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In the frame of a design-based research project, this paper presents analysis of Danish 
grade 8 students working together to prove conjectures, which they formulated 
based on guided explorations in a dynamic geometry environment. A systematic 
account of the rationale and hypothesis behind the task design is described in the 
form of objectives, hypotheses, and choices, which are then evaluated in light of the 
analysis of data. The case indicates that the designed task can bridge a connection 
between conjecturing activities in dynamic geometry environments and deductive 
reasoning. The students manage to explain theoretically, what is initially empirically 
evident for them in their exploration in the dynamic geometry environment. The 
proving activity seems to make sense for the students, as a way of explaining ”why” 
the conjecture is true. The Theory of Semiotic Mediation frames the design of the 
study and the data analysis.

An ongoing issue in the mathematics education research field concerns 
the role of dynamic geometry environments (DGE hereinafter) in rela-
tion to proof. Several studies highlight the potentials of DGE in relation 
to development of mathematical reasoning, abilities in generalization 
and in conjecturing (e.g. Arzarello et al., 2002; Laborde, 2001; Leung, 
2015; Baccaglini-Frank & Mariotti, 2010; Edwards et al., 2014). However, 
it is not clear whether such activities in DGE can support students’ deve-
lopment of abilities in deductive argumentation. Some studies indicate 
that the empirical nature of the DGE investigations may impede the pro-
gression of deductive reasoning (e.g. Marrades & Gutiérrez, 2000; Connor 
et al., 2007). That is to say, once the students have explored a construc-
tion in the DGE and discovered some relationship, they may become 
so convinced by the empirical experience that it does not make sense 
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for them to prove (again) what they ”know”. However, other researchers 
suggest that students’ explorative work in DGE does not have to prevent 
development of deductive reasoning (Lachmy & Koichu, 2014; Sinclair 
& Robutti, 2013). Seemingly, the didactic design surrounding the work 
in the DGE and the role of the teacher is of utmost importance (e.g. Ma-
riotti, 2012). De Villiers (2007) argues against a common method, which 
is for the teacher to devalue the result of the students’ empirical investi-
gation as a means of motivating students to undertake theoretical valida-
tion. Instead, he suggests highlighting the role of proof as an explanation. 
The teacher may turn the theoretical validation into a meaningful acti-
vity for the students as a challenge to explain ”why” their DGE investiga-
tions are true (de Villiers, 2007). Trocki (2014) suggests that motivating 
the students to theoretically justify their empirical explorations may also 
be incorporated into the task design itself.

In light of the ongoing discussion in the field on the role of DGE in 
conjecturing and proof, the following research question arises: 

How can students’ conjecturing activities in DGE be combined with 
theoretical validation, to make theoretical validation a meaningful 
activity for the students?

The research question is investigated as a part of a larger design-based 
research project (Højsted, 2021), in which the overarching mathematical 
aim is to utilize potentials of DGE in order to support students’ deve-
lopment of mathematical reasoning. The specific designed task that is 
reported upon in this paper aims at bridging a connection between stu-
dents’ conjecturing activities in the popular DGE software, GeoGebra, 
and the subsequent proving of those conjectures. However, diverging 
understandings exist regarding the meaning of the notion of proof in 
a teaching and learning context (Arzarello et al. 2007; Mariotti, 2012; 
Balacheff, 2008). Therefore, it is pertinent to address what is implied by 
the notion of proof in the context of school mathematics, both in the 
research field and in this paper.

Proof as a process
Mariotti (2012) elaborates on different understandings of proof in school 
context and unfolds two extremes; 1) proof as the product of theoretical 
validation of already stated theorems, and 2) proof as the product of a 
proving process, which includes exploration and conjecturing as well as 
proving conjectures. Sinclair and Robutti (2013) state that the view on 
proof in the context of school mathematics has largely shifted to com-
prise proof as a process, and that this may in part be attributed to the  
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facilitation of experimentation provided by digital technologies. In align-
ment with this view on proof as a process, NCTM (2008) puts forward a 
broad meaning of reasoning and proof using a reasoning and proof cycle, 
which consists of exploration of a mathematical problem or context, 
making a conjecture about the problem/context, and finally putting 
forward justification for the conjecture.

