
199

Borg, A. & Fahlgren, M. (2023). Analysing mathematical programming schemes using different
lenses. Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

Analysing mathematical
programming schemes using

different lenses

andreas borg and maria fahlgren

The use of programming in mathematics education is undergoing a renaissance
and, in this paper, we analyse students’ handling of programming in mathematics
using the Instrumental approach as a theoretical lens. We are especially interested
in analysing the development of mental schemes using two analytical frameworks
which are compared and contrasted according the idea of networking theories. The
study illustrates that the frameworks’ detail of richness can have both advantages
and disadvantages and that one of the frameworks are more customed to be applied
when analysing students’ instrumental genesis concerning the use of a programming
environment as a mathematical artefact.

During the past two decades, programming has in many countries been
given a more prominent role in lower and secondary school, often linked
to the subject mathematics. As a consequence, there has been renewed
interest in mathematics education research regarding how the use of pro-
gramming could help fostering conceptual mathematical understanding
as well as developing students’ computational thinking. In this paper
we focus on students’ use of programming when solving a mathemati-
cal problem, using the Instrumental approach as a theoretical starting
point. We are especially interested in applying two different analytical
frameworks for describing the utilization schemes developed by students
when engaging in mathematical activities involving the use of program-
ming. Based on the two analyses, the aim of the paper is to compare
and contrast the two frameworks’ affordances when analysing the
instrumental genesis of students using programming in mathematics
education.

Andreas Borg, Karlstad University
Maria Fahlgren, Karlstad University

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.200

The renaissance of programming in school mathematics
During the 1970s and 1980s, programming became more frequently used
for educational purposes. As an advocate for the use of programming in
mathematics education, Papert (1980) argued that programming could
help students learn the language of mathematics and thereby develop
new cognitive skills when engaging in pre-designed programming tasks
referred to as microworlds. Sutherland (1994) argued that programming
could be seen as a form of experimental mathematics and could also,
according to Noss (1986), ”provide children with a framework on which
further [mathematical] learning may be based” (p. 353). Although an
extensive amount of research agreed on the benefits of using program-
ming in mathematics education, the role of programming in schools
diminished during the 1990s.

Since the 2010s, programming has once again been given a more
prominent role in education, much due to the technical development
in society which has called for an increased digital competence includ-
ing a more developed computational thinking. Wing (2006) argues that
computational thinking involves ”solving problems, designing systems,
and understanding human behaviour, by drawing on the concepts funda-
mental to computer science” (p. 33). Computational thinking could also
be developed during mathematical activities which according to Kallia et
al. (2021) are characterised by a ”structured problem-solving approach in
which one is able to solve and/or transfer the solution of a mathematical
problem to other people or a machine by employing thinking processes”
(pp. 20–21).

When reintroducing programming in school curricula, different
countries have taken different approaches. In England, the subject Com-
puting was introduced in 2014 with the aim of learning all students the
fundamental ideas of programming (Sangwin & O’Toole, 2017). In count-
ries such as Sweden, Finland (Bocconi et al., 2018), and France (Gueudet
et al., 2018), programming has been integrated within the subject of
mathematics and regarded as a digital tool for solving mathematical tasks
through the design of algorithms. However, Bråting and Kilhamn (2021)
argue that the use of programming in mathematics education is not a
straightforward process, for example, different roles and meanings of the
equal sign and variables in mathematics compared to programming could
cause students difficulties. In Denmark, a pilot project was implemented
2018 related to the introduction of the subject Technology comprehension
(Elicer & Tamborg, 2021). The project has evaluated two ways of imple-
menting this new subject; (1) as a separate subject and (2) integrated into
other subjects (e.g. mathematics).

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

201

If students’ use of programming should contribute to the development
of their computational thinking, the students’ technical handling of the
programming environment is essential. Programming environments
such as Scratch, using visual programming, has decreased the technical
difficulties relating to the syntax (Resnick et al., 2009) which 30 years ago
was one of the reasons why the use of programming in school mathema-
tics drastically decreased. Yet, it could be argued that using programming
for mathematical purposes should not be regarded as a straightforward
endeavour. Drijvers and Trouche (2008) claim that when students use
digital tools in order to solve mathematical tasks, there always exists an
intertwining between the technical handling of the tool and the concep-
tual understanding relating to the mathematical objects which the tool
should act upon. Thus, it could be argued that in order to successfully
integrate programming as a tool in school mathematics, this intertwin-
ing, which is the core of the Instrumental approach, is of special interest.

The Instrumental approach
During the past decades, the Instrumental approach has frequently been
used in mathematics education research in order to reach a better under-
standing of how the appropriation of digital artefacts affect students’
building of mathematical knowledge (Buteau, Muller et al., 2020). The
instrumental genesis involves ”the construction of personal schemes
or, more generally, the appropriation of social pre-existing schemes”
(Artigue, 2002, p. 250) and during this process, the artefact transforms
into an instrument, a psychological construct including not only the arte-
fact itself but also the mental schemes associated with the use of the arte-
fact based on the given purpose (Rabardel, 2002). A mental scheme can
be regarded as an ”invariant organization of behavior for a certain class
of situations” (Vergnaud, 1998, p. 167) or as ”a more or less stable way to
deal with specific situations or tasks, guided by developing knowledge”
(Drijvers et al., 2013, p. 27). Since the existence of the schemes directly
relates to students’ ability to appropriate a technical artefact for given
mathematical purposes, the development of such utilisation schemes is
of special interest when investigating students’ instrumental genesis.
Utilisation schemes consist of two levels of schemes; usage schemes,
linked to secondary tasks (i.e., tasks relating to the subject’s handling of
the artefact), and instrumented action schemes relating to the primary
tasks (i.e., actions directed towards the subject’s main objective) (Rabar-
del, 2002). Instrumented action schemes thus consist of usage schemes.

