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This paper poses two problems for von Glasersfeld’s Radical Constructivism. The first 
problem concerns the rejection of the idea that it is possible to share meanings. 
The second problem is that Radical Constructivism rejects the notion of an objec-
tively existing reality of which we can have objective knowledge. Yet with respect to 
mathematics, von Glasersfeld seems to claim that it is possible to obtain objective 
knowledge. We propose an alternative position – Constructive Realism – that gives a  
description of what mathematical objects are and gives an account of why knowl-
edge in mathematics is objective. Furthermore, we argue that some of the assump-
tions, used in von Glasersfeld’s description of how numbers are formed, support the 
claim that some meanings are objective and that communication is possible. Finally, 
we consider some of the implications this position has for mathematics education.

Radical Constructivism is a highly regarded theory of knowledge that 
underlies many approaches to the teaching of mathematics. At a con-
ference celebrating the ideas of von Glasersfeld, H. Foerster recently  
characterised Radical Constructivism in the following way:

In fact, I feel that this ’Ernst von Glasersfeld Celebration’ was the 
proper anacrusis, the proper auftact, the proper prelude for a style of 
thinking that will initiate, and then dominate, the third millennium. 
Isn’t that an overstatement? 
I say: ’No!’ (von Foerster, 2000, p. xi)

This paper argues that, although Radical Constructivism may be regarded 
as a successful foundation for some approaches to mathematics educa-
tion it remains problematic both as a foundation for a theory of learning 
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and as a philosophical theory. Firstly Radical Constructivism rejects the 
objectivity of knowledge and the idea that knowledge can be shared. At 
first sight this seems to be problematic for a theory of learning. Secondly, 
Radical Constructivism generally rejects the view that we can have ob-
jective knowledge and the naïve views of ontology, knowledge and truth 
are given up. Yet in mathematics all these views seem to be reintroduced. 
In mathematics, knowledge is certain and objective. In some places von 
Glasersfeld talks about ’abstract’ objects, which indicates that there is an  
ontology of mathematical objects. However, von Glasersfeld writes 
nothing to indicate of what this realm of abstract objects consists, and 
there are no general arguments as to why knowledge of this realm is  
objective.

This paper proposes an alternative position on the nature of math-
ematical objects – Constructive Realism – where mathematical knowl-
edge is claimed to be objective. This is mainly a position describing the 
ontology of mathematical objects. It can therefore be regarded as a sup-
plement to von Glasersfeld’s Radical Constructivism in the sense that 
Constructive Realism explicitly addresses the question of what mathe-
matical objects are. We shall show that some of the assumptions, under-
lying von Glasersfeld’s description of how numbers are formed, can be 
used more generally to argue that some meanings can be shared and that  
communication is possible.

Radical Constructivism
Radical Constructivism is foremost a theory of knowledge or, as stressed 
by von Glasersfeld, a theory of knowing 1 (von Glasersfeld, 1995, p. 1). Its 
main thesis is that knowledge is constructed by the individual and that 
knowledge consists of the individual’s re-presentations of the world. This 
has certain consequences. Firstly, it entails that the individual can not 
know about the external world independently of the re-presentations 
that he or she makes of it. This does not mean that von Glasersfeld rejects 
the existence of an eternal world. Von Glasersfeld stresses that giving up 
the view that our representations corresponds to objectively existing ob-
jects in the world does not entail that we have to give up the existence of 
an external world alltogether:

For believers in a representation [...] they immediately assume that 
giving up the representational view is tantamount to denying real-
ity, which would indeed be a foolish thing to do. The world of our 
experience, after all, is hardly quite as we would like it to be (von 
Glasersfeld, 1995, pp. 14-15).
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Secondly, as knowledge, as well as meaning, is actively constructed by the 
individual, no two individuals can share the same knowledge and there-
fore there can be no shared meanings. Von Glasersfeld’s point is that 
when we learn new words our experiences are always different, and we 
will therefore necessarily associate different meanings to words.

[T]he notion of ”shared meaning” is strictly speaking an illusion. This 
is so because we associate the sounds we come to isolate as ”words” 
not with things but with our subjective experience of things – and al-
though subjective experiences may be similar for different subjects,  
they are never quite the same (von Glasersfeld, 1996, p. 311).

Thirdly, von Glaserfeld’s position entails that the notion of truth as cor-
respondence must be given up. Instead von Glasersfeld replaces a theory 
of truth by a notion of viability.

Constructivism drops the requirement that knowledge be ”true” in 
the sense that it should match an objective reality. All it requires 
of knowledge is that it be viable, in that it fits into the world of the 
knower’s experience, the only ”reality” accessible to human reason 
(von Glasersfeld, 1996, p. 310).

Thus Radical Constructivism has been characterised as a theory reject-
ing ”the triplet of mutually supporting concepts of ’ontology’, ’reality’ and 
’truth’” (von Foerster, 2000, p. xii).