In the next section, pertinent notions from the Theory of semiotic media-
tion are introduced, in which the study is theoretically anchored. After-
wards, the method and educational context of the study is explained, fol-
lowed by an elaboration of the task design principles. Then empirical data 
is analysed closely, coming from two groups of students working together 
on the task. The results are discussed concerning the specific cases, but 
also referring to results coming from other groups and to research aims 
going forward. Finally, a conclusion is given.

Theoretical framework
The Theory of semiotic mediation (TSM hereafter) considers students’ for-
mation of meanings as they use an artefact to solve a task, and on the 
important role of the teacher to support students’ meaning formation 
in a way that is coherent with mathematical discourse (Bartolini-Bussi 
& Mariotti, 2008). According to the TSM, when students use an artefact 
to accomplish a given task, they develop initial personal meanings, which 
are evoked in relation to the artefact-based activity. In a school context, 
the initial personal meanings will typically differ (to a varying degree) 
to the mathematical meanings an expert mathematician (the mathema-
tics teacher) would recognize. However, through her/his pivotal role in 
the classroom, the teacher can intervene and try to support students’ 
evolution from personal meanings into mathematical meanings that 
are coherent with the discourse of mathematicians. Bartolini-Bussi and 
Mariotti (2008, p. 754) introduce the notion semiotic potential of an arte-
fact to describe the dichotomy of personal meanings and mathematical 
meanings that an individual may generate as the artefact is used to solve 
particular tasks. If the teacher (or a researcher) is aware of this semiotic 
potential of an artefact, she/he can design didactic sequences involv-
ing tasks that exploit the semiotic potential of the artefact in order to 
promote specific mathematical learning.

When students work on the artefact-based tasks, signs will emerge in 
the form of students’ verbal utterances, gestures (e.g. movement of hands, 
face or other body parts), written products and DGE interactions on the 
screen. The signs can be interpreted as the physical manifestations of 
students’ meanings related to the artefact-based activity. As mentioned 
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above, the meanings can, to a varying extent, be coherent with the mathe- 
matical meanings predetermined as the aim of the task. Taking into 
account the emerging signs, the expert teacher can act as a mediator 
trying to encourage the students’ evolution of mathematical meanings. 
The mediation takes place in the teacher/student interaction for which 
the classroom discussions play a central role. If the teacher is conscious 
of their mediating role and intentionally employs the artifact to serve 
this purpose, then it becomes a tool of semiotic mediation (Bartolini-Bussi 
& Mariotti, 2008, p. 754). The TSM framework also models the teaching 
and learning process according to a didactic cycle comprising three types 
of activities. 

1. Students working on artefact-based activities to solve tasks, which 
are designed to foster production of specific signs. 

2. Students writing to reflect on the artefact-centred activity. 

3. Classroom discussions in which the teacher mediation supports the 
evolution of meanings coherent with the aim of the didactic inter-
vention. (Bartolini-Bussi & Mariotti, 2008; Mariotti & Maracci, 2011).

Originating from a Vygotskian (1978/1930) perspective, the TSM con-
siders cognitive development as a process of internalization. The inter-
nalization process has two essential aspects ”it is essentially social; it 
is directed by semiotic processes. In fact, as a consequence of its social 
nature, external process has a communication dimension involving pro-
duction and interpretation of signs.” (Bartolini-Bussi & Mariotti, 2008, 
p. 750). Therefore, analysing students’ use of signs (gestures, verbal utte-
rances etc.) in social activities (e.g. working in pairs on a task), can shed 
light on their internalization process and unveil the evolution of stu-
dents’ meaning. The evolution of meanings can be emphasized by recog-
nizing specific semiotic chains, e.g. chains of relations of signification  
(Bartolini-Bussi & Mariotti, 2008).

