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From Galois to Riemann to Grothendieck

Dennis Eriksson
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1 Introduction
In this overview we will focus on the theory of coverings of topological spaces and
some extensions in algebraic geometry and number theory. Galois theory is in its
essense the theory of correspondance between symmetry groups of field extensions
and the field extensions, providing a link between group theory and field theory.
Coverings of topological spaces are provided with the same type of interpretation.
Here a covering of a topological space X is basically a topological space with a map
Y → X such that Y and X "look similar" locally. The Galois theory of coverings
will be a correspondance between symmetries of such covers and the fundamental
group, the latter playing the role of the Galois group, and we recall this in the first
section.
In the next two sections we consider a beautiful correspondance due to Riemann
(in the case of curves) and Serre provides a strong link between these topological
covers and covers which are "algebraic covers". One of its most potent applications
is to the theory of algebraic curves, providing a concrete relationship between topo-
logical covers and field extensions of C(z).
If one considers in particular the case of coverings of the sphere with three crit-
ical points, this somehow incredibly sets up a correspondance between algebraic
curves defined over number fields and topological covers. These covers can more-
over be easily realized by simple drawings. So simple, that essentially any drawing
without lifting the pen by a child gives an example, and Alexander Grothendieck
baptized them "dessins d’enfants" (french: children’s drawings). These provide a
way to encode information on the Galois group of the rational numbers in terms
of combinatorial data.
All in all, these notes provides some intriguing connections between more or less
classical topology and complex analysis to much more modern developments in
algebraic and arithmetic geometry, which provide new ways to look at the Galois
group of Q.

2 Fundamental groups and topological Galois coverings
Let (X, •) be any pointed topological space. Recall that the fundamental group of
(X, •) is the group of loops starting and ending at •, up to continuous deformation.
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It is denoted π1(X, •) = π1(X). The group structure is given by the obvious com-
position of loops. In what follows we will only consider well-behaved topological
spaces, to avoid pathologies, namely CW -complexes or topological manifolds.

2.1 Alternative description in terms of coverings
We will give a second standard characterization of the fundamental group in terms
of coverings. Recall that, given a topological space X, a covering Y of X is a
topological space Y , with a map f : Y → X, such that for every point p ∈ X, there
is a neighborhood Up of p and a set T together with a commutative diagram

f−1(Up) //

f

##GGGGGGGGG
T × Up

||xxxxxxxxx

Up .

Intuitively, locally around each point p, the inverse image of f are a number of
copies of X indexed by the set T . The covering is said to be trivial if we can take
Up = X.

Example 1. Consider the circle S1 = {z ∈ C, |z| = 1}. The map z 7→ zn is a
covering map of the circle with itself, with the set T being the cyclic group Z/n.
Another covering is given by f : R→ S1, f(t) = exp (2πit).

Example 2. If X is simply connected, i.e. π1(X,x) = 0, then any covering of X
is necessarily trivial.

Any topological space admits a universal covering space. This is a connected
topological space X̃ with a covering p : X̃ → X, such that any other connected
covering f : Y → X, there is a covering g : X̃ → Y such that gf = p. It will be
unique in the following sense. If we fix a point x ∈ X, and for every connected cov-
ering f : Y → X a point y ∈ Y such that f(y) = x, then for the universal covering
p : (X̃, x̃)→ (X,x), and a covering g : (Y, y)→ (X,x), the map f : (X̃, x̃)→ (Y, y)
is the unique one such that f(x̃) = y.

Example 3. Consider the group of rotations in three-dimensional Euclidean space
R3, SO(3). This group is RP 3, which can be identified with the 3-sphere S3 where
antipodal points are identified. Since π1(S3) = 0, this realizes S3 as a universal
cover of SO(3), which is moreover a double cover. One concludes that π1(SO(3)) =
Z/(2).

For any covering f : (Y, y)→ (X,x), the group of deck transformations Aut(f)
is the group of automorphisms of Y , preserving y and commuting with the map to
X. Locally it means that the various covers are permuted. In particular, deck trans-
formations induces automorphisms of the fiber f−1(x) and an inclusion Aut(f) ⊆
Aut(f−1(x)).
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Definition 2.0.1. We say that a covering f : (Y, y)→ (X,x) is a Galois covering,
if Y is connected and G = Aut(f) acts transitively on f−1(x) (and thus transitively
on any fiber). Equivalently, if

Y ×X Y = {(z, z′) ∈ Y × Y, f(z) = f(z′)},

then the map
G× Y → Y ×X Y

given by (g, z) 7→ (z, gz) is an homeomorphism.

