done correctly” (Teese, 2000, p. 123). 
The introduction of graphing calculators has had the potential to impact 
on this understanding according to several authors (e.g., van der Kooij, 
2001; Leinhardt et al., 1990). The students in the study described here 
were undertaking a course of study (VBOS, 1999) where graphing calcu-
lator use was expected and use of CAS was not permited in examinations. 
Some researchers suggest the use of graphing calculators adds to student  
difficulties as they tend to accept the view presented by the calculator 
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(Cavanagh & Mitchelmore, 2000; Steele, 1995), need to interpret the 
graphing output (Ruthven, 1995), need to recognise that only a portion 
of the graph is displayed in the viewing window (Goldenberg, 1987; Ruth-
ven, 1995; Steele, 1995), and, often for the first time, experience graphs 
with different scaling on the axes (Goldenberg, 1987; van der Kooij, 
2001). According to Mitchelmore and Cavanagh (2000), these difficul-
ties are related to shortcomings in the curriculum that exist in both a 
graphing calculator and non-graphing calculator environment. Van der 
Kooij (2001) suggests such difficulties are simply more obvious in a graph-
ing calculator environment which highlights different areas of student 
misunderstanding due to its focus and the need to understand the differ-
ences between local aspects and the global nature of a function. 

A graphing calculator environment implies more than having access 
to the technology. To improve understanding, teaching must change  
simultaneously to capitalise on alternate ways of doing things and access 
to new opportunities such as ”allowing manipulation of the viewing 
window”, ”provid[ing] the power of zooming” (Dick, 1996, pp. 32, 44), 
”visual[ising] the effects of scale changes”, understanding the independ-
ence of the scale of the two axes and the effects of scale marks (Golden-
berg et al., 1988, p. 36). The study described in this paper responds to 
the plea of Arnold (1998) and others (e.g., Zbeik, 2003) that ”if we are to 
learn to use these tools effectively, it becomes vitally important that we 
study the ways in which individuals make use of them within mathemati-
cal learning situations” (Arnold, p. 174). Whilst the recent publication 
edited by Guin, Ruthven, and Trouche (2005) has added considerably to 
our knowledge of the use of CAS in traditional curriculum, there is still 
much to be known about how students actually proceed with challeng-
ing tasks such as those in this paper, or in ”analyzing quantitative condi-
tions in realistic problem contexts” (Fey, 2006, p. 352) in a technological  
environment.

Although now some secondary classes are using computer algebra sys-
tems (CAS), Zbiek (2003) indicates that ”graphical representations seem 
to abound in CAS-using classrooms” (p. 208) and ”many studies of the use 
of CAS depend highly on the graphing component of the tool” (p. 210). 
Currently many more students have access to graphing calculators 
than CAS calculators. Hence, the graphing calculator continues to be a  
technology needing further research. 

Functions are ”multi-faceted” (Lloyd & Wilson, 1998, p. 250) and 
cannot be fully understood within a single representation environ-
ment. Being able to make links between representations is crucial to the  
underlying concepts of functions (Even, 1998). Graphing technology use 
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provides students with the opportunities to make these links although 
they do not necessarily do so. 

The easy creation of graphs in a technological environment allows a 
large number to be observed and provides easy access to myriad function 
types. In addition, observing multiple views of a single function can, but 
does not necessarily, add to the development of a broad ”concept image” 
(Vinner & Dreyfus, 1989, p. 356) of the prototypical graphical represen-
tation of a particular function type. For example, the graphical represen-
tation of a quadratic function has two possible ”shapes” depending on the 
type of stationary point. However, when using graphing technology only 
a portion of the graph can be seen, and hence, a quadratic function can 
also appear linear (with positive, negative, or zero gradient) if the view-
ing window of the technological tool is focused ”closely” on a part of the 
graph. An understanding of the effect of changes of scale, including where 
each axis has a different scale (Zaslavsky, Sela & Leron, 2002), is essen-
tial for successful graphing calculator use and also helps develop these 
concept images. As Vinner and Dreyfus state, a student’s concept image 
is ”the set of all the mental pictures associated in the student’s mind with 
the concept name, together with all the properties characterizing them” 
(1989, p. 356). The use of technology is one way to broaden students’ ex-
periences with the function concept and some of the concept image held 
by students working in a technological environment will have formed as 
a result of being taught in such an environment and being active users of 
the technology.

With the mandating of graphing calculator use in schools and assumed 
access to them in high stakes examinations, expertise in using a graphing 
calculator to find a global view of a function is essential for senior second-
ary mathematics students (Anderson, Bloom, Mueller & Pedler, 1999). 
The study forming the basis of this paper investigated approaches stu-
dent pairs undertook in finding a complete graph of a cubic function in 
a non-routine situation. Student understanding of function is receiving  
international attention in research studies according to Zbiek (2003). 
The findings of the present study add to this literature.

Several research questions were identified for the study. Those to be 
addressed here are: 

1 What understandings do students have of the effect of the scale 
marks on the graphical representation of a function?

2 What use do students make of their concept images and particular 
features of the graphing calculator to identify key features of a 
function?
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The study
An instrumental case study (Stake, 1995, p. 171) was used as it was con-
sidered most appropriate for achieving the goals of the study. Rather 
than the case itself being of primary interest, in an instrumental case 
study ”the case ... serves to help us understand the phenomena or rela-
tionships within it” (Stake, p. 171), as is the situation in this study. This 
case study describes the results of practice in the classroom of the first 
author and a colleague as evidenced by a snapshot of student responses 
to a problem task. 