From a research point of view, the analysis of students’ internaliza-
tion process can be used to investigate to what extent the designed tasks 
function as anticipated. That is, to see if the unfolding of the semiotic 
potential of the artefact corresponds to the a priori analysis embedded 
in the task design process (see the elaboration of design principles in 
Task design principles, and specific signs which will be recognized in the 
analysis to be coherent with the intended task design principles in Signs, 
hypothesis and choice delimitation in the analysis).
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Method and educational context
The research project is anchored in the frame of design-based research 
methodology (Bakker & van Eerde, 2015), which is characterized by the 
dual objective of developing educational practice, as well as developing 
theory about the teaching/learning process of that practice, and there-
fore it is ”claimed to have the potential to bridge the gap between edu-
cational practice and theory” (Bakker & van Eerde, 2015, p. 2). Based on 
analysis of DGE literature, a hypothetical learning trajectory was pro-
posed (see more in Højsted, 2020a), leading to the development of a didac-
tic sequence that included 15 tasks. This a-priori work is in the frame of 
TSM considered to be an analysis of the semiotic potential of DGE. The 
sequence design was also influenced by results from a survey (2020b). 
The didactic sequence was tested and redesigned in three design cycles in 
three different schools that each lasted approximately three weeks (14–16 
lessons). The data presented in this paper is from the second and third 
design cycle. To investigate the research question in this paper, a ”toolbox 
puzzle” task was designed with the aim of supporting the students to first 
formulate conjectures based on guided investigations in GeoGebra, and 
then to undertake theoretical validation of the conjectures (task design 
is further elaborated in Task design principles).

In the experiment, the students were working in pairs using one 
computer, and handed a printed task booklet containing the designed 
tasks. The lessons were organized according to the didactic cycle in the 
TSM – i.e. several iterations of 1. Artefact-based activities, 2. Student  
production of written products, 3. Classroom discussions.

Data from each design cycle was acquired in the form of screencast 
recordings of the students’ work in GeoGebra; external video of certain 
groups (chosen in collaboration with the teacher to comprise a spectrum 
of high-low achieving students); and written reports that were collected 
from the students.

In this paper, data is analysed from two pairs of students, in order 
to investigate to what extent the toolbox puzzle design supports them 
in proving their conjectures and if the activity seems meaningful to 
them. Some results coming from other groups is also mentioned in the  
conclusion.

Data is analysed by analysing the unfolding of the semiotic potential 
of the designed artefact-based activity. I.e., by interpreting signs (video, 
transcripts, screencast, written work) produced by the students as they 
work on the designed task. According to the TSM, these signs can shed 
light on the students’ internalisation process, highlighting the evolution 
of meanings attached to the artefact-based activity. On the basis of this 
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interpretation, an evaluation may be offered of the successfulness of the 
task design principles in promoting the mathematical meanings that are 
coherent with the educational aim of the task. The analytical focus in 
this paper is particularly on students’ emerging signs indicating evidence 
of the effectiveness of the design in relation to supporting the transi-
tion from conjectures to proof (task design hypothesis 2/3 and choice 5  
elaborated in the next section).

The educational context of the study is situated in two 8th grade (age 
13–14) mathematics classrooms in Denmark. The students had some pre-
vious experience using the geometry part of GeoGebra, which is common 
in Denmark, since ability in relation to dynamic geometry programs are 
highlighted in the curriculum mathematics common aims already from 
grade 3 (BUVM, 2019). However, the students had no experience related 
to theoretical validation of conjectures or theorems, which is not surpris-
ing since it is almost non-existent in lower secondary school in Denmark, 
which is evident at curriculum level, in textbooks and in practice.

Task design principles
The task design principles are broken down into three interrelated levels; 
objectives, hypotheses and choices, which offers a systematic account of the 
design process that is coherent with the predictive and advisory nature 
of design-based research (Bakker & van Eerde, 2015) (see also Højsted & 
Mariotti, 2023). At the general level, there are objectives that describe 
the educational aim of the task design, i.e. what is the intended learn-
ing outcome for the students. Next, there are hypotheses concerning 
activities and types of tasks that may foster the specific student learning. 
Finally, choices are made at the micro level of design, which for example 
includes decisions concerning requests of specific student activity; order 
of requests; formulations in the task; and choice of figures. In order to 
assure alignment, the choices must be coherent with the hypothesis, and 
furthermore, the hypothesis must be coherent with the objective.

Objectives
The learning objectives concern developing the foundation of students’ 
ability in relation to proof as a process, i.e. their ability in relation to 
exploration, conjecturing and deductive reasoning. More specifically, 
that they are able to investigate figures using a DGE in order to make 
conjectures about the figures, after which they are able to verify the  
conjecture by means of an inferential argument.
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Hypotheses
Four hypotheses are submitted in relation to activities to foster the 
intended student learning. The hypotheses are related to the semiotic 
potential of a DGE to highlight dependencies between geometrical pro-
perties of a constructed figure (Højsted & Mariotti, 2023; Leung et al., 
2013; Mariotti, 2014); to the educational value of approaching proof as 
an explanation (de Villiers, 2007); to the semiotic potential of a paper 
based ”toolbox” containing theorems and diagrams to support students’  
deductive reasoning; and to the process of semiotic mediation.