Although von Glasersfeld stresses that Radical Constructivism is a 
theory of knowledge, the position also includes claims about ontology, 
truth and meaning. It is therefore fair to evaluate it as a general philoso-
phy. Although there is no general definition of what constitutes a phi-
losophy, it is widely acknowledged that it should at least have the follow-
ing properties. Firstly, a philosophy should be internally consistent, and 
secondly, claims should be supported by arguments. If the philosophy is 
a ’philosophy of some domain’ such as a ’philosophy of how people learn’, 
the philosophy should also agree with certain acknowledged features of 
this domain. 

The notion of ’meaning’ has been widely discussed in the philosophi-
cal literature. Although von Glasersfeld does not give a strict definition 
of the concept of meaning, the following description seems to pick out 
what he means: ’The meaning of a word is actively constructed by the 
cognizing subject on the basis of her personal experience’. With this de-
scription it is clear, as experiences differ from person to person, that no 
two people can share the meaning of a word. Von Glasersfeld provides 
the word ’rhinoceros’ as an example. Some people may have seen a real 



Jessica Carter

Nordic Studies in Mathematics Education, 11 (2), 5-24.8

rhinoceros either on safari or at the zoo. Others may have seen only a  
picture in a book. Yet others may associate the word with a play.

When [...] you read the word ’rhinoceros’, you had no idea what game 
I was playing, nor what use I was making of the word. Yet, you pro-
duced your re-presentation of the word. I emphasize that it was 
yours, because it was you who had at some earlier point in time 
extracted or abstracted it from your own experience. It was this  
re-presentation which, at that moment breathed life into the word 
for you (von Glasersfeld, 1995, p. 135).

Later von Glasersfeld discusses the notion of meaning in terms of  
reference. Here he uses the example of children learning a language:

By the time human beings are 6 or 7-years old, they have developed 
a considerable mastery of the language spoken in the social group 
in which they grow up. They can use words and be understood by 
others and they understand a great deal of what others are saying. 
They are not yet at an age where they ponder how such an under-
standing might be possible. Nor do they have reason to suspect that 
the things they have associated with words are elements of their 
own experience rather than things that exist in themselves in an 
environment that is the same for everyone. Hence it seems quite 
natural that words should refer to independent objects, and that 
their meaning therefore is universal, in that it is ’shared’ by all in-
dividual speakers. Every day these apparent facts are confirmed in-
numerable times, and if at some later stage reflections about our 
language are entertained they will almost inevitably be grounded 
in this conviction as a premise (von Glasersfeld, 1995, pp. 136-137, 
italics in original).

In this passage, it seems that the notion of ’meaning’ and the notion of 
’reference’ are mixed up. Following Frege, it would make perfect sense 
to distinguish the notion of meaning from that of reference. Meaning 
could have the sense that von Glasersfeld has already explained, whereas 
the reference of a word denotes the object that is supposed to be picked 
out by the word. Note that this would also make sense for von Glasers-
feld as he is not denying the existence of an external reality. It would be 
possible to claim that our words refer to certain objects even though we 
do not have direct access to them, in von Glasersfeld’s sense that we can 
not have a true picture of what these objects are like independently of 
our experiences of them. Something similar to these considerations was 
pointed out by Thomas.
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The relation of knowledge to the world, misunderstood as a mir-
ror image’s relation to the object reflected must be replaced by the 
relation of reference. When one says ’cat’ one refers to cats; one 
does not as von Glasersfeld agrees, ’capture’ or reflect anything of 
or about cats [...] Knowledge and even lies and fiction refer; he seems 
to have forgotten this important but unique relationship, the ex-
istence and importance of which is widely acknowledged (Thomas, 
1994, p. 34).

As Radical Constructivism rejects the idea that we may have objective 
knowledge about the world, it has been argued that it leads to solipsism. 
There are (at least) two versions of solipsism. The metaphysical version 
claims that the only thing that exists is the subject and its consciousness, 
whereas the epistemological version states that the only thing a person 
can know is that person’s own experiences. It seems fair to say that Rad-
ical Constructivism embraces the epistemological strand of solipsism, 
whereas it is debatable whether this leads to the metaphysical claim. In 
many places von Glasersfeld rejects the idea that Radical Constructivism  
leads to solipsism (although he does not declare what he means by  
solipsism):

The statement that the construction of the experimental world is 
irrevocably subjective has been interpreted as a declaration of sol-
ipsism and as the denial of any ”real” world. This is unwarranted. 
Constructivism has never denied an ulterior reality; it merely says 
that this reality is unknowable and that it makes no sense to speak 
of a representation of something that is inherently accessible (von 
Glasersfeld, 1996, p. 309).

What von Glasersfeld rejects here is the metaphysical claim. One could 
ask: If the only thing we know for sure is our own re-presentations of 
the world or our experiences, then how can we be sure that anything 
but those exist? Could it be that we are only ’brains in a vat’ and are only  
deceived by a mad scientist to believe that we have certain experiences 
(as is suggested by Hilary Putnam in ’Brains in a vat’, 1981)?

