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1 Introduction
In this overview we will focus on the theory of coverings of topological spaces and
their usage in algebraic geometry and number theory. Galois theory is in its essense
the theory of correspondence between symmetry groups of field extensions and the
field extensions, providing a link between group theory and field theory. Coverings
of topological spaces are provided with the same type of interpretation. Here a cov-
ering of a topological space X is basically a topological space with a map Y → X
such that Y and X "look similar" locally. The Galois theory of coverings will be
a correspondence between symmetries of such covers and the fundamental group,
the latter playing the role of the Galois group, and we recall this in the first section.

This is in fact more than just an analogy, and in the case of curves we can es-
tablish a direct link between topological covers and field extensions of C(z) going
back to Riemann. This will be the subject of the next sections.

If one considers in particular the case of coverings of the sphere with three critical
points, this somehow incredibly sets up a correspondance between algebraic curves
defined over number fields and topological covers. These covers can moreover be
easily realized by simple drawings. So simple, that essentially any drawing on paper
by a child gives an example, and Alexander Grothendieck baptized them "dessins
d’enfants" (French: children’s drawings). In fact he writes1

This discovery, which is technically so simple, made a very strong impression
on me, and it represents a decisive turning point in the course of my reflec-
tions, a shift in particular of my center of interest in mathematics, which
suddenly found itself strongly focused. I do not believe that a mathematical
fact has ever struck me quite so strongly as this one, nor had a comparable
psychological impact. This is surely because of the very familiar, non-technical
nature of the objects considered, of which any child’s drawing scrawled on a
bit of paper (at least if the drawing is made without lifting the pencil) gives

1translation from Esquisse d’un programme [5], by Leila Schneps
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a perfectly explicit example. To such a dessin we find associated subtle arith-
metic invariants, which are completely turned topsy-turvy as soon as we add
one more stroke.

These provide a way to encode information on the Galois group of the rational
numbers in terms of combinatorial data.
All in all, these notes are meant to suggest some intriguing connections between
more or less classical topology and complex analysis to much more modern devel-
opments in algebraic and arithmetic geometry, which provide new ways to look at
the Galois group of Q.

2 Fundamental groups and topological Galois coverings
Let (X, •) be any pointed topological space. Recall that the fundamental group of
(X, •) is the group of loops starting and ending at •, up to continuous deformation.
It is denoted π1(X, •) = π1(X). The group structure is given by composition of
loops. In what follows we will only consider well-behaved topological spaces, to
avoid pathologies, namely CW -complexes or topological manifolds.
We will give a second standard characterization of the fundamental group in terms
of coverings. Recall that, given a topological space X, a covering Y of X is a
topological space Y , with a map f : Y → X, such that for every point p ∈ X,
there is a neighborhood Up of p and a set T (with discrete topology) together with
a commutative diagram

f−1(Up) //

f

##G
GG

GG
GG

GG
T × Up

||xx
xx
xx
xx
x

Up

where the upper map is a homemorphism.
Intuitively, locally around each point p, the inverse image of f are a number of
copies of X indexed by the set T . The covering is said to be trivial if we can take
Up = X, and to avoid this case will assume Y is connected in what follows.

Example 1. Consider the circle S1 = {z ∈ C, |z| = 1}. The map z 7→ zn is a
covering map of the circle with itself, with the set T being the cyclic group Z/n.
Another covering is given by f : R→ S1, f(t) = exp (2πit).

A loop in X is a map γ : S1 → X or equivalenty a map γ : [0, 1] → X such
that γ(0) = γ(1). A loop can in general not be lifted to a cover, but the map γ on
the interval can be lifted to γ′ but then typically γ′(0) 6= γ′(1). If we fix x = γ(0)
then it turns out that y = γ′(1) ∈ f−1(x) only depends on the homotopy class of
γ. Thus we get a map π1(X,x) → f−1(x) (easily seen to be surjective), if we fix
y ∈ f−1(x) we can think of π1(Y, y) as the subgroup of π1(X,x) consisting of loops
such that γ′(1) = y. We can in particular conclude

Example 2. If X is simply connected, i.e. π1(X,x) = 0, then any covering of X
is necessarily trivial.