The fundamental group also acts on f−1(x). For a path γ : [0, 1]→ (X,x), γ(0) =
γ(1) = x, there is a unique path lifting γ′ : [0, 1] → (Y, y), γ(0) = y. Notice that
we do not require γ′(1) = y, but that necessarily γ′(1) ∈ f−1(x). It turns out that
γ′(1) only depends on the homotopy class of γ, and we thus obtain two actions on
f−1(x). One is by deck transformations, the other is by the fundamental group. For
f ∈ Aut(f) and γ ∈ π1(X,x), they are related by f.(c.γ) = (f.c).γ. This means that
there is a map π1(X,x) → Aut(f). Note to editor: Innocuous lie, since the
two groups act on the left and on the right, the identification is rather
between the opposite group of π1 and the group of deck transformations.
But the opposite group Gop and G are naturally isomorphic through
x 7→ x−1.

Theorem 2.1 (Fundamental theorem of Galois theory for topological spaces). If
the covering is moreover a universal covering space p : (X̃, x̃)→ (X,x), there is an
isomorphism between the fundamental group and the group of deck transformations:

π1(X,x)→ Aut(p).

Moreover, there is a correspondance between subgroups of π1(X,x) and coverings
of (X,x). The normal subgroups correspond to Galois covers. Equivalently, Galois
coverings with group G correspond to surjective homomorphisms π(X,x)→ G.

Example 4. In Example 1 we have π1(S1) = Z. There are three types of subgroup
of Z. First of all, there is the whole group, this corresponds to the trivial cover with
the identity map. Secondly, there are the groups generated by an integer n 6= 0,±1,
which corresponds to the covers with cyclic group Z/n. Finally, there is the 0-group,
which corresponds to the universal cover R→ S1.

Example 5. The fundamental group of a topological space X not always easy to
compute. A more tractable object is usually its abelianization, which is isomorphic
to the first homology group of X. Since by the above theorem Galois coverings of
a topological space with abelian group of deck transformations G corresponds to
a surjection π1(X) → G, it must necessarily factor through π1(X) → π1(X)ab =
H1(X)→ G.
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3 Analytical covers of varieties
In this section we will consider covers with structure additional to being continu-
ous. Part of the reason for introducing this is that many interesting covers actually
come equipped with this or that additional structure.
A map between complex analytic varieties is said to be a holomorphic cover if in
the definition of cover we replace continuous with holomorphic. It is not hard to
see that if X is a complex analytic space, and Y → X is a topological covering,
there is a unique complex analytic structure, using that the two spaces locally look
the same, on Y such that Y is complex analytic and Y → X is a complex analytic
covering.

Example 6. Suppose Ω,Ω′ ⊆ C are open subsets. An analytical covering f : Ω′ →
Ω is a holomorphic function f such that f ′(z) 6= 0 for all z ∈ Ω′. This follows from
the inverse function theorem, which states that under this assumption, f admits a
local holomorphic inverse around z. The same example works in higher dimensions,
given that we instead use the condition that the determinant of the Jacobian is
non-zero det f 6= 0. The map z 7→ zn is thus a analytic covering outside of z = 0.

Typical complex varieties are the affine varieties. These are realized as the zero-
set of a set of polynomials fi ∈ C[z1, . . . , zn]. Most of the time one is interested
in certain compactifications of these. Recall the complex projective space PnC, a
certain natural compactification of Cn. It is the space of n+1-tuples (z0, . . . , zn) 6=
0, modulo the identification (z0, . . . , zn) ' λ(z0, . . . , zn) for any λ ∈ C×. The
coordinates are written [Z0 : Z1 : . . . : Zn], and Cn is naturally a subset via the
inclusion (z1, . . . , zn) 7→ [1 : z1 : . . . : zn]. A polynomial F ∈ C[x0, . . . , xn] is
homogenous of degree d if F (λx) = λdF (x) for any x ∈ Cn+1, λ ∈ C. A projective
variety is a variety defined as the set of zeros of a set of homogenous polynomials.
An algebraic map of projective varieties is a holomorphic map which is describable
by polynomials.