Merriam (2002, p. 179) states that the case can be a person, process, or 
community. The case here is two classes of students studying functions 
in a graphing calculator learning environment as part of their study of 
mathematics in their final two years at a particular Australian secondary 
school. This case was selected ”because it [exhibited] characteristics of 
interest to the researcher[s]” (Merriam, 2002, p. 179). Within this case 
student pairs were purposively selected (Merriam, 2002, p. 20). 

Given the limited number of students that could be studied in depth, 
pairs were selected so the phenomena of interest were ”transparently ob-
servable” (Huberman & Miles, 2002, p. 13) so as to maximise what could 
be learned. It must be acknowledged, however, that the way in which the 
students were prepared to participate in the study and expound their 
ideas could be a result of the situational context (Wedege, 1999) estab-
lished by the teachers in the classroom where students’ voices were ex-
pected to be heard. The two mathematics teachers of the students worked 
closely together using a variety of methods emphasising understanding 
through exploration, discussion, and collaboration. Their students tended 
to be accomplished users of graphing calculators and were expected to 
use them when directed or at their own instigation.

Participants
Five pairs of students, at an inner city co-educational state secondary 
college, were selected from two mixed ability classes. A pretest was ad-
ministered to both classes to ensure the students selected had the nec-
essary skills and conceptual knowledge to complete the task. In addi-
tion the results of year 11 students on a previous supervised assessment 
task dealing with the graphing of a cubic function were taken into con-
sideration. Thus, the pairs selected comprised students who were confi-
dent in mathematics, worked together in class, and could be expected to 
solve the problem and articulate their ideas as they proceeded with the 
task. The experimental setting thus paralleled the classroom situation. 
Two pairs (1 and 2) were from a year 12 class and three pairs (3, 4, and 
5) from a year 11 class. 
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The problem task
The task was to graph completely the function,

 

y = x 3 – 19x 2 – 1992x – 92 1. 

Binder (1995) used this particular function to investigate a graphical ap-
proach to solving an algebraic problem. The task was selected on the basis 
that no part of the function is visible in the standard viewing window, 
being -10 ≤ x ≤ 10, -10 ≤ y ≤ 10, on a Texas instruments TI-83 graph-
ing calculator. All students in the study would understand the request 
to ”graph completely” to mean to produce a by-hand sketch of the func-
tion showing the shape of the function, indicating the location of all key 
features (axial intercepts and local minima/maxima or turning points) 
and identify these. They would interpret the task as to best represent 
the cubic function and the particular function would impact on whether 
exact or approximate ordinates were identified. For this particular func-
tion, it was expected that, and only possible for the students to, provide 
approximate x intercepts. Numerical and graphical analysis provide us 
with quantitative information and give a readily accessible approach to 
represent the function and its key features and the opportunity for stu-
dents to display what they know about the graphical representation of a 
cubic function and how it might be ”found” using technology. The cur-
rent concept images of the graphical representation of a cubic function, 
held by the students, were expected to impact on the task solution, how-
ever, these concept images could be modified through their engagement 
with the task.

Administration of the task
Each task solving session was audiotaped with students asked to articu-
late their ideas. Students used a graphing calculator, initially set to the 
standard window, attached to a view screen and overhead projector. 
The calculator screen output was videotaped via the overhead projector  
accurately recording the students’ actions. Observational notes were also 
taken. The written task and paper to record working in order to complete 
a hand-sketched solution were provided.

Case record
Raw data in the form of tape recordings and videotapes of the graph-
ing calculator screen output ensured a permanent record of student  
interactions with the calculator was made. Protocols of each pair’s efforts 
were produced by matching the combined recordings, student scripts and  
observational notes. The protocols collectively formed the case record 
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which was used to determine student behaviour. The novel method 
of recording all calculator screens allowed a more complete record to 
be assembled than mere videotaping of working pairs would have. The 
screens capture more of the students’ immediate thought processes than 
the words uttered and recorded. Thus, not only might graphing calcu-
lators increase learning opportunities for students, but also they pro-
vide opportunity for teachers and researchers to witness more closely the  
understandings students have as inferred by the results of their actions  
represented by the graphing calculator screens.

The analysis
The protocols were coded and divided into ”macroscopic chunks”  
(Schoenfeld, 1992, p. 189) that were classified according to particular be-
haviours of interest associated with working with functions in a graphing 
calculator environment. These behaviours are referred to as episodes and 
”represent periods of time during which the problem solvers are engaged 
in a particular activity” (p. 189). In addition, time-line diagrams, detail-
ing the length and type of episode undertaken, and the representations 
being used at any given point in time, were constructed. These were an 
adaptation by the researchers of Schoenfeld’s time-line diagrams (p. 190) 
used to study problem solving.