Hypothesis (1) is partly described previously: 

Since any constructed figure behaves according to the geometrical 
relationships defined by its construction procedure, students acting 
on a figure produced by a construction command can observe the 
invariance of a property or the invariance of a relationship between 
properties (Mariotti, 2014), and the perceived invariants can be 
related to the construction process.  (Højsted & Mariotti, 2023, p. 8) 

The observed invariants can function as a starting point leading to stu-
dents’ formulation of conjectures about the construction. However, it 
seems necessary to develop specific prompts (e.g. questions, visual ques) 
that guide the students’ attention onto the desired properties of the con-
struction, as well as asking the students to explain unexpected observa-
tions, in order for active reflection to occur (Højsted & Mariotti, 2023).

Hypothesis (2): Students may not see the value of theoretically validat-
ing what is already empirically evident for them in the DGE investigation 
(e.g. Marrades & Gutiérrez, 2000; Connor et al., 2007), however, in align-
ment with de Villiers (2007) suggestion, theoretical validation might be 
turned into a meaningful activity for the students, when it is presented 
as a challenge to explain why their conjecture is true.

Hypothesis (3) concerns the functioning of the toolbox. Since the stu-
dents have no previous experience in developing an inferential argu-
ment, they are provided with a sheet of paper (the toolbox) that contains 
axioms and theorems to be used in their argumentation, as well as a 
support figure, which may highlight certain properties to guide the stu-
dents in the argumentation. The hypothesis is that the toolbox activity 
will support the students to develop the idea that mathematical argu-
mentation comprises developing chains of reasoning based on previously 
established truths. A learning trajectory can be envisaged that ultimately 
leads to an empty toolbox where the students can use any established 
truths that they find useable.

Hypothesis (4) concerns the process of semiotic mediation, which is 
related to the student activity described in hypothesis 1–3. As modelled 
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in TSM, these specific semiotic activities (working on the task: observing 
invariants, formulating conjectures, writing, explaining and discussing 
what they observe, developing an inferential argument) are expected 
to foster the emergence of signs with underlying meanings (students’ 
interpretation of the phenomena). Our fourth hypothesis submits that 
through the mediation of the teacher, particularly in classroom discussions, 
the students’ interpretation of DGE phenomena can be linked to a geo-
metrical interpretation; that theoretical validation can be interpreted 
as an explanation and therefore meaningful; and that mathematical  
argumentation is interpreted to consist of chains of reasoning based on 
established truths.

Choices
Five choices constitute our considerations at the micro level of task design. 
Four choices have previously been elaborated (see Højsted & Mariotti, 
2023) and are reiterated in table 1.

Choices (3 and 4) regard a task heuristic known as Prediction-Obser-
vation-Explanation (White & Gunstone, 2014, p. 44–65), which concerns 
three types of requests for the students: The students are requested to 
consider an event or action, and to predict the result of that event/action 
as well as to justify their prediction. Afterwards, they are requested to 
observe what happens and to explain their observation, finally, they are 
requested to resolve any differences between what they predicted and 
what was actually observed.

Signs, hypothesis and choice delimitation in the analysis
The objectives, the four hypothesis and the five choices are integral aspects 
of the task design, and they are presented above to give the reader a full 
and coherent account of the task design principles. However, the analysis 
will primarily concern hypothesis 2 and 3, which are directly linked to 
the research problem that is investigated in this paper. Choices 1–5 will 
be addressed, however, choice 5 is the most relevant to be evaluated and 
referred to in the analysis because of the specific focus on explaining the 
conjecture using the proof sheet.