The Construction of Numbers
According to von Glasersfeld, the basic concepts of arithmetic are unit, 
plurality and number 2. In ’Radical Constructivism’ (1995), von Glasers-
feld describes how numbers are constructed using these concepts. Von 
Glasersfeld provides two things. First he presents an analysis of how the 
concepts of unit and plurality may be structured and second how these 
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concepts may be obtained from perceptions followed by ”a succession of 
reflective abstractions”. Reflective abstraction is a term borrowed from 
Piaget and denotes any conceptual construction that does not depend on 
any particular sensory material (von Glasersfeld, 1995, p. 69).

Von Glasersfeld finds that numbers are not inherent in things but are 
somehow abstracted from our perception of things. Furthermore, num-
bers can be associated to things in any number of ways. For example, 
hearing four clock strokes can be associated with the number 4 if the 
strokes are associated with one clock and the strokes are taken to rep-
resent the time, or equally the four strokes could be taken to represent 
the number 1 if there were four clocks striking at the same time. From 
this von Glasersfeld concludes that ”Units, then, are the result of an op-
eration carried out by a perceiving subject, not a property inherent in  
objects” (ibid, p. 165).

Having considered the notion of unit, von Glasersfeld notes that  
Euclid’s definition of number as ”number is the aggregate of several units” 
is inadequate. 

Von Glasersfeld argues that before one arrives at the conclusion that 
there are a certain number of entities, one has to realise that there is 
a plurality of these entities. Plurality is arrived at by the awareness of  
repeating a specific categorisation. It can thus be said that a plurality is 
also an aggregate of several units.

To explain how the concept of unit is formed, von Glasersfeld uses a 
model which he denotes ’the attentional model’. Von Glasersfeld employs 
the fact that human beings are able to shift the attention of their percep-
tions without moving their eyes. In other words, we can deliberately shift 
focus from, for example, seeing a crowd of people as a crowd, to focus on 
one particular person. Using this model, von Glasersfeld explains how 
through two abstractions, we are able to view, for example, an apple as a 
unit. The first abstraction concerns ’uniting’ our different perceptions 
of an apple to the concept of an apple. The second abstraction abstracts 
the particular object, leaving the concept of a unit. Von Glasersfeld’s con-
clusion is that the result ”represent a wholly abstract entity, because it no 
longer matters what the central moment of attention was focused on or 
whether these was one or several” (ibid., p. 169).

Having defined the operational concepts of unit and plurality, von 
Glaserfeld turns to the final concept, that of a number. In Glasersfeld’s 
model, the transformation of a plurality into a composite unit, that can 
be considered a number, requires two further operations, those of con-
ceptual iteration and counting. Establishing the number of a collection of 
entities requires the realisation that there is a bounded plurality of these 
entities. Conceptual iteration is the mental activity taking place when a 
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person stops considering one entity and moves on to the next. A counting 
procedure associates with each item ”a number word of the conventional 
number word sequence”. This counting procedure leads to the concep-
tion of associating a certain number to a certain collection. The last step 
consists of constructing the notion of number: ”What constitutes the  
abstract concept of number is the attentional pattern abstracted from the 
counting procedure” (ibid., p. 172).

One of the key features in explaining the certainty of mathematical 
knowledge is the fact that ”in the construction of the abstract concept of 
number all sensory material is eliminated”(p. 174). Thus von Glasersfeld 
arrives at the conclusion that 2+2=4 is not questionable as,

the symbol ’2’ stands for a conceptual structure composed of two 
abstract units, to which the number words ’one’ and ’two’ were as-
signed respectively. The symbol ’+’ requires that the units on the left 
be lined up with the units on the right and subjected to a new count. 
Since the standard number word sequence is fixed, and the items 
in the count are not questionable sensory things but abstract units, 
there is no way it could not end with four (ibid., pp. 174-175).

There are a number of points worth discussing here. The first is a minor 
point concerning similarities between von Glasersfeld’s definition of 
number and Frege’s. I mention these similarities as von Glasersfeld dis-
misses Russell (and thus Frege) out of hand on the basis (of a misread-
ing) of a very short quotation, not realizing that ’number’ and ’number of’ 
mean two different things for Russell (von Glasersfeld, 1995, p. 163). 

In terms of ontology there is, of course, a major difference between the 
philosophy of Frege and that of von Glaserfeld. Frege, being a Platonist, 
believed in the independent existence of numbers and concepts (that are 
the referents of predicates), whereas von Glasersfeld rejects any talk of a 
fixed ontology. Yet, their respective descriptions of the construction of 
numbers are similar. Both agree that numbers are not in the things them-
selves, and they can both be construed to say that numbers are associated 
with concepts. Frege, as well as von Glasersfeld, starts out with associating 
(and thereby defining) the notion of ’number of a concept’ to a concept 
that applies to a collection of things. Whereas Frege defines ’n is a number’ 
by the definition ’n is a number if there is a concept that n is the number 
of’, von Glasersfeld defines number as an abstractional pattern following 
the counting procedure. But to perform the counting procedure presup-
poses that there is given a concept that determines what we should count. 
Thus von Glasersfeld’s definition is not dissimilar to Frege’s.