Microscopic analysis
The analysis in this study goes beyond the macroscopic analysis of  
Schoenfeld and was used as a way of looking for defining moments in the 
solution process that were then explored using microscopic analysis to 
search for explanations. The use of graphing calculator screen data to sup-
plement and enhance the dialogue data in the study allowed a more finely 
grained classification than was possible by Schoenfeld’s (1992) scheme. 
Protocols were coded using codes devised by the first author that classify 
actions according to distinct behaviours specific to solving the particu-
lar problem task used. The codes referred to the following categories of 
activities: reading, organising or planning, selecting a viewing window, 
searching for or identifying a local feature, searching for a global view, 
adjusting scale marks, evaluating, and recording. To ensure reliability 
of coding initial coding undertaken by the first author was redone until 
code-recode consistencies were satisfactory, the second author coded a 
sample with coder-intercoder reliability calculated to be 86  % with dis-
crepancies not appearing to be systematic, and a sample of the protocols 
was recoded six months later with 97 % agreement.
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Findings
All pairs eventually successfully produced a sketch of a complete graph 
of the function; however, the routes to this differed in directness and du-
ration with Pairs 1, 2, and 5 undertaking initial actions that allowed the 
solution process to become potentially routine (Brown, 2002). No matter 
how circuitous the route undertaken, each pair persisted until a com-
plete view of the graph was produced. This was contrary to implications 
of research by others suggesting students would stop after finding any 
graphical representation of the function in the viewing window (Mitch-
elmore & Cavanagh, 2000; Steele, 1995). All pairs found a global view 
of the function and identified most, or all, of the key features, albeit to 
varying degrees of accuracy. 

Defining moments
After close analysis of episode and time-line diagrams and the case 
record where this facilitated macroscopic analysis, several defining  
moments became apparent in the student solutions. The term, defining 
moments, refers to important or momentous events rather than a partic-
ular instant in time. A defining moment was a circumstance where some 
action, cognitive or physical, or a decision (i.e., a metacognitive action), 
or a series of these, had the potential to facilitate or impede the solution 
process. Defining moments, therefore, occurred at critical points in the 
solution process. It was the responses of the pairs to particular circum-
stances that determined whether they became defining moments for a 
particular pair’s solution. Each circumstance was described in terms of 
the situation, condition and response action (figure 1). For every circum-
stance the question was: What situation gave rise to this condition which, 
in turn, led to this response?

Figure 1. Identification of a defining moment

Situation Condition Response action

What was the 
situation that 
led to this 
condition?

What condition 
leads to this 
action?

Defining action: determines 
whether or not the circum-
stance becomes a defining 
moment in a solution.
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A situation was the context in which students found themselves which 
could be a specific stage in the solution process or a general situation. The 
ongoing search for a global view of the function, for example, was a situation 
some pairs found themselves in for a substantial amount of time through-
out their solution attempt; whereas, the situation, global view found, oc-
curred at particular points in the solution process. One situation could 
lead to a number of conditions. A condition was the particular state that 
one or more pairs was observed experiencing or considering such as the 
sighting of an apparent no view of the function. Differing situations were 
observed in conjunction with the same condition. In turn, several condi-
tions gave rise to the same response action. The same combination of sit-
uation and condition could have occurred in conjunction with differing 
response actions from different pairs. 

The presence of defining moments and students’ responses to these 
impacted on the directness and duration of the solution process and  
accuracy of key feature identification. Defining moments identified during 
macroscopic analysis related to the following:

 - How students responded to particular views of the function, 
including apparent no view, apparent vertical lines, and other  
unusual or unexpected views (Brown, 2003).

 - Use of the numerical representation.

 - Use of scale marks.

 - Use of opportunistic planning.

 - Engagement in discussion.

 - Identification of key function features.

Defining moments to be discussed in this paper are those related to  
student use of scale marks and identification of key function features.

Defining moment: use of scale marks
In addition to setting the viewing domain and range, the WINDOW set-
tings of the TI-83 also include options to adjust the scale marks on either 
axis. The first set of defining moments to be discussed (see figure 2) is re-
lated to the response action use of scale marks. This occurred in three sit-
uations, namely, the need to produce a sketch of the function, the need to 
determine the coordinates of the key features of the function, and the need 
to find a global view of the function. The four conditions in this set of  
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defining moments were facilitation of the solution sketch, the need to elimi-
nate ”ugly axes”, the need to obtain estimates of the key features of the func-
tion in order to check values to be determined by other more accurate 
methods, and a lack of a global view of the function.

Use of scale marks varied in students’ intent, consequences, and effec-
tiveness. One pair demonstrated poor understanding of the effect of scale 
marks as they adjusted them in an attempt to alter the portion of the graph 
being viewed. Two pairs, in contrast, made effective use of scale marks as 
they adjusted these to improve their view of the graph. 

Interactions between view and scale marks
Judicious use of scale marks facilitated students’ identification of key func-
tion features. Of the three pairs for whom the solution process became 
potentially routine, only Pair 1, used scale marks to effectively produce 
a global view that readily facilitated key feature identification. On find-
ing a global view of the function, Linh and Ahmed had no way of esti-
mating coordinates of any key features given the default scale settings 
of one; so, immediately prior to identification of the key features, they 
edited the scale marks.

Ahmed: We still have to fix up the scale.
 [They edit the scale marks on the x axis from 1 to 10.]
Linh: 100 [Talking about the y scale marks.]
Ahmed: 5000 because of the large y values, and x scale of 10.