In the analysis, students’ production of explanations in which they 
use inferential arguments based on the toolbox (solving the puzzle) are 
acknowledged as signs that the students find this theoretical validation 
meaningful.
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The tasks in the didactic sequence

The initial tasks in the sequence were designed to highlight the theo-
retical properties of figures, and how they are mediated by DGE in the 
form of invariants, for example by requesting the students to construct 
robust figures in ”construction tasks” (Mariotti, 2012). These initial tasks 
adhered to task design choices 1–4. In subsequent tasks, the students were 
engaged in constructing and investigating the constructions in order to 
make conjectures and then they were asked to explain why their conjec-
tures were true adhering to task design choices 1–5. An example of such 
task is task no.9 in the didactic sequence, which is reported on in this 
paper (figure 1). It consisted of an initial construction part, followed by 
questions (predict-observe-explain) to guide the students to discover and 

Choice Rationale

(1) A construction is proposed 
that contains certain depend-
encies, leading to a clearly  
recognizable invariant.

This choice is related to our aim of exploiting the semiotic  
potential of dragging in DGE to reveal invariance of properties.

(2) The students are requested 
to produce the construction 
with guidance.

The choice reflects that the goal is to foster awareness of pro-
perties in the construction. Therefore, the students perform the 
commands themselves and in so doing are expected to reflect on 
which properties they are supposed to induce in the construction. 
In addition, they may interpret the behaviour of the construction 
after dragging, as a consequence of their construction method, 
and are therefore expected to reflect on the possible consequences 
of the construction steps. Some guidance is given in the form of 
accompanying pictures of commands, which may be useful to 
complete the construction, as well as a picture of the required 
construction (see example in figure 1).

(3) The students are encoura-
ged to predict, before they 
drag objects, what will happen 
on the screen when they drag 
certain points, and to justify 
their prediction to the co-
student they are working with.

Asking the students to predict the properties of the diagram 
before they drag, directs their reflections towards properties of 
the construction (the general objective) and may give rise to con-
flict, if what they observe does not coincide with their prediction. 
The conflict can provoke intellectual curiosity (Laborde, 2003). 
Encouraging students to justify their prediction serves two aims; 
firstly, it supports the development of a mathematical attitude to 
look for a reason – to justify the conjecture. Secondly, it supports 
the production of reasons that can develop into mathematical 
reasons. Both these types of support concur with the aim of the 
students becoming able to justify mathematical claims to others, 
which is a characteristic of mathematical reasoning.

(4) The students are encoura-
ged to drag certain points and 
to describe what happens.

This choice is added so that the students can confirm the expected 
outcome or wonder why it did not go as expected and try to figure 
out why. Again, with the goal of students becoming aware of the 
relationship between the properties induced by the construction 
and the properties that appear invariant by dragging.”

(5) The students are requested 
to write their conjecture in a 
proof sheet and to explain why 
the conjecture is true using 
the statements, axioms and 
support figure provided in the 
toolbox.

This choice comprises a semiotic dimension, explicitly requesting 
that the students produce signs in the form of a written product 
as they explain why the conjecture is true (de Villiers, 2007). The 
toolbox serves the purpose of supporting the students in develop-
ing an inferential argument, since they have no previous expe-
rience with this. Looking for the explanation becomes solving the 
puzzle, using the pieces that are in the toolbox. The idea is then, 
that after several such tasks, the toolbox can be empty.

Table 1. Choices of task design, partly adapted from Højsted and Mariotti (2023)
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make a conjecture about the relationship of an exterior angle of a triangle 
with its remote interior angles.

Afterwards, the students were encouraged to explain/prove the con-
jecture in a proof sheet (on the left in figure 2), using a toolbox (on the 
right in figure 2), which contains a support figure as well as information 
(angle over a line is 180 °, and the angle sum of a triangle is 180 °) to be 
used in the argumentation.

Figure 1. English translation of task no. 9 – exterior angle and remote interior 
angles of a triangle
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The unfolding of the semiotic potential and ensuing analysis
In this section, students’ emerging signs are interpreted as two pairs of 
students work on task no. 9. The data presented from the first group con-
cerns the whole task solution (i.e. 9a–f), in order to address and analyse 
each choice (1–5) from the task design principles. This is followed by a 
shorter presentation and analysis from the second group focusing only 
on the theoretical validation of their conjecture (9.f), which is the main 
focus in this paper. In the presentation of data, brackets are used when 
information is added and italics are used when non-verbal signs (actions/
gestures) are described.

The case of Ole and Lis
The teacher describes Lis as a high achiever in mathematics, while Ole is 
described as a medium achiever in mathematics.

We enter their conversation just as Ole has finished constructing the 
triangle (task 9.a) and measured the angles marked on the task figure 
using GeoGebra’s angle measuring command.