The concept of schemes could be used to understand subjects’
stable behaviours but also to describe and gain knowledge about

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.202

problem-solving processes (Vergnaud, 1998). In order to analyse such
processes, schemes can be described using its four components; goals
and anticipations, rules of action, operational invariants and possibilities of
infe-rences. Vergnaud (1998) states that every mathematical activity and
consequently every associated scheme is based on more or less reach-
able goals and anticipations. The rules of actions within the scheme are
the gene-rative parts that ”generates behaviours as a function of some
situation variables” (p. 229). The operational invariants are, according
to Vergnaud (2009), the epistemic aspects of the scheme and comprise
concepts-in-action and theorems-in-action. Concepts-in-action are used
to select and categorise information relevant in order to solve a specific
task and are vital bricks of the theorems-in-action which are proposi-
tions held to be true by the subject when she or he acts toward the given
object (Vergnaud, 1998). During an activity there also exists possibilities
of inferences, that is, ”possibilities of adaptation to the specific features
of the situation” (Buteau, Muller et al., 2020, p. 373) which, according
to Gueudet et al. (2020), can lead to the development/use of additional
rules of action, operational invariants or even completely new schemes.

The instrumental genesis works in two directions (Artigue, 2002).
It is directed towards the artefact, a process called instrumentalization.
During this process, the subject learns about possibilities and constraints
given by the artefact (Trouche, 2005) which allows the subject to per-
sonalise and modify the artefact in order to better fulfil her/his needs
given the object on which the artefact should act upon. Instrumentation
is the second process of instrumental genesis which is directed toward
the subject. During the instrumentation, the artefact prints its marks on
the subject and the instrumented action schemes are developed.

Solving a specific task using a technical artefact involves the use of an
instrumented technique which according to Artigue (2002) is ”a manner of
solving a task and, as soon as one goes beyond the body of routine tasks
for a given institution, each technique is a complex assembly of reason-
ing and routine work” (p. 248). Instrumented techniques are often looked
upon and assessed based on their pragmatic value ”by focusing on their
productive potential (efficiency, cost, field of validity)” (Artigue, 2002,
p. 248), but could also have epistemic values since they may help devel-
oping the subject’s conceptual understanding relating to the object(s) in
question. Consequently, when students solve mathematical tasks using a
technical artefact, they apply an instrumented technique which poten-
tially both could ease the practical efforts to solve the task and increase
students’ conceptual understanding relating to the object of which the
artefact is used to act upon.

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

203

It should be stressed that Vergnaud’s (1998) psychological notion of
scheme which served as the foundation for the concept of instrumen-
tal genesis (Rabardel, 2002) was overlaid by the anthropological notion
of technique when the idea of instrumental genesis was taken up by
mathematics education researchers (Artigue, 2002).

Analysing scheme development using two different lenses
The aim of this paper is to network two analytical frameworks which
previously have been used to analyse scheme development as a part of
students’ instrumental genesis. According to Prediger et al. (2008), net-
working theories has in mathematics education research been regarded
important due to the variety of conceptual theories existing within the
field. They claim that the process of networking theories involves four
different networking strategies: understanding others and making own
theories understandable; comparing and contrasting; coordinating and
combining; as well as synthesizing and integrating. This paper will focus
on the networking strategy comparing and contrasting which aims at
highlighting ”similarities and differences, possible connections as well
as complementary aspects” (Drijvers et al., 2013, p. 25). The aim of this
strategy is according to Drijvers et al. (2013) not necessarily to decide
which theories are most appropriate to use, but rather to investigate ”if
the results from both analyses shed new lights on the phenomenon under
consideration” (p. 25).

It is important to stress that the aim of this paper is not network-
ing different theoretical frameworks but rather networking two diffe-
rent analytical frameworks used within the same theoretical frame (i.e.,
the Instrumental approach). Yet, we argue that the strategies for net-
working theories presented in this section could also be applied when
analysing the practise of two different analytical frameworks. We argue
that analysing data using different analytical frameworks related to the
Instrumental approach and networking these frameworks potentially
may highlight different aspects of the subjects’ schemes relating to the
use of specific artefacts as well as differences and similarities between
the frameworks.

The first approach for analysing students’ instrumented action schemes
presented in this paper has been operationalised by Buteau, Gueudet
et al. (2020) when investigating the instrumental genesis of university
students trying to solve mathematical problems using a programming
environment. Buteau, Gueudet et al. (2020) describe the instrumented
action schemes using the scheme components introduced by Vergnaud
(1998) (goal and anticipations, rules of action, operational invariants and

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.204

possibilities of inferences). They argue that using scheme components
when describing students’ instrumented action schemes and analysing
students’ instrumental genesis ”deepen[s the] understanding of what is at
stake in terms of students’ learning in this particular context” (p. 1036).
Furthermore, they claim that the instrumented action schemes used by
the students to solve a specific task may involve different sets of scheme
components due to students’ different problem-solving approaches.
Gueudet et al. (2020) argue that during a mathematical problem-solv-
ing activity involving the use of a programming environment, students
develop a complex network of schemes involving mathematical schemes
(m-schemes), programming schemes (p-schemes) , and combined pro-
gramming and mathematics schemes (p + m-schemes). When analysing
different schemes developed by students using a programming environ-
ment (the artefact) during a mathematical activity, Buteau, Muller et al.
(2020) characterise schemes involving goals in which programming and
mathematics are closely linked together as p + m-schemes. Such schemes
could, according to Gueudet et al. (2020), serve as a bridge between mathe-
matical and digital competencies and the operational invariants of such
schemes illustrate the relationship between mathematics and program-
ming. But during a mathematical activity involving the use of a program-
ming environment, there may also exist p-schemes that only involves rules
of action linked to the use of the artefact and not associated with any
mathematical content as well as m-schemes not associated with the use of
the artefact but solely related to the mathematical object(s).