Subsequently they used the calculator to identify the x intercepts  
accurate to 2 decimal places using the scale marks to first make guiding  
estimations.

Ahmed: Another x intercept would be at around [negative] 30.
Linh: What’s our x scale?

Figure 2. The circumstances related to the use of scale marks

Situation:
Need to produce a 
scetch.
Need to find the key 
features.
Need to find a global 
view of thew function.

Condition:
Facilitation of solution scetch.
Need to eliminate "ugly axes".
Need to find a global view of thew 
function
Need to obtain estimates of key  
features.
Lack of global view of the function.

Response action:
Use of scale marks.
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Ahmed: 10.
Linh: 60, ... 50, ... 40, 
Ahmed 
& Linh: (simultaneously) It’s x = -36.10375, the second x intercept.
Ahmed:  The last one will be around ...
Linh:  50 something.
Ahmed: 50. 
Ahmed 
& Linh: (simultaneously) Between 50 and 60.
 [Using CALCULATE zero, they enter these scale marks as the 

bounds of the interval containing the root of the function. But 
then their judicious use of scale marks allows them to make a 
quite reasonable estimate of the approximate coordinates of the 
x intercept.]

Ahmed: Guess, 56 or 55?
Linh: Yes.
Ahmed: x intercept at 55.14.

After identifying all the key features, this pair subsequently used the scale 
marks to support their by-hand sketching. This informed adjustment of 
scale marks resulted in a more effective graphical representation of the 
function (figure 3) as it allowed estimation of approximate coordinates of 
key features and facilitated identification of key features and production  
of a written solution (figure 4).

Both pairs for whom the solution process did not become routine altered 
the scale marks, with Pair 3 simply setting them to zero and effectively 
turning them off. After eighteen minutes engaged with the task, and 
having finally found a global view of the function, with thick axes, Pete 
commented as he edited the scale marks to zero for both axes (figure 5), 
”No, oh hang on. Wait this is annoying me. Zero. That is better.” Whilst 
this usually does nothing to facilitate the solution process, it eliminates 
the ”thick axes” that result from the compaction of scale marks in the 
viewing window when the domain and range have large magnitudes as 

Figure 3. Use of scale marks in response to condition, facilitation of solution sketch
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in this task. It appeared that Pete was mindful that the thick axes may 
obscure some key information given the very large viewing range. With 
the thick axes eliminated, Pete believed he would be able to perceive the 
axial intercepts more clearly, and this would have been the case if none 
of the x intercepts were very small relative to the others.

At this point Pete and Kate were debating if there was another turning 
point in addition to the two that were clearly visible on their screen. Kate 
suggested that they resolve this analytically using ”common factors” to de-
termine how many times the function crossed the x axis. However, Pete 
realised that what he was seeing on the screen meshed with his concept 
image as being one possible graphical representation of a cubic function. 
”It’s got three x intercepts, that’s all it can have. Forget about turning  

Figure 4. Solution script of Linh and Ahmed (Pair 1)

Figure 5. Use of scale marks in response to condition, "need to eliminate 'ugly axes'”
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points, it’s got the three x intercepts – one, two, three, a cubic can only 
have three!” Pete had previously indicated by gesturing that it was a cubic 
with two turning points, even though at that point all that he had seen on 
the calculator was an apparent straight line in the fourth quadrant.

The improved view of the function facilitated their subsequent iden-
tification of key features and by-hand sketch. Although the calculator 
screen shows only the slightest thickening of the y axis just above the 
origin (figure 6), it was sufficient to alert Pete to the possibility of a y  
intercept which they had noticed at the beginning of the task, but seemed 
to have forgotten.

Pete: It has got its minimum, its maximum, and its three x intercepts. 
[Speaking quickly] Or is that a y intercept?

Kate: What?
Pete: There. Calculate.
 [Uses CALCULATE value to show x = 0, y = -92.]
Kate: No, it’s still both.
Pete: No it crosses both [axes].
Kate: It’s not going through zero.
Pete: No, it crosses both.
Kate: That’s what I am just saying, it is not going through zero [mean-

ing the origin].

Misunderstanding of the effect of scale marks
The other pair for whom the task was non-routine, Reem and Ali,  
adjusted the x and y scale marks from the homogeneous default settings 
of 1 to another homogeneous scaling system of 2, as shown in figure 7a 
and 7b after they were confronted with a thickened y axis indicating the 
possibility of a section of the graph being present in the viewing window 
but indistinguishable from the y axis. This adjustment suggests they  
believed the scale settings could affect the view of the graph but it did 

Figure 6. Pete’s view of the y intercept
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not as they soon saw. However, they were undeterred by this, possi-
bly believing that the size of the increase was not sufficient to result in 
a section of the graph being differentiated from the y axis. They made 
a further adjustment to the x scale to 5 shortly afterwards, as shown in  
figure 7c and 7d, again with no resulting alteration to the screen but  
neither commented on this.

Altering the scale marks had no visible effect on the graphical repre-
sentation of the function in either case. The explicit use of scale marks had 
not been taught to any pairs of students in class. Perhaps, given their lack 
of success using other items in the window menu and their reluctance to 
use other features of the calculator, Reem and Ali’s foray into exploring 
the scale marks was the only option left to them.