Lis predicts that the exterior angle equals the sum of the remote  
interior angles (task 9.b). To check if it is correct, they take out their  
calculator.

a258 Lis And there’s a little calculator here. So… I then had the idea that a + b 
is equal to c. So it is F + H = I

(angles a, b and c from the figure in the task booklet correspond to angles at points 
F, H and I in the students GeoGebra figure)
[…]
a268 Ole 64.62 plus 57.45 [Ole reads the measures found with GeoGebra]
a269 Lis It makes 107, yes, so our thing (conjecture) was true.
a270 Ole Absolutely

Figure 2. The proof sheet and toolbox
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While Lis considers how to proceed with the proof, Ole’s is preoccupied 
with the GeoGebra construction still, and is dragging the point at angle 
b at first in a random manner, seemingly without any clear purpose, 
however he then proceeds to drag in order for angle a to become a right 
angle.

a290 Ole What, its lying! That is not true. 90 plus 27.57, it is impossible to add 
up to 117.58.

a291 Lis No, but it gives almost the same thing.
a292 Ole 0.1 off. They are lying. (He does not say 0.01 off, which is a common 

mistake)
[…]
a295 Lis It may be rounded.
a296 Lis The exterior angle is equal the sum of the (remote) interior angles 

[reading the conjecture]. We have to prove it now – I dare bet, via this 
[flips the page and looks at the toolbox from the previous task].

As Lis looks at the toolbox from the previous task, she seems confused as 
how to proceed. Ole is gradually zoning out from the work and frequently 
talks to another student about out of school issues.

a302 Lis But these arguments, we are supposed to… maybe you can use them, 
right?

[…]
a306 Lis But can one use these arguments from toolbox to prove it? Or what? 

Maybe you can do that, right? I do not know! Should ask Ulf (the 
teacher).

The teacher explains to Lis that she is using the wrong toolbox.

a315 Lis [Flips to the correct page] Well, that’s the one we need. I thought we 
were ... Ahh! Well, now we have some nice rules here. Then it’s much 
better all together. The sum of the angles in a triangle is 180 [reading 
the information from the toolbox] …

[…]
a460 Lis Look at this support figure, what does it say?
a461 Ole That there is an extra angle in relation to the other figure.
a462 Lis Yes, that’s right. It is angle b. We know that angle b plus d gives 180 

degrees. We know that the sum of the angles in a triangle is 180. 
Damn. So a, b, c also gives 180. Okay, I should not have written this 
[Lis erases notes that she made in the proof sheet] Now we’ll just write it 
straight up. b plus d is equal to 180 degrees. I am back in the flow. a + 
b + c is equal to b + d is equal to 180, like this …
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a468 Lis It was fun too! (Sings some words from a song with a bit of rhythm.) 
And then it’s like this. Then we just need to have minus b on both 
sides. Then it becomes a + c is equal to d. Is equal to 180 — b.

a469 Lis I think I have the proof right here… I am actually proud of myself.

Ole and Lis analysis
Ole did not follow the task steps rigidly and measured the angles before 
predicting as required in task 9b. However, before they add the measure-
ments using a calculator, Lis provides the correct prediction (a258). It is 
not clear how she arrives at this prediction as she does not justify her 
prediction as required – perhaps she could quickly add the angle measure-
ments that were already visible in GeoGebra in her head and notice the 
relationship. In any case, the event shows that even if choice 3, is imple-
mented in the task design (requesting prediction and justification), it is 
not certain that the students will apply it.

We see that it is sufficient for the students to add the angles in only 
one example of the triangle formation in order to be convinced that their 
initial conjecture holds true (line a268–a270).

Ole’s experimentation leads to triangle formation in which the measu-
rement outputs, which were set to two decimal places, led to the con-
jecture not holding true. However, Lis shrugs it off as being a matter of 
rounding, which Ole accepts (line a290–a295). The example shows one 
of the known issues of DGE measurement experimentation previously 
reported by Olivero and Robutti (2007) concerning the degree of approxi-
mation of measurements and the technological limit for that precision 
in DGE measuring tools. The teacher’s awareness of this issue is relevant 
in relation to choices (1 and 2) in the case of measurement invariance. 
Ole ś experimentation shows the effectiveness of choice (4), requiring the  
students to drag and explain.