In his discussion of numbers von Glasersfeld introduces the conception  
of numbers as ’abstract entities’ (von Glasersfeld, 1995, p. 174) and since 
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there is no discussion about this notion, one needs to question what 
von Glasersfeld thinks of these entities. Furthermore, it seems as if von  
Glasersfeld would claim that mathematical statements are objectively 
true, as their truths are certain and therefore can not be doubted. It may 
be that von Glasersfeld rejects the idea of a fixed ontology independent 
of our constructions, but at least now he has constructed a domain of en-
tities about which our discourse is objective. This poses two questions. 
Firstly, if communication about mathematical statements is objective, are 
there then other parts of our discourse that is objective in the same sense, 
allowing that it is in fact possible to ’share meanings’? We shall return to 
this question in the next section and argue that the answer is yes. 

The second question concerns the assumptions underlying von  
Glasersfeld’s description of how numbers are formed. It seems that 
some of these assumptions contradict von Glasersfeld’s general theory. 
One central assumption is our ability to perform reflective abstractions. 
The question is whether this ability is uniform to all human beings, or 
whether it could be imagined that different subjects perform this opera-
tion differently, resulting in different concepts of a unit. He also makes an  
assumption about how human beings perceive objects, but could it not 
be that our sensory apparatus works differently? Another assumption 
used is that we have an ability to regard certain objects as similar, for 
example, when determining that there is a plurality of a certain kind of 
object. This requires that we have the ability of ’seeing an entity as being 
the same as another entity’.

Finally, von Glasersfeld claims that we have agreed on the counting 
procedure and the number word sequence. Could it not be that this is 
a seeming agreement where in fact each member of the community as-
sociates something different with their number sequences, a difference 
that has not yet surfaced? (See e.g. Kripke,1982, p. 8-12)

In von Glasersfeld’s description of how we form numbers, it seems as 
if he needs to make certain basic assumptions that contradict his gen-
eral philosophy, but nevertheless can be taken as fundamental when ex-
plaining why at least part of our communication is objective. Some of 
these assumptions are:

 – We have the ability to forming abstractions.

 – We have the ability to ’seeing things as the same’.

 – Our sensory apparatus works in the same way.
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Radical Constructivism and Mathematics Education
Radical Constructivism has been very well received by teachers and 
mathematics educators (Skott, 2004). Here I shall outline a few basic 
themes that are central to our discussion. The first theme is constructiv-
ism, according to which the students actively construct their knowledge. 
As knowledge is not passively received, teaching should somehow lead 
the students to actively construct their knowledge. Tools to make this 
possible are language and the use of perceptual material 3. When using 
perceptual material, von Glasersfeld emphasizes that the mathematical 
objects are not inherent in these, ”but they must be seen as providing op-
portunities to reflect and abstract, not as evident manifestations of the 
desired concepts” (von Glasersfeld, 1995, p. 184).

A picture that illustrates the use of language is that of a dog helping 
a shepherd to steer his sheep. The first point to make here concerns the 
use of these tools while not accepting that language refers. Consider, for 
example, a situation where students are about to be taught the concept 
of a triangle. The teacher could be using a physical triangle to help the 
students form this concept. But how can the teacher tell the students to 
consider the triangle that he is holding, if his word ’triangle’ is not sup-
posed to refer to it? According to von Glasersfeld, the meaning that a 
certain student would attribute to the word triangle depends on his or 
her previous experience with triangles. Perhaps, when the teacher talks 
about a triangle one student would start to think of music and others 
of all sorts of (irrelevant) features of triangles. The point is that, if the 
teacher refers to the triangle he is holding up, then it would be possible for 
the students somehow to abstract from their personal experiences with 
other triangles and concentrate on the actual triangle that is shown to 
them. Then the teacher could start telling the students that they should 
somehow abstract the shape of the figure to form the abstract mathemat-
ical concept of ’triangle’. Put differently, what the students are supposed 
to construct is the type ’triangle’ where the actual physical triangle can 
be regarded as a token.

In ’Moving beyond Constructivism’ Lesh and Doerr (2003) provide 
a number of reasons why (Radical) Constructivism is inadequate as a 
theory of knowledge. Firstly, Lesh and Doerr claim that, as a theory, gen-
eral constructivism has proved not to be falsifiable. It seems as if any ap-
proach to learning can be formulated within the framework of construc-
tivism. Secondly, they point out that forming constructions is only one 
of many ways by which knowledge is formed.
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[D]evelopment also typically involves sorting out, differentiating, 
reorganizing, refining, adapting, or reflectively abstracting concep-
tual systems that already exist at some concrete or intuitive level in 
students thinking (Lesh & Doerr, 2003, p. 532).