Defining moment: identification of key function features
The second set of defining moments (figure 8) relate to the condition the 
need to identify key features of the function and the response actions, 

a use of dedicated features of the graphing calculator, 

b use of TRACE 2, and 

c use of the free cursor 3.

This set of defining moments occurred in two different situations, being  
the global view found and the observing of key features in the viewing 
window.

Figure 7. Use of scale marks in response to condition, lack of a global view of the 
function

a b

c d
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The situation, global view found, indicates that the shape and all key 
features of the function were visible in the viewing window as shown 
in figure 9a. In contrast, the situation, observing of key features in the  
viewing window, indicates that at least one key feature, but not all, was 
visible in the viewing window as in figure 9b.

Situation: observing of key features in the viewing window
This second situation and the interactions leading up to it in the case of 
Pair 3, Kate and Pete, reveal quite a lot about the respective student’s 
concept image of cubic functions. When they first were presented with 
the task, Kate initially suggested they factorise the polynomial to find 
the x intercepts. Pete was adamant that they could not do this and must 
use the calculator.

They began by locating what appeared to be a linear piece of the func-
tion in the fourth quadrant. Pete indicated that he was expecting the 
graph to be that of a cubic with two turning points by tracing an example 
in the air with his finger. Despite various alterations to the window set-
tings which merely magnified the view of the function in the fourth quad-
rant, the function still appeared linear; however, both Pete and Kate’s 
concept images of cubic functions were such that they realised that the 
graph they were seeking would not be linear.

Kate: No, it’s still straight, that can’t be linear though, it’s got ...
Pete:  No, it’s not linear, it’s cubic.
Kate: That’s what I mean.

Figure 8. Circumstances related to key feature identification

Situation:
Global view found.
Key features seen in the 
viewing window.

Condition:
Need to indentify key  
features.

Response action:
Use of dedicated features  
of the graphing calculator.
Use of TRACE.
Use of the free cursor.

Figure 9. Two situations resulting in key feature identification

a b
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Eventually they found what appeared to be an almost parabolic part of 
the curve in the fourth quadrant after seeing several straight line views. 
Kate says, ”Trace it, trace it, put it in the middle” so as to identify the lo-
cation of the turning point. Pete actually used the free cursor to find the 
apparent minimum of (32.1702213, -51959.23) but this point is actually 
just below the curve (figure 10).

Kate then asked if the function had a point of inflection, meaning a 
stationary point of inflection as they had not dealt with non-stationary 
points of inflection to this point in their schooling. Pete was adamant that 
it could not, and suggested she trace along it herself when she doubted 
him. It is clear that Pete had developed a much richer concept image of 
cubic functions from their classroom experiences than had Kate, as the  
following exchange indicates.

Kate: If it’s got the cubed and squared it’s a possibility [referring to 
point of inflection].

Pete: Okay, it’s about 52,000 [referring to the absolute value of the 
y ordinate of the local minimum.] 

Kate: When does a point of inflection occur?
Pete: A [stationary] point of inflection is where the gradient is zero, 

but it’s not a minimum or maximum turning point.
Kate: Yeah, is there a possibility? Going by this, because you know 

how graphs have a max, min, and ...
Pete: If it has a squared term, can it? I don’t think it can. Like, it has 

to be on its own like 4x 3 or 5x 3.
Kate: No, ’cos the curves thing that we just did [referring to an inves-

tigative project exploring the effect of changing parameters of a 
cubic function on its graphical representation], it’s got a point 
of inflection.

Pete: But that’s when it’s shifted, like 5x 3 + 7.

Figure 10. First non-linear view of the function by Pair 3
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Kate then suggested that Pete use TRACE to identify the coordinates of the 
turning point. Pete asked if she wanted to know these exactly then pro-
ceeded to use the dedicated feature, CALCULATE minimum, instead to find 
the coordinates of the minimum turning point recording these accurately 
to two decimal places (figure 11). Pete clearly knew that this dedicated 
feature would result in a more accurate result than the use of TRACE.

At this point the difference in their concept images of cubic functions 
became even more apparent. Pete stated that their view was ”like what a 
quarter of the graph, a third of it”. He meant a third of what they might 
show in their sketch as he had already stated clearly that the function 
had a ”domain of all real numbers” and insisted later that the ends of the 
curve in their sketch have arrows to indicate this. Kate said it was half 
and indicated she expected the function to cut the x axis ”it goes into 
the top, because it has to cross through”. Pete on the other hand, saw 
that as it had a minimum, there must be a maximum in keeping with his  
previous gesture to show the expected shape.

Pete: And there has got to be a minimum turning point, like we’ve 
got this part, I reckon when it crosses it just keeps going. But 
it’s ...

Kate: [interrupting] You know how, [that] there’s a negative?
Pete: It has a turning point. A maximum turning point somewhere. 

Kate questioned this apparently believing that the graph continued  
upwards on both ends that would result in an image more like a  
parabola than the various views of cubic functions which she would have  
experienced previously.

Kate: Do we know that it actually comes down? Or does it go up? 
It hasn’t got a negative in front of the graph, so wouldn’t it be 

Figure 11. Use of a dedicated feature in response to the condition, 'need to identify 
key features'
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going up as positive? Yeah. And you know how we didn’t see 
anything go past the y [axis].