It is evident that during the time at which Lis mistakenly uses the 
toolbox from the previous task, she becomes unable to make progress 
on the proof (line a302–a306). The fact that Lis is stuck and unable to 
make progress shows the value of the correct toolbox. Without it, she 

Figure 3. The proof sheet and toolbox. Solved by Lis (mainly) and Ole
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could not go on. The finding is consistent with hypothesis (3) concerning 
the functioning of the toolbox activity to support the students in their 
argumentation and it indicates that design choice 5 is suitable. When the 
teacher helps Lis to find the correct toolbox, she immediately recognizes 
its value (line a315).

In addition, we can see that the toolbox, and in particular the support 
figure play an important role in supporting the students (mainly Lis since 
Ole is disengaged) to provide theoretical validation of their conjecture 
(line a460–a462).

Both of these chains of signs highlight again the suitability of choice 
5 and hypothesis (3).

While Ole has gradually become disengaged with the task activity, Lis, 
on the other hand, clearly indicates that proving the conjecture using 
the toolbox puzzle approach was enjoyable for her (a468–a469), which 
supports hypothesis (2) that when theoretical validation is presented as a 
challenge to explain why the DGE-based conjecture is true, it can become 
a meaningful activity to students.

The case of Ida and Sif
Ida and Sif were described by their teacher as medium/high achieving 
students in mathematics. In the previous task, they found the proving 
activity and the toolbox to be confusing. The following excerpt ensues 
after Ida and Sif have constructed the figure from task 9, they have 
guessed, investigated and put forward the correct conjecture (9a–9f) and 
are about to try to explain/prove why it is true (9g).

b516 Ida The sum of the two (remote) interior angles … [Writes the conjecture 
in the proof sheet (figure 5) translated: ”The external angle is as large as 
the sum of the two internal angles”]

b517 Sif Beautiful! Okay, now we have to prove it. Oh no …
b519 Sif Now that again …
b520 Ida a plus c equals b, and see. Basic Rule 1: The angle over a line is. The 

angle sum of a triangle is. [reading from the tool box]
b521 Sif Yes! I understand. Look … [points to the support figure in the tool box]
b522 Ida Ohh.
b523 Sif Super! In here, that’s what’s missing. [points to angle b in the support 

figure from the toolbox (see figure 4)]
[…]
b533 Sif And add this one here, to here. [pointing to angle b being added to a+c 

and to d respectively]
b534 Ida That’s right, so it makes 180. AND it makes sense. Is there more to 

say?
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b535 Sif That is … just how it is.
b536 Ida We know that the sum in a triangle is 180 degrees and that the sum … 

the angle sum of a line is 180 degrees. Therefore, when we are missing 
an angle here …

In the events that follow, they write their answer (figure 5), but express 
difficulty in doing so, because they expect that they must use algebra in 
their answer.

b574 Ida How do we write that in mathematical language?
[…]
b595 Ida Ah okay! And a plus b and c yes. And b plus d it also gives 180
b597 Sif This one plus this one, is the same as these three. [pointing to b+d and 

a+b+c]
b598 Ida That’s right. It’s actually right. Oh, b plus d equals a plus b plus c 

because this makes 180, and this makes 180.

Ida and Sif analysis
The signs emerging from the students’ discourse described in lines b517–
b519 may be interpreted to mean that Sif is not excited about the pros-
pect of having to prove the conjecture. However, the mood towards the 

Figure 4. Sif using the toolbox to explain

Figure 5. Ida and Sif’s proof sheet and toolbox
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proving activity changed when Ida and Sif had worked on 2–3 tasks of this 
type, which indicates that they had to get accustomed to the task design. 
Some of the difficulty may be attributed to the openness and unfamilia-
rity of the answer format, since several students could put forward their 
reasoning verbally, but struggled to write down their argumentation. 
Ida and Sif also struggle with this issue (line b574–b590). However, they 
find it easier to write the answer in subsequent tasks, after the teacher 
explained that they could write their arguments using natural language 
narratives. Thus, the fact that theoretical validation is not immediately 
met with students’ enthusiasm can be attributed to several factors and 
does not mean that the activity is meaningless to them. In fact, the  
opposite becomes evident (lines b534).