Furthermore, Lesh and Doerr refer to Clements (1997) 4 and Kamii (1982) 5 
who claim that there are certain things that students learn that do not 
involve constructions, such as learning ”notational and procedural con-
ventions that can be learned through demonstration, imitation and  
practice with feedback” (ibid., p. 532).

The second theme in Radical Constructivism as a theory of learn-
ing concerns the role of the teacher. This role has been extensively de-
scribed in Steffe (1991). The teacher’s role is to instruct the student to 
construct the appropriate knowledge and to be able to do this, the teacher 
somehow needs to know what the student knows. But according to Rad-
ical Constructivism, this is not possible, as there can not be any shar-
ing of meanings. Instead the teacher forms a hypothetical model of the  
student’s knowledge.

Maya’s language and actions were the experiences available to me 
in a learning environment as I strove to learn her schemes of op-
erating and that my interpretation could be made only in terms of 
my knowledge. So from my point of view, my description of Maya’s 
mathematical knowledge is unavoidably an expression of my own 
concepts and operations. Although I acknowledge that Maya had a 
mathematical reality separate from my own, I had no direct access 
to it (Steffe, 1991, p. 188).

This quotation makes it clear that there is no inter-subjectivity in the 
class room. A number of mathematics educators, see for example Con-
frey (1991) and Cobb (1999), have found this very problematic and have 
formulated versions of social constructivism, theories that combine 
constructivism with inter-subjectivity. Nevertheless Lerman (1996) 
has argued that it is not philosophically sound to combine theories that 
claim that knowledge is constructed by the individual with claims of in-
ter-subjectivity. Lerman instead argues that inter-subjectivity is some-
thing that actually takes place in classrooms and therefore should not be  
explained away, leading to the conclusion that Radical Constructivism 
must be false.

Way out
We have pointed out that it is problematic for mathematics education 
if there is no inter-subjectivity, but we have also found that Radical  
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Constructivism seems to embrace a kind of objectivity concerning state-
ments in mathematics. It is therefore tempting to propose, following 
Quine 6:

This type of argument stems of course from Quine, who has for 
years stressed both the indispensability of quantification over math-
ematical entities and the intellectual dishonesty of denying the  
existence of what one daily presupposes (Putnam, 1972, p. 57).

The question becomes whether there are reasons other than pragmatic 
ones, to accept that some knowledge is objective. I claim there is. In the 
dialogue Phaedo, Plato argues that certain concepts are independent of 
all experience. One concept is that of equality:

So it necessarily follows that we knew the equal at a time previous 
to that first sight of equal objects which led us to conceive all these 
as striving to be like the equal, but defectively succeeding (Plato,  
1955, p. 70).

Plato uses this to argue that our soul is immortal, but we can equally 
accept his conclusion that the concept of equality is a faculty inher-
ent to our mind and is not obtained through experience. This leads to 
a Kantian inspired perception of the mind as consisting of certain fac-
ulties that are independent of our sensory experience and which form 
our experiences. It also leads to the conclusion that there are some con-
cepts on which there seem to be universal agreement, and that are  
independent of experience.

I shall now present an alternative position, where mathematical 
objects are not claimed to exist independently of human beings, but 
where knowledge of them is nevertheless objective. This entails that  
communication is possible and that some meanings can be shared.

Constructive Realism
The general philosophy from which my position Constructive Realism 
has been developed is the conviction that a philosophy of mathemat-
ics ought to agree with mathematical practice. The position is the out-
come of 1) a case study in contemporary mathematics and 2) a discussion 
of contemporary realist positions 7 in the light of this case study. These 
considerations will just be summarized here, for further details refer to 
Carter (2002, 2004).

The topic of the case study was the origin of K-theory, which today is 
a very successful tool used in many different branches of mathematics.  
K-theory started when the mathematician Grothendieck introduced a 
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group, which he denoted the ’K-group’. The main question addressed was: 
what happens when new objects are introduced in mathematics? The 
case study showed that the K-group was constructed from previously ex-
isting entities (so-called sheaves). The construction methods were those 
of 1) forming a free abelian group and 2) forming a quotient. The case 
study provided further examples of objects that were introduced by con-
structions on previously existing mathematical objects. A simpler exam-
ple of a mathematical object that is constructed from another mathemat-
ical object by forming a quotient is the set of rational numbers. (Note that 
I do not claim this is how the rational numbers were first introduced!) 
The rational numbers can be formed as a quotient of the set Z x Z under 
the relation R where (a, b) R (c, d) if and only if ad = bc.