The second approach for describing utilization schemes presented in
this paper has been frequently used when analysing students’ instrumen-
tal genesis relating to their handling of technical mathematical artefacts
such as calculators, CAS, and dynamical geometry software (Drijvers
& Gravemeijer, 2005; Fahlgren, 2017; Trouche, 2005; Turgut & Drijvers,
2021). Drijvers and Gravemeijer (2005) share the description of schemes
introduced by Vergnaud (1998) but claim that schemes are hidden inside
the head of the subject and thus cannot be directly observed. Instead, Drij-
vers and Gravemeijer (2005) argue that the instrumental genesis is best
understood by analysing the subject’s instrumented technique which they
describe as ”a set of rules and methods in a technological environment
that is used for solving a specific type of problem” (Drijvers & Gravemei-
jer, 2005, p. 169). They argue that the instrumented techniques, which are
the technical aspects of the instrumented action schemes made visible
for the researcher when studying subjects’ use of the artefact, are ”the
gateway to the analysis of instrumental genesis” (p. 169). When investi-
gating the instrumental genesis through students’ instrumented tech-
niques, Drijvers and Gravemeijer (2005) suggest identifying key elements

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

205

of the instrumented action schemes which could have technical as well
as conceptual character. They argue that there is a two-dimensional
relationship between the two types of elements since

on the one hand, the possibilities and constraints of the artifact
shape the conceptual development of the user; the conceptions of
the user, [and] on the other hand, change the ways in which he or
she uses the artifact, and may even lead to changing the artifact or
customizing it (Drijvers & Gravemeijer, 2005, p. 168)

which is also emphasised in the differences between instrumentaliza-
tion and instrumentation. Although this analytical framework has been
commonly used in mathematics education research, it has never, as far as
we know, been applied when studying the instrumental genesis during
mathematical activities where a programming environment constitutes
the artefact.

The aim of this paper is to assess the affordances of the two above-
mentioned analytical frameworks when analysing the instrumental
genesis of students using programming during mathematical activity
and the specific research question is:

When examining students’ use of programming in mathematics, how does the
framework for analysing utilization schemes based on the notion of a scheme
presented by Vergnaud (1998) compares and contrasts to the well-estab-
lished analytical framework for analysing schemes based on instrumented
techniques (Drijvers & Gravemeijer, 2005)?

Method
The comparison of the two different analytical frameworks will be opera-
tionalised by analysing existing data from a study conducted by the first
author (Borg, 2021). One of the aims of that study was to analyse the
instrumental genesis of Swedish upper secondary school students using
programming to solve mathematical problems. The students participat-
ing in the study were taking their third course in mathematics (Mathe-
matics 3c) and an introductory course in programming (Programming 1).
Although the students had basic knowledge about programming con-
cepts, they had limited or no experience of using programming for
mathematical purposes. Due to students’ prior experience, Java was the
syntax-based programming language used by the students during the
intervention together with the programming environment NetBeans 8.2.
During the intervention, the students worked in pairs and the activity
on their screens together with their mutual conversations were recorded
and served as the main data of the study.

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.206

The data analysed in the following section concerns a problem-solving
activity during which the students were asked to solve a mathematical
problem concerning Cinderella who has had her wish not to age fulfilled.
Her two older sisters, of whom the oldest was 15 years older than Cin-
derella inform Cinderella that her wish means that they will lose 480
gold coins the following year, as the sisters each year receive the product
of their ages in gold coins from their father. Based on this information,
the students were asked to determine the ages of the three siblings.
Although the problem can be mathematised algebraically in terms of
relationships involving the ages it could not be solved algebraically using
analytical methods familiar to the students. Instead, it was intended
that the students should solve the problem by conducting an exhaustive
trial (using programming) involving the use of loops in order to systema-
tically combine the ages of the sisters and conditionals to test if each
combination of ages fulfilled the conditions stated in the task.

Data analysis
When the first author (Borg, 2021) analysed the schemes of the Swedish
upper secondary school students using scheme components as described
by Vergnaud (1998), rules of action were highlighted by the action taken
by the students during the mathematical activity (Gueudet et al., 2020).
The rationales for the students’ actions were, in this way of analysing
data, interpreted as operational invariants. Such rationales involving con-
cepts used by the students were categorised as concepts-in-action and
rationales involving propositions held to be true by the students were
categorised as theorems-in-action. During the analysis, the first author’s
(Borg, 2021) intention was to stay true to the way Buteau, Gueudet et al.
(2020) and Gueudet et al. (2020) analysed schemes developed by univer-
sity students engaging in problem-solving using programming as a math-
ematical tool. Table 1 illustrates an example of the scheme components
identified by Buteau, Gueudet et al. (2020) when describing a scheme of
a student validating the programmed mathematics.

When, in this paper, analysing the same data by scrutinising students’
instrumented techniques, the authors’ intention has been to describe such
techniques in the same manner as Drijvers and Gravemeijer (2005). Thus,
we have, based on the actions taken by the students, identified core ele-
ments of the instrumented action scheme. During the analysis, elements
are regarded to have a conceptual character if they are relating to the
mathematical object in question and regarded to have a technical char-
acter if they are relating to the handling of the technical artefact. Table 2

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

207

illustrates an example of core elements identified by Drijvers and Grave-
meijer (2005) when describing elements of a scheme for solving param-
eterized equations using a symbolic calculator.