180 Dennis Eriksson, Ulf Persson Normat 3-4/2011

Any topological space admits a universal covering space. This is a simply con-
nected topological space X̃ with a covering p : X̃ → X, such that any other
connected covering f : Y → X, there is a covering g : X̃ → Y such that fg = p.
It will be unique in the following sense. If we fix a point x ∈ X, and for every
connected covering f : Y → X a point y ∈ Y such that f(y) = x, then for the
universal covering p : (X̃, x̃)→ (X,x), and a covering f : (Y, y)→ (X,x), the map
g : (X̃, x̃)→ (Y, y) is the unique one such that g(x̃) = y.

Remark 1. If Y is the universal covering of X then π1(X) is in a 1-1 correspon-
dence with any fiber f−1(x).

Example 3. If a group G acts on X properly discontinously (i.e. for each orbit
Gp we can find an open cover of disjoint sets Ugp 3 gp permuted by G), then the
map X → X/G is a Galois covering.

Example 4. The universal cover of S1 is R while the universal cover of C∗ (ho-
motopic to S1) is C the covering given by z → ez, while the covering restricted to
the upper half-plane H (given by Im(z) > 0) gives a map onto the punctured unit
disc (0 < |z| < 1).

Example 5. A more involved example, with special relevance to this article, is
given by a group-action on the upper half plane. The subgroup of Moebius trans-

formations with integral coefficients PSL(2,Z) given by matrices
(
a b
c d

)
with

determinant 1 is called the modular group Γ and acts on the upper half-plane but
not properly because of fix-points. However if we look at the normal subgroup
given by the kernel Γ(2) of the surjection Γ→ PSL(2,Z2)(= S3) given by reducing
the entries modulo 2 we get a properly discontinuous action. The quotient will be
isomorphic to H/Γ(2) = P1 \{0,1,∞}. The latter space is homotopic to the figure
eight, whose fundamental group is freely generated by the two obvious loops.

For any covering f : Y → X, the group of deck transformations Aut(f) is the
group of automorphisms of Y , commuting with the map to X. Locally it means
that the various covers are permuted. In particular, deck transformations induce
automorphisms of the fiber f−1(x) and an inclusion Aut(f) ⊆ Aut(f−1(x)).
We say that a covering f : Y → X is a Galois covering, if Y is connected and G =
Aut(f) acts transitively on f−1(x) for some (and thus any) x ∈ X. Equivalently, if

Y ×X Y = {(z, z′) ∈ Y × Y, f(z) = f(z′)},

then the map
G× Y → Y ×X Y

given by (g, z) 7→ (z, gz) is an homeomorphism.

Theorem 2.1 (Fundamental theorem of Galois theory for topological spaces). If
the covering is moreover a universal covering space p : (X̃, x̃)→ (X,x), there is an
isomorphism between the fundamental group and the group of deck transformations:

π1(X,x)→ Aut(p).
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Moreover, there is a correspondance between conjugacy classes of subgroups of
π1(X) and coverings of X. The normal subgroups correspond to Galois covers.
Equivalently, Galois coverings with group G correspond to surjective homomor-
phisms π1(X)→ G.

The conjugacy classes are related to the fact that once we omit the point x,
π1(X) is only determined up to inner automorphism.

Example 6. In Example 1 we have π1(S1) = Z. There are three types of subgroup
of Z. First of all, there is the whole group, this corresponds to the trivial cover with
the identity map. Secondly, there are the groups generated by an integer n 6= 0,±1,
which corresponds to the covers with cyclic group Z/n. Finally, there is the 0-group,
which corresponds to the universal cover R→ S1.

Remark 2. Let us say that a subgroup of a group G is co-finite if it has finite
index, and let us assume that the intersection of all co-finite normal-subgroups only
consists of the identity. (The trivial example being G finite). We can then define a
Hausdorff topology by letting those be a basis for the open sets around the identity.
This will in general not be a complete space, its completion will be a compact and
totally disconnected space, and referred to as the pro-finite completion of G and
denoted by Ĝ. The groups G and Ĝ will have the same finite quotients 2, but except
in the trivial case (when both are equal) the latter will be un-countable, while the
first will typically be countable.

Example 7. The pro-finite completion of the fundamental group of an algebraic
variety will be called the algebraic fundamental group, the idea being that from an
algebraic point of view one only ’sees’ the finite covers. The algebraic fundamental
group of C∗ will be the product of all p−adic integers Zp.