Pete: Let’s just go across for a sec[ond].
Kate: Why?
 [Pete widens the viewing domain of the window and a section 

of the graph is shown in the third quadrant.]
Kate: It does come down! How come it comes down?

Even after Pete changed the window to give a global view of the func-
tion, showing one of its prototypical shapes, Kate was still not convinced 
she was seeing all the key features of the graph.

Kate: That can’t be all the graph. [Pete increased the x maximum 
of the window as Kate now seemed to think there would be  
another turning point.]

Pete: No, it doesn’t come back. 
Kate: Are you serious?
Pete: How about the other way?
Kate: Check it. [Pete widens the viewing domain in the opposite  

direction.] No, it just goes like that. That is weird.

Clearly, what she was seeing was somewhat at odds with what she had  
expected from her memories of previous experiences with cubic func-
tions. Momentarily, Pete too appeared to lose sight of the property that 
a cubic function can have a maximum of two turning points.

Pete: Is there another turning point? How many can a cubic have?

Kate returned to her notion that they should be able to work out the x 
intercepts analytically beginning by using common factors and hence  
determining the number of turning points. This is the point where the 
scale marks were turned off [discussed in the previous section]. 

Immediately following the exchange about scale marks, there was a 
further interaction that reveals more about Kate’s incomplete concept 
image for cubic functions. At this point they have a global view of the 
function with a good window.

Kate: What if we didn’t have that? 
Pete: We’d be stuffed. [Australian slang for being in an impossible 

situation.]
Kate: No, not necessarily, it can always be just worked out.

It is clear that she believed it is possible to find the x intercepts of all cubic 
functions analytically.
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Situation: global view found
Both the choice of calculator feature and its correct use impacted on the 
accuracy with which pairs recorded key feature coordinates. The effects 
of choice of calculator feature and the consequences of this for accuracy 
on the type of key feature being identified are shown in Table 1. 

When correctly selected the use of dedicated features (e.g., CALCULATE 
minimum 4 or CALCULATE zero 5) resulted in accurate recording of key fea-
ture coordinates. In contrast, when other features of the calculator such 
as the use of free cursor or TRACE identified the coordinates of the key fea-
tures this was usually less accurate. However, when TRACE was selected 
to determine coordinates of the y intercept and the y axis was centred 
in the viewing window giving a symmetric viewing domain the resulting  
coordinates were able to be identified exactly.

Pairs 1, 2, and 3 correctly identified the coordinates of all key features, 
usually to an accuracy of 2 decimal places (what is expected in examina-
tions). All pairs correctly identified the coordinates of the y intercept and 
the right x intercept. Pair 4 failed to identify the coordinates of the central 
x intercept with Reem stating at one point, ”there are two x intercepts” 
when three were visible on the screen. Even though Ali questioned her 
certainty of this, only two x intercepts were recorded later when they had 
an even better view of the function. The degree of accuracy of their iden-
tification of the remaining features was tempered by their using TRACE 
rather than a more accurate method such as CALCULATE minimum. 

The identification of turning point coordinates by Pair 5 was inaccu-
rate for two different reasons. When identifying the coordinates of the 
minimum turning point, Susan and Jing initially successfully used CALCU-
LATE minimum. However, the window settings resulted in superimposed 

Actions
Consequences for accuracy of

y intercept x intercepts Turning Points

Using dedicated 
calculator features a Accurate b Accurate c Accurate d

TRACE Accurate e Not Accurate f Not Accurate

Free cursor Not Accurate Not Accurate Not Accurate

Note. a Assuming correct use. b CALCULATE value. c CALCULATE zero or Equation 
SOLVER. d CALCULATE minimum or CALCULATE maximum. e Assuming symmet-
ric viewing domain. f Pair 4 used TRACE to determine right x intercept coordi-
nates accurate to nearest integer.

Table 1. Accuracy of methods of determining key function features
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output of the graph and the minimum turning point coordinates which 
the students could not read. After adjusting the window settings appro-
priately, they reselected CALCULATE minimum, however, on this occasion 
poor selection of a search domain resulted in the required point not being 
included. As a result, the minimum point determined by the calculator 
was the minimum point of the function in the specified domain. The stu-
dents did not notice this. The second inaccuracy occurred when, for some 
inexplicable reason, they did not use the dedicated feature, CALCULATE 
maximum, instead using TRACE in their identification of the maximum 
turning point. They clearly had knowledge of CALCULATE maximum as 
they had used its counterpart previously.

The defining action, use of dedicated features of the graphing calcula-
tor, facilitated the finding of a complete graph of the function, however, 
the flawed use of dedicated features, the use of TRACE, or the use of the free 
cursor to identify the coordinates of key features reduced the degree of 
accuracy with which these were recorded. 

Discussion and conclusions
Students’ understandings of the effect of scale marks differed in this 
study. Of the five pairs, only three altered the scale marks. The most ef-
fective and efficient of the year 12 pairs, Linh and Ahmed, demonstrated 
a good understanding of the effect of scale marks as they adjusted these 
with the intention of facilitating their identification of key function fea-
tures in order to produce a pen and paper sketch of the function. The less 
efficient and effective solution process of the other year 12 pair, Hao and 
Abdi, was due in part to the lack of use of scale marks.