Example 7. The projective line P1 is homeomorphic to the sphere, S2, and is the
one-point compactification of C. It is the unique complex and algebraic structure
on S2, up to biholomorphism. An algebraic map from P1 to P1 is given by [X :
Y ] 7→ [F0(X,Y ) : F1(X,Y )], where Fi are homogenous polynomials of the same
degree without common zeros. Equivalently, it is given by a rational function f0/f1
where f0 and f1 are polynomials. Since the fundamental group of the sphere is
trivial, these can never be topological covers, unless it is a trivial cover.

Example 8. It is not true that two analytical or algebraic structures on the same
topological object give rise are always equivalent. Consider the plane curve given
by the polynomial ZY 2 = X3 + aZ2X + Z3b, such that 4a3 + 27b2 6= 0. These are
all homeomorphic to a donut, and it is a fact that two such curves are algebraically
equivalent, or biholomorphic, if and only if they have the same j-invariant j(a, b),
where

j(a, b) = a3

4a3 + 27b2

A beautiful theorem of Serre, usually known as part of the GAGA-principle
(Géométrie Analytique et Géométrie Algèbrique, [6]), states that if X is a complex
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projective manifold, then any analytical covering F : Y → X with finite fibers is
algebraic. This means, that Y itself is a projective variety, and that F : Y → X can
be described by polynomial equations. This has the following consequence. If X is
a complex projective variety, and Y → X is a finite topological cover, then Y can
be equipped with an analytical cover and then by GAGA an algebraic structure,
and Y → X must necessarily be algebraic. This statement is false if we instead
suppose that the covering is infinte. For example, the Fermat curve

Xd + Y d = Zd

is, for d > 1, a projective variety of (complex) dimension one, with universal cov-
ering space being the upper half plane, which is not algebraic.

4 Algebraic Curves and Riemann Surfaces
The most basic examples of varieties are the compact varieties of complex dimen-
sion one. Since they have real dimension two, they have also been called Riemann
surfaces. In what follows, I use the term "algebraic curve" to emphasize the alge-
braic nature, and the term "Riemann surface" to emphasize the analytical structure.
They were first introduced by Bernhard Riemann in the second half of the 19th
century, and are still a topic of study. One of their main features is that they tie
together topology, complex analysis and algebraic geometry in a fascinating way.
They also provide testing grounds for higher dimensional questions, but also con-
tain open problems, in topology, complex analysis, algebraic geometry and number
theory. The topological classification is however simple: they are all homeomorphic
to a donut with a number of holes. This number is the genus of the curves. They
can however have various different complex structures which distinguish them.
The simplest Riemann surface is the (unique ) Riemann surface on genus 0, P1,
homeomorphic to the 2-sphere, S2. It is realized as the complex plane C with a
single "infinite" point, so that P1 = C ∪ {∞} . The genus one Riemann surfaces
are all tori, and can be viewed as parallelograms in the complex plane, where the
opposite sides are identified. Setting one side to be the line between 0 and 1, the
parallelogram is determined by a single τ in the upper half plane, and in general
different τ define different Riemann surfaces of genus one. Also see Example 8 in
the previous section.

Example 9. The planar curves of degree d are described by the set of zeros of
homogenous polynomials in three variables

F =
∑

i+j+k=d
aijkX

iY jZk.

If their partial deriviatives do not simultaneously vanish at a point C3 \ 0, these
define compact Riemann surfaces of genus g = (d− 1)(d− 2)/2.

It is a fact that actually all compact Riemann surfaces are algebraic, i.e. given by
a set of equations in projective space. The field of functions of a Riemann surface C,
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C(C) is the field determined by all meromorphic functions C → C. The algebraicity
of compact Riemann surfaces implies that a map f : C ′ → C is equivalent to a map
f∗ : C(C) → C(C ′), where the obvious implication associates to a meromorphic
function g : C → C the meromorphic function f∗g = g ◦ f : C ′ → C → C. Also,
since they are algebraic curves, C(C) must be a finite extension of C(z) = C(P1).
These are just given by irreducible polynomials of C(x)[y], i.e. polynomials f(y)
with coefficients in C(z). It then also makes sense to talk about Riemann surfaces
defined over a field K ⊆ C. These can either be characterized as finite field exten-
sions of K(z), or as projective varieties defined by polynomials with coefficients in
K, these lead to the same concept.