Example 8. The algebraic closure Q of Q is the union of all finite extensions of
Q. As a field extension of Q it has of course a group of automorphisms, but it is
not so easy to explicitly determine it. However if we do it locally i.e. noting that
morally any finite Galois group Gal(K/Q) ought to be the quotient of Gal(Q/K)
we can recapture such a group in a formal way, given by its finite quotients. It is
however impossible to give any example of non-trivial elements in it, apart from
complex conjugation, as such will depend on an infinite number of choices. In the
case of F where F is a finite field, we clearly have two candidates, the bona fide
Galois group generated by Frobenius, and its profinite completion, which we have
already encountered in Example 7 .

So far we have only been discussing the topological picture but as our examples
show, in practice they often come equipped with additional structure. One obvious
such is a complex structure and it should be obvious that a topological cover of a
complex manifold gets canonically a complex structure, and in this case one says the
covering is analytical. A beautiful set of results mainly due to J.-P. Serre, usually
called the GAGA-principle 3, provides a strong link between topological, analytical
and algebraic coverings. One of the theorems surrounding the GAGA-principle
states (with some intentional imprecision) that if we are given a suitable open subset

2assuming G is finitely generated
3Géométrie Analytique et Géométrie Algèbrique, [6]
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U of an algebraic variety X, and a finite topological covering U ′ → U , then this can
be uniquely extended to a finite holomorphic and algebraic map X ′ → X, where
X ′ is algebraic. In short, finite topological coverings of (suitable) open subsets U of
X correspond to finite algebraic maps X ′ → X which are coverings when restricted
to U .

Example 9. Suppose Ω,Ω′ ⊆ C are open subsets. An analytical covering f : Ω′ →
Ω is a holomorphic function f such that f ′(z) 6= 0 for all z ∈ Ω′. This follows from
the inverse function theorem, which states that under this assumption, f admits a
local holomorphic inverse around z. 4 The map z 7→ zn is thus a analytic covering
outside of z = 0 above which it is given by taking the quotient with the natural Z
action given by z 7→ e

2πi
n z. Cf. Example 6.

Remark 3. From example 5 we get a proof of Picard’s theorem to the effect that
any entire function which omits two values (three with ∞) is a constant! Such a
function gives a map into P1 \ {0, 1,∞} and can thus be lifted to a holomorphic
function into the unit disc. But any bounded entire function is constant.

3 Algebraic Curves and Riemann Surfaces
The most basic examples of varieties are the compact varieties of complex dimen-
sion one. Since they have real dimension two, they have also been called Riemann
surfaces. In what follows, we use the term "algebraic curve" to emphasize the alge-
braic nature, and the term "Riemann surface" to emphasize the analytical structure.
The first are defined globally, while the second local point of view was first intro-
duced by Bernhard Riemann in the second half of the 19th century, and are still a
central topic of study. Their topological classification is simple: they are all homeo-
morphic (in fact diffeomorphic) to a sphere with handles attached. The number of
those is the genus of the curves. They can however have various different complex
structures which distinguish them, but as opposed to the higher-dimensional case
they are all projective, given as the locus cut out by homogenous polynomials in
some projective space. They come in three types discussed below.

Example 10. The simplest Riemann surface is the (unique up to bi-holomorphism)
Riemann surface on genus 0, P1, homeomorphic to the 2-sphere, S2. It is realized as
the complex line C with a single point at infinity, so that P1 = C∪{∞}, the so called
Riemann sphere. Any algebraic map from P1 to P1 is given by is given by a rational
function f0/f1 where f0 and f1 are polynomials. Since the fundamental group of
the sphere is trivial, these can never be topological covers, unless it is a trivial
cover, which corresponds to the degrees being one, and the rational function given
by a Moebius transformation. Note incidentally that those form the automorphism
group of the field C(z) preserving C.

4The same example works in higher dimensions, given that we instead use the condition that
the determinant of the Jacobian is non-zero det f 6= 0.
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Example 11. The tori are given by C/Λ where Λ is a lattice of rank two over the
reals. They get complex structures from the one on C, (which will constitute the uni-
versal cover) but those will vary depending on the Λ. By doubly-periodic functions
they can be embedded as a cubic in P2 with an equation that can be normalized
to ZY 2 = X3 + aZ2X + Z3b, such that 4a3 + 27b2 6= 0. Two such equations will
define bi-holomorphic curves iff they have the same j-invariant j(a, b) = a3

4a3+27b2 .
They are typically presented via period-parallelograms, which can be normalized as
spanned by 1, τ where τ ∈ H will be the parameter. The condition of biholomorphy
then translates into parameters belonging to the same orbit of the modular group
Γ (cf. Example 5).