It should be stressed that the analysis only involves data from a single
intervention and will only describe the instrumented action schemes
used by the students at this particular moment. The authors therefore
make no claims of analysing the students’ instrumental genesis in detail
which would have required a more longitudinal approach.

Conceptual elements Technical elements

CE-1: Knowing that the Solve command can be
used to express one of the variables in a param-
eterized equation in other variables.
CE-2: Knowing the difference between an
expression and an equation.
CE-3: Realizing that an equation is solved
with respect to an unknown and being able to
identify the unknown in the parameterized
problem situation.
CE-4: Being able to interpret the result, par-
ticularly when it is an expression, and to relate
it to graphical representations.

TE-1: Remembering the TI-89 syntax of
the Solve command, that is Solve (equation,
unknown).
TE-2: Being able to type in the Solve command
correctly on the TI-89.

Table 2. Core elements for solving parameterized equations using a symbolic
calculator (Drijvers & Gravemeijer, 2005, p. 174)

Table 1. Components of a student’s scheme for validating the programmed
mathematics (Buteau, Gueudet et al., 2020, pp. 1032–1033)

Goal and anticipation Rules of action Operational invariants

GoA: Validating the pro-
grammed mathematics.

RoA-1: Testing of each vb.net
function in isolation, i.e. that
it runs and that the expected
output is correct.
RoA-2: Combining them in
simple ways and testing the
combination, i.e. that it runs
and that the expected output
is correct.
RoA-3: Checking that the
more elaborated combinations
of functions runs without
crashing or does not ”do some-
thing completely unexpected”.
RoA-4: Testing the final
mathematics result, i.e. that
the output is correct.

CiA-1: Programming vb.net function.
CiA-2: Method of ”combining
functions in simple ways”.
CiA-3: ”Unexpected end math result”.
CiA-4: Input and output of a program.
CiA-5: Mathematical model and
process.
CiA-6: ”Working” program.
TiA-1: ”If every vb.net function works
properly and the method you use to
join the vb.net function is working
properly, and the final product is
working properly, then you kind of
can assume that the program itself is
working properly”.
TiA-2: If nothing is really acting
unexpectedly, then it is assumed that
the program works.
TiA-3: If running the program with
specific input values of a ”complex”
computational mathematical model
returns a correct math output, then it
is assumed that the program works.

Note. CiA = concept-in-action; TiA = theorem-in-action

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.208

Results
The episode narrated in this section has been chosen on the basis that it
contains both mathematical aspects concerning students’ use of prob-
lem-solving strategy as well as technical aspects relating to the imple-
mentation of the strategy using programming. When trying to solve the
mathematical problem described in the previous section, the students
George and Henrik successfully stated correct mathematical relation-
ships relating to the ages of the sisters but then struggled to articulate an
adequate problem-solving strategy and understanding the potential role
of programming. Instead, the students tried to simplify the relationships
using algebraic manipulations. In the following excerpt, the students
discuss their ongoing work with the researcher (first author).

Res.: And now you have tried to expand and multiply.
Henrik: Yes, expanded it, multiplied. Kind of to get even more removed. I

replaced f in the first so you only got a. But I do not know if it helps.
But it is in the back of my mind that you have to test because I do not
know what else you would use programming for.

Res.r: No, that may be wise.
Henrik: But I do not know what to test in that case.
Res.: No, but you mentioned that you wanted to test so that you sort of

could find the optimal ... So that it was true.
George: Yes, but I don’t know how to do it. If you ... No, I don’t know.
Res.: Because then it might be important to test with different values for

a and different values for f and see if you can find a combination that
works.

Henrik: Yes. George, we could actually do that. We ignore everything we’ve
done so far.

The students now start coding and first construct a code (figure 1) which
only vary the value of the variable (f) corresponding to the age of the mid
sister. The variable corresponding to the age of Cinderella (a) is given a
fixed value in line 19. Within the loop (line 21–28), the variable skillnad
is assigned a value corresponding to the number of lost gold coins, where
the variables summa1 and summa2 correspond to the number of gold coins
given to the sisters if Cinderella did age or not. The IF statement in line
25 tests if the value of skillnad equals 480 (the number of lost coins) and
if so, the value of a and f should be printed.

The students execute the code but their program does not generate
any output. At this stage, George’s and Henrik’s intention is to manually
alter the value of a each time the program has been run.

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

209

George: It will probably not find anything because it (a) is not 20. No.
Henrik: She’s not 20 then. But then we can only test upwards.
George: Or we do another FOR loop.

The students now add another FOR loop controlling the values of the
variable a (figure 2) and this loop is also nested with the existing FOR
loop controlling the variable f (although the initial value of f is not fitting
based on the task). When executing the code, the program generates four
outputs (solutions) and the students start discussing the validity of the
solutions (0, 29), (4, 23), (8, 19), and (14, 15).

Figure 1. Code involving the use of a single loop

Figure 2. Code involving the use of nested loops

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.210

Henrik: 14 and 15 could work. It’s the only one that works.
George: Why couldn’t Cinderella be... Cinderella could be 8?
Henrik: No, I was joking. She can be 8 or she can be 14. But 23 and 4, and 0 and

29 do not work.
George: Why not?
Henrik: Try to take 29 minus 0, it’s greater than 15. Right? And 23 and 4. 23

minus 4 is also greater than 15. So, Cinderella is 8 or 14.