One year 11 pair behaved as expected by Williams (1993) as they fo-
cused on adjusting the scale marks in order to alter the view seen, not 
realising this has no effect. A similar finding was reported by Mitchel-
more and Cavanagh (2000) who found that students in their study did 
not understand the nil effect of scale marks on the section of the graph 
portrayed in the graphing calculator window. 

In contrast, the setting of the scale marks to zero by another year 11 
pair had a positive impact from their perspective on the solution proc-
ess. Whilst the action undertaken may seem trivial, anecdotal evidence 
from teachers confirms that removal of ”ugly axes” from the viewing 
window is perceived as desirable by many students as it is congruent with 
their notion of elegance of a solution. It appeared that the removal of the 
scale marks facilitated the students’ observation that the function did 
not pass through the origin. Actions that result in positive feedback for 
students are likely to boost their confidence and this in turn may result 



JILL BROWN & GLORIA STILLMAN

Nordic Studies in Mathematics Education, 11 (3), 57-84.76

in a more effective and efficient solution path being followed. Thus, this 
student initiated action contributes to improving the affective compo-
nent of learning. 

If students are to appreciate that scale marks have no effect on the por-
tion of the graph visible in the viewing window then this implies explicit 
teaching to overcome the possible misconception (Cavanagh & Mitchel-
more, 2000; van der Kooij, 2001; Zaslavsky, Sela & Leron, 2002). Learn-
ing activities need to be presented that allow students to consider the 
effect of altering the scale marks in a given viewing window, for a range 
of window settings, and a range of functions. Students need to consider 
the effect of altering the scale marks on the axes and on the view of the 
function seen. This ”misconception” with scale marks is probably tran-
sient in that it should occur less as teachers become more familiar with 
how to teach well with graphing calculators.

Students used an extensive range of features of the graphing calcula-
tor to determine the coordinates of key features of the function. When 
correctly selected the use of dedicated features of the graphing calculator 
(CALCULATE value, CALCULATE zero, CALCULATE minimum, CALCULATE 
maximum, SOLVER) had a direct effect on the accuracy of key feature co-
ordinates so identified. In contrast when the actions, use of free cursor or 
use of TRACE, were employed, these were less accurate except in the case 
of the y intercept centered in the viewing domain. 

Use of dedicated features does not necessarily imply appropriate iden-
tification. The dedicated features were used unsuccessfully in the iden-
tification of key features on four occasions. These were (1) deliberate se-
lection of a feature for the wrong purpose (i.e., CALCULATE intersect to 
find the point of intersection between the graph and the x axis when its 
purpose is to identify points of intersection between two functions); (2) 
inadvertent selection of the opposite dedicated feature to identify local 
extrema (i.e., CALCULATE minimum for a maximum turning point); (3) 
use of an appropriate dedicated feature for identifying local extrema but 
with a view that resulted in unreadable superimposed output from the 
calculator; and (4) use of a search domain that did not contain the key 
feature of the function with an appropriate calculator feature for identi-
fying local extrema (i.e., CALCULATE minimum).

The first occurrence of unsuccessful use of dedicated features was rea-
sonable. The action of selecting CALCULATE intersect to identify the co-
ordinates of the point of intersection between the curve and the x axis 
was logical. This misuse of CALCULATE intersect raises the importance of 
students being familiar with and understanding the differences between 
mathematical language and graphing calculator language. In this case, 
the term, ”intersect”, has a slightly different meaning on the graphing 
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calculator to when it is used mathematically. Students’ thinking about 
the mathematical meaning of this term could reasonably assume that this 
feature would allow them to determine the coordinates of the point of 
intersection between a curve and the x axis. However, on the model of 
calculator used in this study, this is not the case. This calculator treats 
the axes as embedded objects rather than lines. CALCULATE intersect only 
allows the user to determine the coordinates of the point of intersection 
between functions entered by the user into the calculator. Teachers and 
students need to be aware of the specific declarative knowledge related to 
the use of calculator features. The graphing calculator placed limitations 
on the term, ”intersect”, that excludes this pair of students’ seemingly 
logical action. As Hiebert and Leferve (1986) comment ”procedures ... 
may or may not be learned with meaning” (p. 8). Where the latter occurs 
students will, as in this case, apply procedural knowledge external to the 
domain of the conceptual knowledge.

Implications for teaching from these findings include provision of a 
range of teaching and learning activities that include an emphasis on 
mathematical language, graphing calculator language, and the differences 
between these. Students need to experience using a variety of graphing 
calculator methods to find a complete graph of a function including the 
dedicated features, free cursor, TRACE, and TABLE (which was not used 
by students in this study, although Kate suggested the use of TABLE to 
find ”how many turning points and everything it’s got”), to identify key 
features and compare and contrast the results. This will enable them to 
make sensible decisions about when a particular selection may be perti-
nent. In addition, changing the viewing window by altering the window 
settings, or using dedicated ZOOM features to focus on key features, and 
determining their effect on accuracy in the identification of the key fea-
tures, using a variety of methods, are further experiences that students 
learning about function should undertake.