Example 12. All the rest of the curves (i.e. g ≥ 2) can be described in interesting
ways as quotients of the unit-disc (which hence is their universal cover). Examples
are given by plane curves of degree d > 3 by the set of zeros of homogenous
polynomials of degree d in three variables and with non-vanishing gradients. They
will constitute compact Riemann surfaces of genus g = (d− 1)(d− 2)/2.

Because all compact Riemann surfaces are algebraic it follows that all essen-
tial information about them is encoded algebraically in their function fields. For a
Riemann surface C we will denote by C(C), the field given by all meromorphic func-
tions C → C (or equivalently all holomorphic maps C → P1). The function field of
P1 is C(z) which is the simplest and plays the same role as Q in classical field theory,
while other function fields will be finite extensions of it. Conversely to any func-
tion field (i.e. an extension of C of transcendence degree one) corresponds a unique
Riemann surface C. Furthermore any non-trivial holomorphic map f : C ′ → C
gives rise to an injection C(C) → C(C ′) by sending a function C → P1 to the
composition C′ → C → P1 (a so called pull-back). Conversely any field extension
C(C) → C(C ′) corresponds to a holomorphic map f : C ′ → C. While there is
only one Q in a number field (a finite extension of Q) one can express C(C) in
an infinite number of ways as a field extension of C(z). In particular, a compact
Riemann surface together with a meromorphic function φ is the same thing as a
finite field extension of C(z) together with a polynomial equation P ∈ C(z)[T ] for φ.

Example 13. In Example 11, x = X/Z can be thought of as a meromorphic
function on E classically represented as the doubly periodic meromorphic function
℘(z) on C. The field of such meromorphic functions is C(E) and can be thought
of as a quadratic extension of C(x) given by y2 = x3 + ax+ b (with y = Y/Z).

Remark 4. For an polynomial P ∈ C(z)[T ], expanding the relation P (φ) = 0 and
clearing denominators, we get a polynomial relation P (φ, z) = 0 and by considering
φ just as a variable we get a plane curve which we can compactify by homogenizing
the equation. This curve will in general be singular, but it will have a unique
desingularization C which identfies the field with C(C). In Example 13 we recapture
E as the cubic Y 2Z = X3 + aXZ2 + bZ3.

The degree of an extension C(C) → C(C ′) can also be seen as the degree of
the associated map φ which is the same as the maximal cardinality d of a fibre
φ−1(x), x ∈ C ′ which is the cardinality of all but a most finite number of exceptions.
This follows from the fact that the fibre φ−1(x) can be put in a 1-1 correspondence
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with the complex solutions to the equation P = 0 obtained by substituting the
value x for the formal variable z. The map is said to be ramified over the points
x when #φ−1(x) < d. A map is unramified iff it is a cover, so in particular P1

being simply connected, has no unramified non-trivial covers. Any holomorphic
multi-degree map over P1 has to be ramified at at least two points, those which
are only ramified at two points are easily classified as being given up to Moebius
transformations by z → zn. Maps ramified over exactly three points will be the
ones of main interest to us.
If we remove the ramification points we get a covering map, and in fact the Galois
theory of fields corresponds exactly to our Galois theory of covers. In particular if
C(C ′) is a Galois extension of C(C) with Galois group G the corresponding map
can be thought of as exhibiting C as C ′/G, with the action of G free away from the
inverse images of ramification points. Those occur exactly as the images of points
with non-trivial stabilizers.