Henrik realises that two of the solutions do not meet the condition f < a + 15
and then adds such a condition within the IF statement. Although their
code has some minor deficiencies, the executed program now generates
two correct solutions.

Describing the scheme using a scheme components (SC) analysis
In this sub-section, the scheme developed/used by the students will be
described using scheme components (Vergnaud, 1998). The scheme,
which is summarised in table 3, is a combined programming and mathe-
matics scheme (i.e., a p + m-scheme) (Gueudet et al., 2020) since the aim
of the activity is to use the programming environment to conduct an
exhaustive trial in order to solve a mathematical problem involving
algebraic relationships.

Based on the first excerpt involving a discussion between the researcher
and the students, Henrik argues that ”you have to test” which could be
regarded as a proposition or a theorem-in-action (TiA-1) that a possible
problem-solving strategy for solving the problem would involve the use
of an exhaustive trial. TiA-1 is in turn based on two corresponding con-
cepts-in-actions relating to the concept of stating mathematical relation-
ships between the variables in play (CiA-1) and the concept of an exhaus-
tive trial (CiA-2). During the discussion, Henrik also realises that an
exhaustive trial should be based on the idea of systematically combining
variables (CiA-3) which forms a corresponding theorem-in-action (TiA-2).

The students’ initial idea when constructing their code in order to
conduct an exhaustive trial was to vary only one of the variables using a
FOR loop and then vary a second variable manually each time the code
was executed. The actions taken by the students, when starting their
problem-solving process is categorised as rules of action (RoA-1, RoA-2,
RoA-3, RoA-5, RoA-6). When Henrik later realised that they could use
another loop to vary the variable a he brought into action serval new com-
ponents within their instrumented action scheme relating to the use of
nested loops (CiA-4, CiA-5, CiA-6, TiA-3, RoA-4).

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

211

The students seemed confused by the fact that their program then gene-
rated four different outputs. It could be argued that testing the gene-
rated solutions meant that the students subsequently applied new rules
of action relating to coordination of the necessary rules of action (RoA-7)
as well as to the fact that all the information in the problem should be
taken into account (RoA-8).

Since the data analysed in this paper only concerns short excerpts from
students’ use of the programming environment during a single lesson,
it was not possible to analyse the existence of possibilities of inferences.

Describing the scheme using an instrumented techniques (IT) analysis
In accordance with the work of Drijvers and Gravemeijer (2005), the
instrumented action scheme of the students George and Henrik will,
in this sub-section, be described by distinguishing conceptual and
technical elements (table 4) based on the students’ instrumented
techniques.

Table 3. Components of George’s and Henrik’s instrumented action scheme

Goal and anticipation Rules of action Operational invariants

GoA: To use a programming
environment to conduct
an exhaustive trial in order
to solve a mathematical
problem involving algebraic
relationships between
variables.

RoA-1: Formulate the problem
situation as amenable to solu-
tion through exhaustive trial.
RoA-2: Declare computational
variables and (where given)
assign variables values.
RoA-3: Create an iteration and
define conditions for the loop.
RoA-4: Create nested loops
in order to systematically
combine variables.
RoA-5: Make use of the con-
ditional operator IF to (a)
evaluate given conditions in
order to (b) perform different
actions based on the validity
of the given conditions.
RoA-6: Create an output
which shows the values of
variables.
RoA-7: Coordinate necessary
rules of action (as efficiently
as possible) so as to construct a
solution procedure.
RoA-8: Make sure that the
program takes account of
all the information in the
problem statement.

CiA-1: The idea of expressing a
mathematical problemin terms of
(one or more) algebraic relationships
between variables.
CiA-2: The idea of conducting an
exhaustive trial.
CiA-3: The idea of systematically
combining variables.
CiA-4: The idea of establishing a
loop relating to each of the variables
in play.
CiA-5: The idea of nesting loops
(and statements within them) in
order to achieve an appropriate
sequence of variable-related actions.
CiA-6: The idea of using condi-
tions within loops and conditional
operators in order to extract solu-
tions within a given range during an
exhaustive trial.
TiA-1: Conducting an exhaustive
trial is a means of solving mathe-
matical problem involving algebraic
relationships between variables.
TiA-2: Systematically combining
variables is a means for conducting
an exhaustive trial.
TiA-3: Establishing a loop for each
variable in play and nesting these
loops is a means for systematically
combining variables.

Note. CiA = concept-in-action; TiA = theorem-in-action

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.212

Based on the conversation in the first excerpt, Henrik seems to realise
that conducting an exhaustive trial would be a possible way of finding
solutions to the problem, which could be described as an important con-
ceptual element (CE-1) of the developing scheme since it is foremost
concerning the mathematical objects relating to the problem. After the
discussion with the researcher, Henrik also realises that such a trial has to
include testing all relevant combinations of ages towards the conditions
given in the problem which is regarded as another conceptual element
(CE-2). He also appreciates the potential role played by the technical arte-
fact in order to conduct such a trial which brought into action several
technical elements (TE-1, TE-2, TE-4, TE-5) relating to the specific
handling of the programming environment (the artefact). After con-
structing a code that used a single loop to vary only one of the variables,
the students used nested loops in order to systematically combine two
variables (TE-3).

Conceptual elements could guide the activity but could also be the
outcome of the activity (Drijvers et al., 2013) which was illustrated when
the two students discussed the validity of the four solutions generated by
their code. The use of their initial IF statement had printed combinations
of ages which only fulfilled the condition related to the number of gold
coins lost by the sisters. But the output of their program together with
the following discussion made it evident to the students the necessity of
being thorough when stating variable ranges for the variables relating to
the conditions given in the problem (CE-3). This outcome could also be
seen as an example of instrumentation, where the artefact influences the
subjects’ perception regarding the mathematical object.