The main points of Constructive Realism can be summarised as  
follows:

1. Mathematical objects are introduced or constructed by human 
beings.

2. After a mathematical object has been introduced, it exists as 
an objectively accessible conceptual object.

To avoid confusion, I denoted mathematical objects as ’conceptual ob-
jects’ rather than ’abstract objects’, since the latter notion often is asso-
ciated with that of not existing in time and space, which again is taken 
as implying that these objects exist independently of human beings. 
In what follows, we shall clarify the notions of ’conceptual object’ and  
’objective accessibility’.

In describing what a mathematical object is, I drew on a description 
of mathematical objects in Hilbert’s writings. In his ’Grundlagen der 
Geometrie’ (1968) 8 first published in 1899, he refers to mathematical ob-
jects as Gedankendinge, ’thought-things’: ”Wir denken drei verschiedene 
Systeme von Dingen: die Dingen der ersten Systems nennen wir Punkte 
und bezeichnen sie mit A, B, C,...” (p. 2). Thus mathematical objects are 
described as ’objects of the mind’ or objects that we can think of. This 
does not lead to the conclusion that mathematical objects merely exist in 
the individuals mind. Rather a mathematical object should be regarded 
as the type where the object, that the individual mathematician thinks 
about, is a token of this type. Something like this can be derived from 
Hilbert’s statement:

[...] the objects of number theory are for me – in direct contrast 
to Dedekind and Frege –the signs themselves whose shape can be 
generally and certainly recognized by us – independently of space 
and time, of the special conditions of the production of the sign, 
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and of insignificant differences in the finished product (Hilbert, 
1922/1966).

The last sentence can be read as: we recognise a sign independently of its 
instantiations, and thus may interpret the sign as a type, whereas the pro-
ductions of it can be regarded as tokens of the sign. It is a general feature 
of mathematics that objects may have multiple representations. For ex-
ample, the number π can be considered as the relation between the cir-
cumference of a circle and its diameter or as the sum of an infinite series. 
The imaginary unit i can be considered as the solution to the equation 
x2 = -1 or as the pair (0, 1) in the real plane.

Accessibility of Mathematical Objects
It seems to be possible for mathematicians to provide rigorous descrip-
tions of mathematical objects so that other mathematicians can access 
them. An example is the K-group which is defined as a quotient. How-
ever, it is by no means clear what constitutes a rigorous description (see 
for example, Panza, 2004). In some cases, when a mathematical object is 
first introduced, it does not have a rigorous description. An example is 
the infinitesimals, the fundamental objects of calculus. They were em-
ployed in the first methods used by mathematicians to solve problems of 
finding tangents and extrema (minimum and maximum) of curves  9 and  
continued to haunt Leibniz’s and Newton’s formulations of calculus. 

Fermat was one of the mathematicians who found methods to solve 
the above mentioned problems. In part these methods consisted of first 
dividing an expression by a magnitude E and later removing all remaining  
occurrences of E.

The problem was, of course, that these magnitudes, later denoted  
infinitesimals, were on the one hand considered to be different from zero, 
and on the other hand, equal to zero as they could be removed. The prob-
lem with infinitesimals did not disappear until the 19th century when 
a rigorous definition of a limit was introduced, which actually got rid of 
the infinitesimals. Even later, the infinitesimals were reintroduced in the 
so-called non-standard analysis.

An example from more advanced mathematics is the surface introduced 
by Riemann, later named a Riemann surface. Riemann’s contemporaries  
found it very hard to grasp his description of this kind of surface:

For many questions, such as the study of algebraic and Abelian func-
tions, it is advantageous to represent the mode of branching of a 
multiple-valued function geometrically as follows. Imagine a surface  
in the (x, y)-plane, coinciding with it (or an infinitely thin sheet 
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spread over it), which extends as far, and only as far, as the function is 
defined. By continuation of the function, this surface therefore will 
also be extended further. In a region of the plane where the func-
tion has two or more continuations, the surface will [...] consist of 
two or more sheets, each of which represents one branch 10 (Zweige) 
of the function. Around a branch point 11 (Verzweigungsstelle) of 
the function, each sheet of the surface will join onto another one, 
so that in the neighborhood of such a point the surface may be re-
garded as a helicoid whose axis is perpendicular to the (x, y)-plane 
at this point, having an infinitesimal pitch. If, after z has made sev-
eral circuits around the branch point, the function again attains 
its former value after n circuits of z about a (like (z – a) m/n with m 
and n relatively prime), then one must indeed assume the top sheet 
of the surface continues through the others into the bottom one. 
 The multiple valued function has only one value defined at each 
point of such a surface representing its branching, and can therefore 
be regarded as a single-valued function of position on this surface 
(Riemann, translation from Birkhoff, 1973, p. 52).

This can be classified as an intuitive description of this mathemati-
cal object. Later, in 1955, Weyl in ’Die Idee der Riemannschen Fläche’  
provided a rigorous definition of a Riemann surface:

(a) There is given a set of objects called ”points of the manifold ℑ”. 
For each point p of the manifold ℑ, certain subsets of ℑ are defined 
to be neighborhoods of p on ℑ [...] (Weyl 1955, p. 17).