We summarize our observations in the following translation between compact
Riemann surfaces and their function fields:

Compact riemann surfaces Function fields
Compact Riemann surface C Field K/C, trdegC(K) = 1

P1 C(z)
Holomorphic map C ′ → C Field extension K ⊆ L

Meromorphic function C → P1 Irreducible polynomial over C(z)
Degree of holomorphic map C ′ → C Degree of field extension K ⊆ L

Holomorphic map C ′ → C Field extension K ⊆ L
with Galois group G with Galois group G

Example 14. (cf example15) Setting

K(z) = (z − 1)2(z2 + z + 1)2

(z + 1)2(z2 − z + 1)2

we get a sequence of field extensions

C(k(z)) ⊂ C(z3) ⊂ C(z)

corresponding to P1 → P1/Z3 → P1/S3 and given succesfully by the equations
w2 − (k+1

k−1 )w + 1 = 0 and z3 − w = 0 (where w is the element w(z) = z3.

This correspondance provides a very strong link between algebra and topology,
which we illustrate with the relation with the fundamental group. Let ∆ ⊆ P1

be a finite set of points of cardinality r say. Then a d-sheeted cover of P1 \ ∆
corresponds to, by Galois theory, a map from π1(P1 \∆) to the symmetric group
on d elements. The group π1(P1 \∆) is generated by clockwise loops `1, `2, . . . , `r
around each point in ∆, with the relationship `1 · . . . · `r = 1. This is the free
group on r−1 elements. Using the GAGA-principle from the previous section, this
means that any compact Riemann surface with a d-sheeted map C → P1 ramified
in r fixed points corresponds to a map from {1, . . . , r − 1} → Sd such that the
group generated by the image acts transitively on {1, . . . , d}, giving us a wealth of
examples of algebraic curves. This characterization was already known to Riemann,
and it is usually known as Riemann’s existence theorem.
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Remark 5. The Eulernumber 2− 2g of the cover C is given by

d(2− r) + dr −
∑
c

(rc − 1) = 2d−
∑
c

(rc − 1)

where rc is the ramification index at the point c ∈ C. This allows us to give a
complete classification of all the Galois coverings ramified over P1 \ ∆ which are
still P1 i.e. g = 0, in particular if follows that the cardinality of ∆ is at most three.
Conversely it gives a complete classification of all the finite subgroups of the group
of Moebiustransformations PGL(2,C).

4 Dessins d’enfants
In this section we will focus on the case of coverings ramified in at most three
points. By a Moebius transformation, we can suppose the points are 0, 1 and ∞.
While all compact Riemann surfaces can be realized as ramified covers of P1, three
points adds extra restrictions. An important observation is that in this case, then
the corresponding curve can be represented by polynomials with coefficients in a
number field, i.e. a finite field extension of Q. This is rather astonishing, as the
curves which can be defined over a number field are very special (in the same sense
the algebraic numbers are special in the set of complex numbers). From the point
of view of algebraic geometry, it is however essentially a standard usage of Weil’s
descent theory.
In the 70’s, Alexander Grothendieck wondered if it could possibly be true that the
converse is also true, i.e. if the curve is defined over a number field, can it be real-
ized as a cover over P1 ramified at three points? This seemed as a very optimistic
assertion, even though there was no counter example. To his astonishment, during
the International Congress of Mathematicians in Helsinki ’78, the Russian math-
ematician G. V. Belyi announced this precise statement (see [1]). Moreover, the
proof was completely elementary, and only used general properties of polynomials.
The complete argument fit easily on two pages.
More precisely, the above discussion says that any curve C, together with a holo-
morphic map β : C → P1 only ramified at three points, is necessarily defined over
a number field. This says that the field extensions of C(z), only ramified at z, z− 1
and 1/z (in the sense of algebraic number theory) correspond to field extensions
Q(z) only ramified at the same places. The pair (C, β) is called a Belyi pair, and
β a Belyi function.
We will now describe a topological recipe which describes such pairs. On the sphere,
color the point 0 white, and the point 1 black, and draw the line I = [0, 1] between
them. If we are given a Belyi pair (C, β), we can then consider Σ = β−1(I). This is
a graph traced on C, whose nodes are the white and black inverse images of 0 and
1 respectively, and it is bipartite, that is every edge has exactly one white and one
black node. Furthermore the complement C \Σ splits up into disjoint open sets Us,
each one containing exactly one star point s i.e. an element in the inverse image
β−1(∞). As those sets are the inverse images of the simply connected set P1 \ I
ramified at exactly one point they will be patches biholomorphic to the open unit
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disc, and the map analytically equivalent to z 7→ zδs where δs is the ramification
index of β at s. (Note that Us will be a polygon bordered by 2δs edges and its
image given by Us/(Zδs)).