Discussion
The previous section has offered a description of an instrumented action
scheme using two different analytical frameworks. The scheme was

Table 4. Core elements of George’s and Henrik’s instrumented action scheme

Conceptual elements Technical elements

CE-1: Realising the possibility to solve a mathe-
matical problem involving algebraic relation-
ships between variables by using an exhaustive
trial.
CE-2: Knowing that an exhaustive trial implies
that every single combination of ages must be
evaluated in order to determine if they fulfil the
conditions given in the mathematical problem.
CE-3: Realising the importance of stating ranges
for the variables in play based on the condition(s)
given in the mathematical problem.

TE-1: Being able to define computational variab-
les and assigning such variables values.
TE-2: Being able to create a FOR loop and define
conditions for the loop.
TE-3: Being able to create nested loops in order
to systematically combine variables.
TE-4: Being able to create IF statements to (a)
evaluate given conditions in order to (b) perform
different actions based on the validity of the
given conditions.
TE-5: Being able to create an output which shows
the values of variables.

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

213

described by studying the students’ instrumented techniques (IT) and
defining core elements of the scheme as well as by describing the scheme
using scheme components (SC). In this section, relating to the research
question of this paper, we compare and contrast the two analytical frame-
works from a networking perspective (Prediger et al., 2008) based on the
outcome of the two separate analyses including a discussion concern-
ing the affordances of the analytical frameworks when analysing the
instrumental genesis of students using programming in mathematics.

Comparing and contrasting the two analyses
A clear difference between the schemes described using the two diffe-
rent analytical frameworks is the richness of detail. Whereas the scheme
described using the IT analysis includes eight core elements divided into
two categories, the SC analysis describes the scheme by using 18 com-
ponents of three different types. In accordance with the view of Buteau,
Gueudet et al. (2020), it could be argued that the richness of detail
illustrates the complexity of an instrumented action scheme. Although
no such comparison was made in this paper, it could be argued that a
more detailed description of a scheme would also facilitate comparisons
between schemes developed by different students. But the fact that the
scheme generated through the IT analysis was less detailed could also
be seen as an advantage since the focus remains on the conceptual and
technical aspects of the scheme and how these aspects or elements are
intertwined (Drijvers & Gravemeijer, 2005). In line with Drijvers and
Gravemeijer (2005), we argue that, especially for novice researchers, the
meaning and application of conceptual and technical elements are rela-
tively easy to grasp whereas, in our view, the implications of rules of
action, concept-in-action, and theorems-in-action could be perceived as
less accessible.

We argue that the nature of the artefact could also affect the applica-
bility of the frameworks. IT analyses in existing literature often concern
the use of calculators, CAS, or dynamical geometry software whereas the
SC analysis in the form presented in this paper only has been applied
when studying students’ use of programming in a mathematical context.
An important difference between programming environments and the
other technical artefacts mentioned in relation to the IT analysis, is that
a syntax-based programming environment is not primarily designed
for educational purposes, and more important not designed as a math-
ematical tool (Buteau, Gueudet et al., 2020). Whereas the syntaxes used
when handling for example a handheld calculator are pre-designed in
order to conduct mathematical actions, the corresponding actions using

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.214

a programming environment often has to be designed by the user with
the help of programming concepts, a design which could be hampered
by the different meanings existing between symbols used in both pro-
gramming and mathematics (e.g. variables and the equal sign) (Bråting &
Kilhamn, 2021). Since previous research (Drijvers & Gravemeijer, 2005)
has shown that students’ handling of syntaxes related to the use of cal-
culators are far from straightforward we claim that the use of a syntax-
based programming language for mathematical purposes could poten-
tially be perceived as even more complicated. There could thus exist a
great distance (Haspekian, 2005) between how students solve mathemati-
cal problems using paper and pencil compared to how similar problems
are to be solved using programming. This distance, which could hamper
the instrumental process, is among other things affected by the differ-
ent meanings of symbols used in both mathematics and programming
(Bråting & Kilhamn, 2021). It could thus be argued that the adaption of
the programming environment for mathematical purposes is an essential
part of the instrumental genesis during which the subject modifies the
artefact in order to better fulfil her/his needs (Rabardel, 2002). We argue
that the more detailed SC analysis has the potential to highlight this
adaption process and in accordance with Gueudet et al. (2020) we claim
that the SC analysis in a clear way visualises the bridge between math-
ematical and digital competencies and the adaption of the programming
environment for mathematical purposes by referring to key operational
invariants related to both mathematical and programming knowledge
(i.e., CiA-2, CiA-3, CiA-4, CiA-5, TiA-1, TiA-2). We argue that this bridge
is less evident in the IT analysis and in order to highlight the complexity
of using technical artefacts, such as programming environments, not spe-
cifically designed as mathematical tools, we suggest that the IT analysis
should not only involve conceptual elements relating to mathematical
objects but also conceptual programming elements relating to the use of
the artefact for mathematical purposes.

Comparing and contrasting the two frameworks
Since the instrumented techniques and the components of schemes
have different functions in the Instrumental approach, the two analyti-
cal frameworks applied in this paper to describe instrumented action
schemes use different notations. But we argue that it is still possible to
establish links between them (table 5). We regard rules of action as the
generative part of the scheme and thus, like the instrumented tech-
niques, the most observable part of the scheme. Rules of action just
like instrumented techniques could also have a pragmatic as well as a

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

215

epistemic function (Ruthven, 2002). We also argue that concepts-in-
action (relating to mathematical concepts) could be viewed as the psy-
chological correlate of conceptual elements, whereas theorems-in-action,
which we regard as the bridge between concepts-in-action and rules of
action, lacks an obvious equivalent in the IT analysis. Describing the
scheme using SC could thus be considered as a more nuanced approach,
recognising the interweaving within the instrumental genesis of what
could be referred to as technical and conceptual aspects of mathematical
capability.