The last technical ingredient we shall need is a stronger form of the GAGA-
principle, known as Riemann’s existence theorem. For this, suppose that C is a
Riemann surface, ∆ a finite set of points, and C̃ → C \ ∆ a topological cover.
Then there a Riemann surface C ′ and an algebraic (and thus holomorphic) map
f : C ′ → C which restricts to C̃ → C \ ∆, which then corresponds to a field
extension K(C)→ K(C ′).
This provides a very strong link between algebra and topology, which we illustrate
with the relation with the fundamental group. Let ∆ ⊆ P1 be a finite set of points of
cardinality r say. Then a d-sheeted cover of P1\∆ corresponds to, by Galois theory, a
homomorphism from π1(P1\∆) to the symmetric group on d elements, such that the
image acts transitively on {1, . . . , d}. The group π1(P1\∆) is generated by clockwise
loops `1, `2, . . . , `r around each point in ∆, with the relationship `1 · . . . · `r = 1, so
this gives us a wealth of examples of algebraic curves together with maps C → P1

ramified outside of ∆.

Example 10. More generally, suppose that C is a g-holed donut, g ≥ 1. Then the
fundamental group π1(C) has the description as the group generated by generators
a1, . . . , ag, b1, . . . , bg, with the single relation

a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1.

In particular the first homology group, being the abelianization of the fundamental
group, is just Z2g, whose quotients then correspond to Galois covers with abelian
fundamental group, of at most 2g generators.
If we remove a set ∆ of r points from C, then the fundamental group π1(C \∆) is
the group generated by a1, . . . , ag, b1, . . . , bg, `1, . . . , `r, with the relation

a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g `1 . . . `r = 1.

The same computation as the one with the Riemann sphere above can then be
made. The upshot for the Riemann sphere is that it is the unique complex structure
on the 2-sphere, while a genus g Riemann surface have infinitely many different
structures.
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5 Dessins d’enfants
In this section we will focus on the case of coverings ramified in at most three
points. By a transformation, we can suppose the points are 0, 1 and ∞ (in pro-
jective coordiantes: [0 : 1], [1 : 1], [1 : 0] respectively). While all compact Riemann
surfaces can be realized as ramified covers of P1, three points adds extra restric-
tions. An important observation is that in this case, then the corresponding curve
can be represented by polynomials with coefficients in a number field, i.e. a finite
field extension of Q. This is rather astonishing, as the curves which can be defined
over a number field are very special (in the same sense the algebraic numbers are
special in the set of complex numbers). From the point of view of algebraic geome-
try, it is however essentially a standard usage of Weil’s descent theory. In the 70’s,
Alexander Grothendieck wondered if it could possibly be true that the converse
is also true, i.e. if the curve is defined over a number field, can it be realized as
a cover over P1 ramified at three points? This seemed as a very optimistic asser-
tion, even though there was no counter example. To his astonishment, during the
International Congress of Mathematicians in Helsinki ’78, the russian mathemati-
cian G. V. Belyi announced this precise statement (see [1]). Moreover, the proof
was completely elementary, and only used general properties of polynomials. The
complete argument fit easily on two pages.
More precisely, the above discussion says that any curve C, together with a holo-
morphic map β : C → P1 only ramified at three points, is necessarily defined over
a number field. The pair (C, β) is called a Belyi pair.
We will now describe a topological receipi which describes such pairs. On the sphere,
color the point 0 white, and the point 1 black, and draw the line [0, 1] between them
as in the picture below. If we are given a Belyi pair (C, β), we can then associate
β−1([0, 1]). This is a graph traced on C, whose nodes are the inverse images of 0
and 1, and it is bipartite, that is every edge has exactly one white and one black
node.
Conversely, given a bipartite graph Σ on a g-hole donut S, put a star in each open
cell S \Σ, and draw from each star to all white and black nodes in that cell. Then
every original edge with black and white node has lines going out from it to form
a butterfly (to use the terminology from [7]).

o
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?
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���������

b

.