Example 15. The figure below illustrates the case of P1 → P1/S3 with S3 imbed-
ded in SO(3,R) ⊂ PGL(2,C) and with the Belyi function

K(z) = (z − 1)2(z2 + z + 1)2

(z + 1)2(z2 − z + 1)2

Note that we have three slices (each delineated by two meridans) permuted by
z 7→ e

2πi
3 z, and each of those are rotated by the involution around its star point.

As to the dessin at the right above, the missing white node is at infinity. Note also
that we have a complete bipartite graph. This example is readily generalized to
any action of dihedral groups D2n.

We can also extend the graph by dotted lines. In fact draw an equator on the
sphere by extending I and thus also including ∞. It will bisect the sphere in
two halves, say a gray and a white, and each of those will have inverse images
biholomorphic to the unit-disc. For each edge we can clearly find two wings of
different colors which are attached to it and making up a butterfly5 with the edge
as its body. We can then think of the map to P1 by flapping the wings, making
them attach on their edges. And this map becomes global, by doing it for each
edge. In the picture above we see the tesselation given by butterflies.

Conversely, suppose we are given a bipartite graph Σ traced on a g-hole donut
S, such that each component of S \Σ is homeomorphic with a disc. Then put a star
in each of those components and connect it to all the nodes in its closure. This will
give a tesselation of triangles, which should be colored according to whether 0, 1,∞
defines a positive or negative orientation. Each edge will be adjacent to exactly one
triangle of each color, forming a butterfly ready to have its wings flapped. This
gives local maps to S2 to have them fit together we need to identify elements in
different images. It is not a priori clear how to do that, as we have a lot of freedom
to do so, the one restraint being that points on the dotted edges go down to two
different S2, but by having done that, getting a fixed target sphere, we can endow
it with a complex structure, letting the images of the white, black and star nodes
go to 0, 1,∞ respectively. By GAGA we can induce a complex structure on this
covering from its target and then getting a Belyi pair (C, β),

5to use the terminology from [7].
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Example 16. That basically any drawing by a child corresponds to a "dessin
d’enfant" is a theorem, which says that any finite graph (which can always be
made bipartite by adding a color in the middle of two equally colored nodes if
necessary) can be embedded into a g-holed donut. In fact, suppose we are given a
cyclic ordering of the edges around every node on our bipartite graph Σ. Then we
can attach open discs to edges in a coherent way, to obtain a polygon which is our
surface S, which can be verified to be compact and orientable, and so homeomorphic
to a g-holed donut.

Example 17. Let us explain, in line with the Galois theory of coverings, how a
dessin corresponds to a map {0, 1} → Sd, such that the image generates a group
acting transitively on {1, . . . , d}. Number the edges from 1, . . . , d. Connect edges
lying on the same orbit of the image of 0 with a white dot, and similarily for the
edges on the same orbit of the image of 1 by a black dot. This defines a cyclic
ordering around each node, and a bipartite graph, and the above example shows
how to associate a surface S where it is embedded. The transitivity just means that
the graph is connected.

Let us consider dessins which come from polynomial functions P ∈ C(x), defining
a map P : P1 → P1 which is totally ramified at ∞ over ∞. By normalization we
can write P (x) = kxn(x−1)mφ(x), (where φ(0), φ(1) 6= 0), and a multiple solution
to P (x) = λ is found by looking at the zeros of P ′(x) = kxn−1(x − 1)m−1((n(x −
1) + mx)φ(x) + x(x − 1)φ′(x)) = kxn−1(x − 1)m−1ψ(x). The interesting zeroes
are of course those of ψ(x) = (n(x− 1) +mx)φ(x) + x(x− 1)φ′(x). Being a Belyi
polynomial is equivalent with P (αi) = P (αj) for any two such roots αi, αj and by
chosing k appropriately we can assume that the common value is 1.

The dessin of any such polynomial will be a tree, and we draw it in the plane
C with its natural embedding in C ∪ {∞} = P1, and each white or black node will
have a valence given by its multiplicity. This is usually enough in simple cases to
determine the graph, but as we will see not always so.

n m

Example 18. φ(x) = 1 then ψ(x) = (n +
m)x − n and setting k = (n+m)n+m

nn(−m)m we nor-
malize. (Note when n = m = 1 we simply have
a polynomial ramified at just two points ∞, 1

2 )

n m

n m

Example 19. φ(x) = (x − a) then
ψ(X) = (n+m+1)x2−(a(n+m)+n−1)x+an
and thus its discriminant ∆ = (n + m)2a2 −
(2n(n+m)− 6n− 2m)a+ (n− 1)2. When a is
chosen so that ∆ = 0, then automatically we
get a Belyi polynomial with a dessin on the left.