Conclusions
In this paper, we have tried to describe students’ instrumented action
schemes using two different analytical frameworks. Since the analysed
data is limited and since the work of the participating students only
involves one single intervention, we cannot comment on the students’
instrumental genesis. Also, we cannot claim that the scheme analysed
really is an invariant organization of behaviour for this specific type
of situation. Yet, we argue that the scheme analysed at least could be
regarded as a scheme in progress, which development together with the
artefact initiates the creation of the instrument.

The analytical frameworks used to analyse the same data in this paper
describe schemes differently. Since Drijvers and Gravemeijer (2005)
argue that the schemes are hidden for a researcher inside to head of the
subject, they are restricted to describing the core elements of the scheme

Table 5. The relationships between scheme components and core elements

SC analysis IT analysis

Rules of action Instrumented techniques

Examples:
Create an iteration and define conditions for the
loop (RoA-3).
Create nested loops in order to systematically
combine variables (RoA-4).

Examples:
Students’ use of loops in order to combine values
of variables involving technical elements such as
being able to create a FOR loop and define condi-
tions for the loop (TE-2) and being able to create
nested loops in order to systematically combine
variables (TE-3).

Concepts-in-action Conceptual elements

Examples:
The idea of expressing a mathematical problem
in terms of (one or more) algebraic relationships
between variables (CiA-1).
The idea of conducting an exhaustive trial (CiA-2).
The idea of nesting loops (and statements
within them) in order to achieve an appropriate
sequence of variable-related actions (CiA-5).

Examples:
Realising the possibility to solve a mathemati-
cal problem involving algebraic relationships
between variables by using an exhaustive trial
(CE-1).
Knowing that an exhaustive trial implies that
every single combination of ages must be evalua-
ted in order to determine if they fulfil the condi-
tions given in the mathematical problem (CE-2).

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.216

illustrated through the instrumented techniques. This means that the
description of a scheme becomes less fine-grained than the schemes
described by Buteau, Gueudet et al. (2020) who regard the subject’s actions
and the verbal justification of such actions during a mathematical activity
as evidence for the components that form the scheme. Although it could
be argued that the detail of richness in the SC analysis could potentially
highlight aspects which would be hidden when only discussing core ele-
ments of the scheme, it could also be discussed in how much detail you
can describe a mental construct such as a scheme. It could, in accordance
with Drijvers and Gravemeijer (2005), be argued that it is impossible to
directly observe a scheme which implies that descriptions of schemes
using SC are based on hypothesis of the observed behaviours. There is
thus a risk that the level of detail gained when describing a scheme using
SC comes with a cost, the reliability of the analyses.

We have also discussed that using a programming environment, an
artefact not designed primarily as a tool for mathematical purposes, may
increase the complexity of the instrumented action schemes developed
by the students. Through the operational invariants linking mathema-
tics and programming knowledge together, this complexity is more nat-
urally visualized during a SC analysis. Therefore, we argue that there is
a need for expanding the conceptual elements in an IT analysis to also
include conceptual programming elements relating to the mathematical
possibilities and constraints offered by the artefact.

Our intention in this paper has been to compare and contrast two dif-
ferent analytical frameworks for analysing instrumented action schemes
as a part of students’ instrumental genesis. When comparing and con-
trasting the two analytical frameworks, our aim has not primarily been to
decide which of these lenses are the most suitable to use, but to highlight
the pros and cons relating to each framework. Since this paper concerns a
limited amount of data restricted to the Swedish context, we finally call
for further research which applies the SC analysis in situations concern-
ing the use of other artefacts than programming. We also call for more
research, similar to that of Haspekian (2005), trying to operationalise
the IT analysis when students engage in mathematical activities using
artefacts which are not primarily designed as mathematical tools.

References
Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis

of a reflection about instrumentation and the dialectics between technical
and conceptual work. International Journal of Computers for Mathematical
Learning, 7 (3), 245–274. doi: 10.1023/a:1022103903080

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

217

Bocconi, S., Chioccariello, A. & Earp, J. (2018). The Nordic approach to
introducing computational thinking and programming in compulsory education.
Report prepared for the Nordic@BETT2018 Steering Group.
doi: 10.17471/54007

Borg, A. (2021). Designing for the incorporation of programming in mathematical
education : programming as an instrument for mathematical problem solving
[Licentiate thesis]. Karlstads University.
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85625

Bråting, K. & Kilhamn, C. (2021). Exploring the intersection of algebraic and
computational thinking. Mathematical Thinking and Learning, 23 (2),
170–185. doi: 10.1080/10986065.2020.1779012

Buteau, C., Gueudet, G., Muller, E., Mgombelo, J. & Sacristán, A. I. (2020).
University students turning computer programming into an instrument
for ”authentic” mathematical work. International Journal of Mathematical
Education in Science and Technology, 51 (7), 1020–1041.
doi: 10.1080/0020739X.2019.1648892

Buteau, C., Muller, E., Mgombelo, J., Sacristán, A. I. & Dreise, K. (2020).
Instrumental genesis stages of programming for mathematical work. Digital
Experiences in Mathematics Education, 6 (3), 367–390.
doi: 10.1007/s40751-020-00060-w

Drijvers, P., Godino, J. D., Font, V. & Trouche, L. (2013). One episode, two
lenses. Educational Studies in Mathematics, 82 (1), 23–49.
doi: 10.1007/s10649-012-9416-8

Drijvers, P. & Gravemeijer, K. (2005). Computer algebra as an instrument:
examples of algebraic schemes. In D. Guin, K. Ruthven & L. Trouche (Eds.),
The didactical challenge of symbolic calculators: turning a computational
device into a mathematical instrument (pp. 163–196). Springer.