This research positioned students in a situation that mirrored their 
classroom setting except that there were no opportunities for interaction 
between student pairs and other students or the teacher. Interactions with 
other students and particularly the teacher have the potential to facili-
tate defining moments for learning being seized and acted on to facilitate 
the solution process and learning. Defining moments occur where some 
action (cognitive, physical, or metacognitive) has the potential to facili-
tate or impede the solution process. Students’ responses to the presence of 
a defining moment have been shown to impact on the directness and dura-
tion of the solution process as well as on the accuracy of key feature iden-
tification and are informed by their concept images (Tall & Vinner, 1981; 
Vinner & Dreyfus, 1989) which may comprise quite stable or fragile  
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knowledge. Opportunities for additional interactions that occur in the 
normal classroom environment and particularly those initiated by the 
teacher can optimise student responses to defining moments in such a way 
as to facilitate learning. For example, a request by the teacher for Reem 
and Ali to justify their response action as they unsuccessfully attempted 
to find a global view of the function by editing the scale marks, may well 
have resulted in their realising the futility of their actions. Additionally, 
the questioning of their actions may have led them to consider an alter-
native, and hopefully more effective, action.

Expertise with the available technology and a strong concept image of 
cubic functions allowed some students (e.g., Linh and Ahmed) to seam-
lessly use the available technology to successfully complete the task. For 
other students, less experienced with the technology and having a less 
developed concept image due to fewer mathematical experiences with 
the concept such as the year 11 students, there were some difficulties 
during task solution. However, it was apparent that whatever the diffi-
culties encountered, the concept image of cubic functions held by at least 
one member of the student pairs was strong and stable enough for them 
to persevere and determine window settings that did show a complete 
view of the given function, unlike the students reported in studies by 
Cavanagh and Mitchelmore (2000), Goldenberg (1987), Ruthven (1995) 
and Steele (1995). For some of the students who had fragile knowledge 
in their concept images that led to momentary lapses in their expecta-
tions for desirable properties in an acceptable view of a cubic function 
(e.g., Pete), experience with the task has brought further experience to 
strengthen this fragile knowledge in their concept image. For others, ex-
perience with the task brought elements of their concept image into con-
flict with what was seen on the screen and thus there was a further op-
portunity for their concept image to be modified and extended. However, 
there were still areas where inadequacies in these students’ concept image 
of a cubic function was not challenged by the task. Kate, for example, still 
believed at the end of the task that all key features of a cubic function 
could be found analytically, despite their failure to do this.

How might these students be helped? It is clear that the notion of iden-
tifying defining moments in tasks such as this has potential in relation to 
mathematics teaching for concept formation. Identification of defining 
moments that enabled students to harness their knowledge of functions 
and technology in order to efficiently produce a solution to the task, could 
be used to inform future teaching actions. However, less efficient path-
ways have also revealed a wealth of experiences that have honed students’ 
concept images. Even those that remain unresolved, such as Kate’s belief 
that all x intercepts can be found analytically, could be used to challenge 
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such notions in a follow up to the task. Explication of all the defining 
moments for a task such as this serves to give teachers a basis for design-
ing teaching situations that highlight the mathematical and technological 
focus of such defining moments. Also, knowledge from research such as 
this where students were deliberately chosen who were expected to be 
able to complete the task could form a basis for designing learning experi-
ences for students with less experience and/ or confidence in mathemat-
ics where student activities are scaffolded through teacher direction of 
actions to take and orchestrated discussion and debate about particular 
response actions in various circumstances given certain situations and 
conditions as identified using the framework in figure 1 and instantiated 
as in figures 2 and 8.
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Notes

1 To facilitate understanding of the analysis of the student solutions, the 
reader is advised to use a graphing calculator to solve the task before  
reading on.

2 Selection of TRACE shows a cursor linked to a function that displays the 
coordinates of successive points of the function.

3 Selection of the free cursor displays the coordinates of selected points in 
the viewing window.

4 Graphing calculator identifies the minimum value of a function within a 
user specified search domain.

5 Graphing calculator identifies where the value of a function changes sign 
within a user specified search domain.
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Sammenfatning
Denne artikel rapporter et case-studie til undersøgelse af kognitive, 
matematiske og teknologiske processer hos gymnasieelever (11. og 12. 
klassetrin), der arbejder med at tegne en fuldstændig graf for et vanske-
ligt 3. gradspolynomium ved hjælp af en grafregner. Intensive analyser 
af elevernes virksomhed har identificeret en række ”defining moments”  
(afgørende momenter) i elevernes løsningsprocess, der er bestemmende 
for forløbet af deres virksomhed og for deres brug af grafregneren. I  
artiklen præsenteres og analyseres ”defining moments” knyttet til  
elevernes brug af skalering og enheder ved tegning af funktionens graf 
samt til elevernes udnyttelse af grafregnerens faciliteter til bestemmelse 
af koordinater for funktionsgrafens karakteristiske punkter. Der var stor 
variation i elevernes forståelse af skalering og dette havde indvirkning på 
effektiviteten og grad af elegance i elevernes løsningsstrategier. Eleverne 
brugte en række af grafregnerens forskellige faciliteter til bestemmelse 
af koordinater for grafens karakteristiske punkter, men ikke altid på en  
succesfuld måde og heller ikke altid baseret på forståelse af den matematik  
der ligger til grund for deres operationer på grafregneren.