When the discriminant is non-zero, we need to
choose a such that both roots to the quadratic
gives the same value of P . This is more involved.
When done we get the one on the left.
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Notice that if n 6= m we get two different
choices. We can work out the case n = 3,m = 2
then ψ(x) = 6x2 − (5a+ 2)x+ 3a. The two so-
lutions are of the form α±

√
D where α = 5a+2

12
and D = α2 − a

2 . The condition that they
give the same value of the polynomial P is by
Galois theory that it belongs to Q(a). Setting
ζ = α+

√
D we can explicitly work out P (ζ) =

A(α)+B(α)
√
D and the condition that P (ζ) ∈

Q(a) is that B(α) = 0. B turns out to be a
quintic polynomial which can be worked out ex-
plicitly as 400α5 −800α4 +688α3 −276α2 +27α+1.

Reducing modulo 3 one sees that it is indeed irreducible, and using Maple one can
conclude that its Galois group is S5. As the Galois group acts transitvely on the
polynomials P and hence on the two two graphs, we conclude that the graphs are
invariant under A5 but are switched by odd permutations.

m

Example 20. We can also compose a Belyi
polynomial β with any polynomial map unrami-
fied outside the inverse image under β of 0, 1,∞
in particular we can consider xmn(xm − 1). On
the left we have the case n = 1

Example 21. Define the Chebyshev polyno-
mial Tn by Tn(cosx) = cosnx and look at the
fibers of Tn = a. If a = cos z we can choose
x = z

n + 2π
n k the corresponding cosx will all be

distinct unless z = mπ i.e. a = ±1. Then the
polynomial is Tn+1

2 is ramified above 0, 1,∞.
Even if a polynomial is given is it hard to determine the graph, to say nothing
about producing such pairs given the combinatorial data, which can be stated as
the first basic problem of dessins.

A

B

C
A

B

C
A

The Fermat cubic (associated with the lattice
Z[ρ]) has an action by Z3 the quotient is P1 giv-
ing a meromorphic map of degree three totally
ramified. The associated β satisfies the equation
β3 = x(x − 1). (Or more elegantly β = z given
the Fermat equation x3 + y3 = z3 ramified at
−1,−ρ, ρ2). Note that we can choose in this case

a regular hexagon as fundamental domain for the lattice action. Geometrically this
corresponds to the fact that Fermat cubics are characterized by having three flexed
tangents pass through a point. Projection from such a point gives the required map.

The example above can readily be generalized to any polygon with 4d+ 2 sides
and with opposite edges identified. This will give a 2d + 1 sheeted cover totally
ramified over three points and of genus d
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Dessins d’enfants and their relations to covers of the sphere were already used in
work by Felix Klein in 1978/79 ([3], [4], without Belyi’s theorem). There, he called
them Linienzüge (German: plural of "line-track").

5 Galois actions on dessins
The fact that a curve is defined over a number field K allows us to define an action
of the corresponding Galois group G = Gal(K/Q) on Belyi pairs. More specifically,
a Belyi function β : C → P1 satisfies a polynomial P ∈ K(z)[T ] and hence we can
define for any σ ∈ G the polynomial Pσ by acting on the coefficients of the rational
functions. This defines a new curve Cσ that does not have to be isomorphic to C
(but will topologically be the same) and also a new function βσ : Cσ → P1 which
is also only ramified at three points. However, the corresponding dessins may look
quite different see example 19.

Example 22. Consider again Example 11, and suppose that a, b ∈ Q. The proof
of Belyi’s theorem associates to the function (x, y) 7→ x from E(a, b) : y2 = x3 +
ax + b to P1 a Belyi pair (E(a, b), β). Then E(a, b)σ = E(σ · a, σ · b), and this is
biholomorphic to E(a, b) if and only if their j-invariants are equal, i.e. if j(a, b) =

a3

4a3+27b2 is fixed by σ.