According to Hilbert, what makes us recognize a mathematical object is 
the sign that represents it. Above, we took this claim as a stepping stone 
to distinguish between types and tokens. The type is the mathematical 
object and tokens the different representations of the object. In math-
ematics we use ’symbols’ or notations to represent objects all the time, 
for example, ’2’ represent the natural number 2. In some (simple) cases 
these symbols may also tell us how to access the objects. But this gen-
erally is not true. For example, the symbol of the K-group is ’K(X)’, but 
this does not tell us how to access the group. Thus in general, a symbol is 
merely a useful notation for a mathematical object and does not tell us 
how to access the object.

To describe how we are able to access mathematical objects, I propose 
a view inspired by Kant on the formation of concepts. On this view an 
object has a form and content. The content of an object consists of the 
’material’ that the object is formed of. This material can be physical stuff 
or, when considering mathematical objects, abstract or conceptual stuff. 
The form of an object consists of its construction method or the way that 
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an object is considered in our mind. Note that the form used to consider 
a physical object can be the same as the form used to construct a math-
ematical object. There are several examples of this. One is the concept 
of a set. We are able to consider both a collection of objects and a col-
lection of abstract objects as forming a set. It seems reasonable that the 
concept of a set used in mathematics has been inspired by this innate 
ability of ours. Some of the properties that sets are supposed to have ac-
cording to the axiom system of Zermelo-Fraenkel, also seem to have their 
origin in how we perceive collections of objects. For example, the axiom 
of pairing that says that it is possible from two collections to form a new  
collection that is again a set.

A quotient can be regarded as formed by a conceptual construction  
that we can also perform on physical objects. Consider, for example, a 
room full of people. Then it is possible to form the relation ’same sex as’. 
The quotient, that results from the set of people under this relation, con-
sists of the two-membered set of women and men. Furthermore, when 
reading Riemann’s description of his surface on the previous page, it is 
hard not to imagine the sheets as very thin physical sheets on which the 
functions can be defined. This means that as long as we have some ab-
stract objects (or conceptual objects) on which to begin, we form new 
ones by forming conceptual constructions on them. This does not entail 
that the abstract objects on which to construct new objects are fixed once 
and for all. New abstract objects are extracted from our experience all the 
time and are embedded to the current mathematical universe.

Constructive Realism proposes that human beings introduce math-
ematical objects, but that knowledge of them is nevertheless objective. 
New objects can be introduced in a number of ways. They can be ex-
tracted from physical reality and then formulated in a mathematical 
system making discourse about them objective. Examples of this kind are 
the introduction of the natural numbers and the Riemann surface. An-
other method of introducing mathematical objects is to construct objects 
from previously existing objects by accepted construction methods. The 
construction of the K-group is an example. What is argued here is that 
the basic methods used in the introductions of mathematical objects are 
certain concepts or even forms of considering objects that are inherent 
in our minds and that are therefore independent of all sense experience. 
It is also precisely because these forms are inherent to our minds that 
mathematical statements are objective. The statements that can be for-
mulated about a mathematical object concern our possible ways of con-
sidering this object. Note that on this view, it is still possible to formulate 
versions of some of the slogans of constructivism, for example, that each 
individual forms his or her version of ’mathematical reality’. 
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Some implications for mathematics education
Let us conclude by considering two themes relevant to mathematics edu-
cation. The first theme concerns motivation. It is often the case that the 
formulation of a mathematical object is the result a long process starting 
with an unrigorous description of an object, such as an infinitesimal or 
a Riemann surface, and ending with a rigorous description in a certain 
framework or theory. It is usually this theory that is presented to the stu-
dent. It may be accessible enough, but I want to emphasize that it could 
better motivate the student to learn in which context a particular object 
was introduced. For example, the differential quotient is often presented 
with examples of use that illustrate its origin and motivates the defini-
tion. But the definition of Riemann surfaces due to Weyl reveals little of 
the origins of these surfaces. I propose that it could be helpful for the stu-
dent to learn, that they were introduced to turn Abelian functions into 
’real’ functions by defining these functions on the surfaces and to read 
Riemann’s very intuitive description of the surfaces 12.

This leads us to the second theme. A reading of Riemann’s descrip-
tion of the surface also provides a picture – or a representation – of the 
mathematical object. 

When discussing how to access mathematical objects, I noted that 
looking at a symbol representing a mathematical object is not sufficient 
to gain access to the object. To gain access to a mathematical object, 
one needs to know about the objects it is constructed from and to  
understand its construction.