Flapping the wings of the butterfly identifies it with the sphere, and doing it for
every edge constructs a map S → S2, which is a covering of the sphere ramified
at the white, black and star node, which we can identify with 0, 1 and ∞. By
Riemann’s existence theorem this corresponds to a Belyi pair (C, β), i.e. a complex
structure C on S.
To summarize, a bipartite graph on a g-holed donut corresponds to a Belyi pair
of a curve defined over a number field. This is rather incredible. The bipartite
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graph together with an embedding into a g-holed torus is what is known as a
"dessin d’enfant" (French: child’s drawing), baptised as such by Grothendieck. In
Esquisse d’un programme [5], Grothendieck writes (translation from french by Leila
Schneps):
"This discovery, which is technically so simple, made a very strong impression on
me, and it represents a decisive turning point in the course of my reflections, a
shift in particular of my center of interest in mathematics, which suddenly found
itself strongly focused. I do not believe that a mathematical fact has ever struck me
quite so strongly as this one, nor had a comparable psychological impact. This is
surely because of the very familiar, non-technical nature of the objects considered,
of which any child’s drawing scrawled on a bit of paper (at least if the drawing is
made without lifting the pencil) gives a perfectly explicit example. To such a dessin
we find associated subtle arithmetic invariants, which are completely turned topsy-
turvy as soon as we add one more stroke."
That basically any drawing by a child corresponds to a "dessin d’enfant" is an old
theorem, which says that any finite graph can be embedded into a g-holed donut.
It can always be colored white-black, by adding a color in the middle of two if
necessary.
Dessins d’enfants and their relations to covers of the sphere were already used in
work by Felix Klein in 1978/79 ([3], [4], without Belyi’s theorem). There, he called
them Linienzüge (German: plural of "line-track").
As we described in the previous section, a ramified covering of the sphere corre-
sponds to a field extension of C(z), i.e. by a polynomial f(y) with coefficients in
C(z). Below we list a couple of examples of the correspondance between polynomi-
als and dessins d’enfants. some well-chosen dessins d’enfants, on P1 and on
tori

6 Galois actions on dessins
Since any dessin corresponds to a curve defined over a number field, this allows
us to let the Galois group Gal(Q/Q) act on the dessins. A very direct way to do
so is by applying σ ∈ Gal(Q/Q) to the Belyi morphism β : C → P1. Since β is
represented by a polynomial with coefficients in Q, σ · β can be understood as the
action of the Galois groups in these coefficients. This gives rise to a new Belyi pair
(Cσ, σ · β), which in general is not the same as (C, β). In fact, C and Cσ need not
even be biholomorphic algebraic curves. If we understand C as given by the set of
zeros of homogenous polynomials in Q, Cσ is just given by letting σ act on the
coefficients.

Example 11. Consider again Example 8, and suppose that a, b ∈ Q. The proof
of Belyi’s theorem associates to the function (x, y) 7→ x from E(a, b) : y2 = x3 +
ax + b to P1 a Belyi pair (E(a, b), β). Then E(a, b)σ = E(σ · a, σ · b), and this is
biholomorphic to E(a, b) if and only if their j-invariants are equal, i.e. if j(a, b) =

a3

4a3+27b2 is fixed by σ.

The above then defines an action on every finite quotient π1(P1 \ 0, 1,∞)/N ,
where for our purposes we will suppose N is a normal subgroup. For two such
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groups N ′ ⊆ N , the action of the Galois group will respect the natural map

π1(P1 \ 0, 1,∞)/N ′ → π1(P1 \ 0, 1,∞)/N

and defines an action on the whole inverse system of such subgroups. In more
technical terms, this defines a representation Gal(Q/Q) → Aut(F̂2), where F̂2 is
the profinite completion of π1(P1 \ 0, 1,∞) = F2, the free group on two elements.
Example 11 above moreover proves the following important corollary to Belyi’s
theorem:

Corollary 6.1. The representation

Gal(Q/Q)→ Aut(F̂2)

is faithful, i.e. if σ ∈ Gal(Q/Q) acts trivially on all dessins, it is necessarily the
trivial element. In other words, any element of the Galois group of Q can be un-
derstood as set of (compatible) automorphisms of dessins or as a certain element
of Aut(F̂2).

It is an open question how to determine exactly what elements of Aut(F̂2) come
from the Galois group of Q. In [2], Drinfeld defines a much smaller group ĜT , the
Grothendieck-Teichmüller group, which still contains the Galois group. It is not
known whether they are equal or not.
There are two main questions in the field of dessins. The first question is basic:
Given a dessin, how can we describe the associated meromorphic function? Above
we have a list of examples. This is Some discrete invariants one can associate
to a dessin include the number of black and white dots, these must necessarily be
preserved under conjugation. Another is the degree sequence: This lists the number
of edges going out of the white respectively the black dots. It is however known
that these discrete invariants do not characterize conjugate graphs.

For the interested reader further references, from which also some of the above
material is taken, can be found in [7] (for an early account of the theory), [8], [9]
and of course the original Esquisse d’un Programme in [5].
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