Before describing this action in more detail, let us explain how the outer auto-
morphisms of F2 gives automorphisms of the set of dessins. Thinking of a dessin
as a Belyi pair, and hence a finite index subgroup H of π1(P1 \ {0, 1,∞}) = F2,
it corresponds to a surjection p : F2 → F2/H. Since we have not fixed a base
point in the fundamental group, we only care about F2 up to inner automorphism,
so an automorphism should really be an outer automorphism (outomorphism?). If
we apply such a φ ∈ Out(F2), the composition pφ defines another surjection with
kernel the group φ(H), and so another dessin. A somehow more natural, but more
complicated group of automorphisms on dessins is given by the outomorphisms of
F̂2, the profinite completion of F2. This group turns out to have the same finite
quotients as F2 (cf. Remark 2), so its outomorphisms, which is much bigger than
Out(F2), also acts on dessins in the same type of way.

We are now ready to "describe" which automorphisms of dessins come from the
Galois group. We have already noted that finite covers of P1 \ {0, 1,∞} correspond
to certain field extensions of Q(z). Given two different coverings corresponding to
two subgroups N1 and N2 of F2, they are dominated by a third covering corre-
sponding to N1 ∩ N2. This means that the corresponding two field extensions of
Q(z) is contained in a third one, and if we take the union of all of them we obtain
a field M , which is some weak algebraic analogue of the universal covering space
of P1 \ {0, 1,∞}. The Galois group Gal(M/Q(z)) is then the correspondance be-
tween Galois coverings and Galois extensions the profinite completion of F2, F̂2.
The sequence of field extensions Q(z) ⊆ Q(z) ⊆ M induces by Galois theory an
isomorphism

Gal(M/Q(z))/Gal(M/Q) = Gal(Q(z)/Q(z)).
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Since Gal(Q(z)/Q(z)) = Gal(Q/Q) this says

Gal(M/Q(z))/F̂2 = Gal(Q/Q).

In general, if we have a normal subgroup H of a group G, there is a map G 7→
Aut(H), given by g 7→ [h 7→ ghg−1]. The image of H is by definition the group of
inner automorphisms of H, and we get a map G/H → Aut(H)/ Inn(H) = Out(H).
Applying this in the case above, we obtain a map Gal(Q/Q)→ Out(F̂2). Example
22 above moreover proves the following important corollary to Belyi’s theorem :

Corollary 5.1. The action of Gal(Q/Q) on the set of dessins is faithful, i.e. if
σ ∈ Gal(Q/Q) acts trivially on all dessins, then σ is itself trivial. That is, the
constructed map

Gal(Q/Q)→ Out(F̂2)

is injective.

The proof is essentially by noticing that for any non-trivial element σ in the
Galois group, we can pick an element λ ∈ Q on which it acts non-trivially. Then,
in Example 22 we can always solve for j(a, b) = λ, and the element σ will define a
new cubic curve which will not be isomorphic to the original one.
From this description it is not at all clear if a given action on dessins coming from
an element in Out(F̂2) come from the Galois group. In [2], Drinfel’d defines a much
smaller group ĜT , the Grothendieck-Teichmüller group, which still contains the
Galois group. It is not known whether they are equal or not.
The second main question on dessins is related to this Galois-action. It is not
obvious when two dessins are related by a Galois conjugation. Since the dessins are
so simple, and admit an action of the Galois group, it should be possible to extract
some type of data which distinguish whether two dessins are Galois conjugate or
not. Are there any combinatorial, topological or even algebraic invariants which
can distinguish whether two dessins are in the same Galois-orbit? There are some
rather easy invariants that necessarily must be invariant. For example, the genus of
the surface a dessin is traced on is an obvious invariant. Another simple invariant
is the number of white and black nodes, number of edges or the number of faces. A
slightly more subtle invariant is the so called degree-sequence. This is a decreasing
sequence of numbers, stating the number of edges coming out of the white (or
black) nodes. A yet more complicated combinatorial invariant is the subgroup of
Sd in Example 17. It is known that these invariants, or other more complicated
known combinatorial invariants, do not distinguish Galois-orbits.
For the interested reader further references, from which also some of the above
material is taken, can be found in [7] (for an early account of the theory), [8], [9]
and of course the original Esquisse d’un Programme in [5].
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