Furthermore, to be able to reason about an object, one needs some-
how to have a picture or a representation of this object. In the example 
of the Riemann surface, a picture of the surface can be obtained from 
the former description of the object quoted above. However, this does 
not have to be the case. A simple example concerns reasoning about the 
multiplication of natural numbers. Multiplication of two numbers can 
be pictured as (the area of) a rectangle. By using this picture, one can see 
many things, for example, that multiplication is commutative. Reason-
ing using representations may not constitute an accepted proof (although 
it may lead to one), but it leads to new ideas as well as understanding of 
why theorems hold. I claim that many mathematicians think in terms 
of representations and that when teaching a subject, one should provide 
students with such representations.
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Notes
1 The quotation is a bit puzzling and reads ”It is an attempt to explain a way 

of thinking and makes no claim to describe an independent reality. That 
is why I prefer to call it an approach to or a theory of knowing. Though I 
have used them in the past, I now try to avoid the terms ’epistemology’ 
or ’theory of knowledge’ for constructivism, because they tend to imply 
the traditional scenario according to which novice subjects are born into 
a ready-made world, which they must try to discover and ’represent’ to 
themselves” (pp. 1-2). The view described here is what philosophers usually 
denote a common sense or naïve version of knowledge and it is strange that 
von Glasersfeld refers to it as ’the traditional scenario’, especially as later in 
the book he describes a whole collection of philosophical positions distinct 
from this view. 

2 Von Glasersfeld actually writes that these concepts are basic to mathemat-
ics. It may be argued that they are basic to arithmetic, but other thinkers 
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have advocated the claim that there are different concepts underlying 
different parts of mathematics. One common division is that between 
arithmetic and geometry as a division between the discrete and the  
continuous.

3 It is a common theme to constructivists of all sorts that communication is 
an important part of mathematics teaching and, for some, even an impor-
tant aspect of knowledge of mathematics (see e.g. Björkqvist, 1993). It is 
thus vital that communication is possible.

4 Clements, D.H. (1997). (Mis?) Constructing constructivism. Teaching Chil-
dren Mathematics, 4 (4), 198-200.

5 Kamii, C (1982). Number in preschool and kindergarten. Washington, DC: 
National Association for the Education of Young Children.

6 It is claimed by Lesh and Doerr (2003) that we constantly form and test 
models of physical reality. One way of testing models is to construct a phys-
ical version of a model that can be causally tested. Actually, this has been 
done for several centuries in science and now constitutes the basis for our 
constructions of buildings. We do not doubt that the models from which 
these buildings have been built are ’true’. If we did, we would need to think 
twice before crossing the bridge between Funen and Sealand!

7 These are the Set theoretical Realism of P. Maddy (1990), Structuralism of 
S. Shapiro (1997) and Realistic Rationalism of J. Katz (1998).

8 In the lecture ’Logische Principen des mathematischen Denkens’ from 
1905, Hilbert gives a similar description.

9 The history of this subject is too rich to tell here. Refer to V. Katz (1998) for 
a fuller exposition. Before calculus was introduced as a general discipline 
by Newton and Leibniz, a number of mathematicians worked on differ-
ent methods to solve some of the problems that can be solved by calculus. 
Among these problems were: finding sub tangents and maxima of curves 
and finding areas of certain regions. Note that these problems were con-
sidered as isolated problems, in the sense that different methods were used 
to solve them and that the mathematicians could not see their relationship 
as we do today. Note also that the notion of function as used today was not 
used then.

10 The different continuations of a multiple-valued function are denoted the 
branches of the function by Riemann. 

11 Riemann defines a branch point as the point about which a branch of the 
function continues into another branch.

12 An interesting mathematical notion from algebraic topology is that of a 
(simplicial) complex. Spanier (1966) defines it as a set K consisting of a set 
of vertices {v} and as a set {s} of finite nonempty subsets of {v} called sim-
plexes subject to some conditions. The point here is that this abstract 
notion of a complex is the result of generalizing the concept of a polyhe-
dron to arbitrary dimensions. To grasp the notion of a complex, it is very 
useful to draw two- or three-dimensional pictures of triangular shapes.
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Sammendrag
Artiklen formulerer to problemer for von Glaersfeds Radikale Konstruk-
tivisme. Det første problem vedrører forkastningen af ideen om mulighed 
for delagtiggørelse af mening. Det andet problem er, at den Radikale Kon-
struktivisme benægter eksistensen af en objektiv ydre virkelighed, som 
vi kan have objektiv viden om. Dog ser det ud til, at von Glasersfeld 
mener, at vi kan have objektivt gyldig viden i matematik. Vi præsenterer  
en alternativ position – Konstruktiv Realisme – som beskriver hvad 
matematikkens objekter er og redegør for hvorfor viden i matematik er  
objektiv. Desuden argumenterer vi for, at nogle af de antagelser som von  
Glasersfeld bruger i beskrivelsen af hvordan tallene dannes, støtter  
påstanden om at nogle meninger er objective og at kommunikation er  
mulig. Til sidst giver vi nogle forslag til hvilke implikationer denne  
position har for undervisning i matematik.