From the video recording, it is evident (line b520) that Ida immedia-
tely turns to the toolbox information, reading aloud the two pieces of 
information provided, which indicates that she has realised the useful-
ness of the toolbox. It supports the suitableness of choice 5 and sustains 
our hypothesis (3) concerning the functioning of the toolbox activity to 
support the students in their argumentation.

Sif listens and seems to recognize that adding angle b to a + c and d 
respectively in both cases gives 180 ° (line b521–b533), which she manages 
to support Ida to grasp and elaborate as well (line b534–b536). They 
manage to reason deductively that their conjecture is valid, and after 
some struggle, write their answer algebraically (figure 5). The sequence of 
utterances from the students indicate that it is a sense making activity for 
them, and that there seems to be intellectual satisfaction attached to their 
experience (line b534–b536, and line b595–b598). These chains of signs 
emerging from Ida and Sif’s work support our hypothesis (2), that theo-
retical validation presented as an explanatory activity of the conjectures  
that are empirically evident for the students can be meaningful.

Discussion
On the basis of the analysis of the unfolding of the semiotic potential, the 
intended goals, which are described in the task design principles, can be 
evaluated and discussed. It seems reasonable to claim that the task design 
functioned more or less as intended in the two cases. Especially choice 5 
and hypothesis (3) concerning the functioning of the toolbox was sub-
stantiated in several episodes, for example as Lis was unable to progress 
without the correct toolbox. Hypothesis (2) is also substantiated in both 
groups, seeing as both groups expressed that the activity of theoretically 
validating their conjecture was meaningful, however, it is difficult to 
interpret if Ole found it meaningful, since he was mainly preoccupied 
with non-task related issues.
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It was apparent that Ida and Sif had to become acquainted with the struc-
ture of the toolbox puzzle approach, before it became a sense making 
activity for them. This point was also evident in other groups. Addition-
ally, several groups found it difficult to write down their arguments (line 
b547) even though they could convince each other verbally and with the 
help of gestures (e.g. figure 4).

Most groups of students succeeded and seemed to enjoy the explo-
ration and conjecturing part of the tasks in the sequence. However, 
medium-low achieving students struggled to string together coherent 
deductive reasoning, and some never managed to overcome the toolbox 
puzzle part of the task on their own.

Returning to the unresolved issue in mathematics education research, 
which was raised in the introduction concerning conjecturing and proof 
in a DGE, the results from this study suggest that DGE explorations do 
not in and of themself impede deductive reasoning. This result is coher-
ent with the view put forward by some researchers (Lachmy & Koichu, 
2014; Sinclair & Robutti, 2013). In fact, the study indicates that DGE 
can be exploited to foster initial development of theoretical validation, 
in tasks that are designed to exploit the semiotic potential of such an 
artefact.

In the proposed task design principles, the role of DGS is most sig-
nificant in relation to choices 1–4, which concern exploration and con-
jecturing. Other aspects of interest in this study are to what degree the 
students use DGE as they are trying to make a deductive argument; and 
what role the DGE plays in this regard. There are some indications that 
the students go back to the DGE in order to exemplify arguments to each 
other. Notably, some students return to DGE in order to verify what they 
have proven.

This interplay between the theoretical validation and ensuing DGE 
actions needs to be investigated further. In addition, the important 
mediating role of the teacher, which is described in hypothesis 4, was 
not discussed in this paper, but will be the focus of attention in future  
publications.

Conclusion
The study indicates that the ”toolbox puzzle” approach can bridge a con-
nection between conjecturing activities in DGE and deductive reasoning. 
The students explained theoretically, what they initially guessed visually 
and secondly investigated empirically in DGE. Importantly, the activity 
of conducting the theoretical validation seemed to make sense for the 
students, and to some students the activity was entertaining and intel-
lectually satisfying. The study contributes to shed further light on the 
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interplay between DGE conjectures and proof, and the results are aligned 
with the claim that DGE does not have to risk development of deductive 
reasoning (Lachmy & Koichu, 2014; Sinclair & Robutti, 2013). The results 
from the implementation of the toolbox puzzle approach in this study 
indicate that de Villiers (2007) proof as an explanation method, can be 
implemented into the task design itself, in order to support students’ 
initial development of theoretical validation of DGE-based conjectures 
(Trocki, 2014). The systematic account of the task design principles in 
the form of objectives, hypothesis and choices, was found to be a useful 
frame to allow for a systematic evaluation based on the empirical data.
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