Drijvers, P. & Trouche, L. (2008). From artifacts to instruments: a theoretical
framework behind the orchestra metaphor. In K. Heid & G. Blume (Eds.),
Research on technology and the teaching and learning of mathematics (pp. 363–
392). Information Age.

Elicer, R. & Tamborg, A. L. (2021). Nature of the relations between programming
and computational thinking and mathematics in Danish teaching resources.
Paper presented at ICTMT 15, Copenhagen.

Fahlgren, M. (2017). Redesigning task sequences to support instrumental
genesis in the use of movable points and slider bars. The International
Journal for Technology in Mathematics Education, 24 (1), 3–15.
doi: 10.1564/tme_v24.1.01

Gueudet, G., Bueno-Ravel, L., Modeste, S. & Trouche, L. (2018). Curriculum in
France: a national frame in transition. In D. R. Thompson, M. A. Huntley
& C. Suurtamm (Eds.), International perspectives on mathematics curriculum
(pp. 41–70). Information Age.

borg and fahlgren

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.218

Gueudet, G., Buteau, C., Muller, E., Mgombelo, J. & Sacristán, A. I. (2020).
Programming as an artefact: What do we learn about university students’
activity? In T. Hausberger, M. Bosch & F. Chellougui (Eds.), INDRUM2020
Proceedings (pp. 443–452). University of Carthage and INDRUM.

Haspekian, M. (2005). An ”Instrumental approach” to study the integration
of a computer tool into mathematics teaching: the case of spreadsheets.
International Journal of Computers for Mathematical Learning, 10 (2), 109–141.
doi: 10.1007/s10758-005-0395-z

Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E. & Tolboom, J. (2021).
Characterising computational thinking in mathematics education: a
literature-informed Delphi study. Research in Mathematics Education, 1–29.
doi: 10.1080/14794802.2020.1852104

Noss, R. (1986). Constructing a conceptual framework for elementary algebra
through Logo programming. Educational Studies in Mathematics, 17 (4), 335–
357. doi: 10.1007/BF00311324

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Basic
Books.

Prediger, S., Bikner-Ahsbahs, A. & Arzarello, F. (2008). Networking strategies
and methods for connecting theoretical approaches: first steps towards a
conceptual framework. ZDM, 40 (2), 165–178. doi: 10.1007/s11858-008-0086-z

Rabardel, P. (2002). People and technology: a cognitive approach to contemporary
instruments. https://hal.archives-ouvertes.fr/hal-01020705

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E. et al.
(2009). Scratch: programming for all. Communications of the ACM, 52 (11),
60–67. doi: 10.1145/1592761.1592779

Ruthven, K. (2002). Instrumenting mathematical activity: reflections on key
studies of the educational use of computer algebra systems. International
Journal of Computers for Mathematical Learning, 7 (3), 275–291.
doi: 10.1023/A:1022108003988

Sangwin, C. J. & O’Toole, C. (2017). Computer programming in the
UK undergraduate mathematics curriculum. International Journal of
Mathematical Education in Science and Technology, 48 (8), 1133–1152.
doi: 10.1080/0020739X.2017.1315186

Sutherland, R. (1994). The role of programming: towards experimental
mathematics. In R. Biehler, R. W. Scholz, R. Sträßer & B. Winkelmann (Eds.),
Didactics of mathematics as a scientific discipline (pp. 177–187). Springer.

Trouche, L. (2005). An instrumental approach to mathematics learning
in symbolic calculators environments. In D. Guin, K. Ruthven & L.
Trouche (Eds.), The didactical challenge of symbolic calculators: turning a
computational device into a mathematical instrument (pp. 137–162). Springer.

Nordic Studies in Mathematics Education, 28 (3-4), 199–219.

analysing mathematical programming schemes

219

Turgut, M. & Drijvers, P. (2021). Instrumentation schemes for solving systems
of linear equations with dynamic geometry software. International Journal
for Technology in Mathematics Education, 28 (2), 65–80.

Vergnaud, G. (1998). A comprehensive theory of representation for mathematics
education. The Journal of Mathematical Behavior, 17 (2), 167–181.
doi: 10.1016/S0364-0213(99)80057-3

Vergnaud, G. (2009). The theory of conceptual fields. Human Development,
52 (2), 83–94. doi: 10.1159/000202727

Wing, J. M. (2006). Computational thinking. Communications of the ACM,
49 (3), 33–35. doi: 10.1145/1118178.1118215

Andreas Borg
Andreas Borg is a doctoral student in educational work at Karlstad Uni-
versity, Sweden. His research focus is on upper secondary students’ use
of programming for mathematical purposes as well as on the orchest-
ration of learning activities involving the use of programming as a
mathematical tool.

andreas.borg@kau.se

Maria Fahlgren
Maria Fahlgren is an associate professor in mathematics education at
Karlstad University, Sweden. Her research focus is on the use of digital
technologies in the teaching and learning of mathematics, with a
particular focus on task design, at both the upper school level and
tertiary level.

maria.fahlgren@kau.se

220 Nordic Studies in Mathematics Education, 28 (3-4).

