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In design research, design principles involve the development of theory and practice. 
This paper refines a set of humble design heuristics into a set of design principles 
in the third iteration of a design research project. The set of design principles aims 
to exercise (meaning ”to put into practice”) students’ mathematical communication 
competency when using a dynamic geometry environment (DGE). Based on an ana-
lysis, which includes perspectives on the instrumental approach, semiotic registers 
and mathematical language, the set of design principles is refined by transforming an 
analysis of two 9th grade (15–16 years old) students’ interactions with the task design 
into prescriptive principles. The overall principle of separate – join – new separate indi-
cates that it is crucial to relate mathematical representations across registers in the 
different steps, individually and in collaboration. 

In recent decades, digital tools (DT) have been implemented in mathe-
matics classrooms (Trouche et al., 2013; Rojano & Sutherland, 2020). 
These include Computer algebra system(s) (CAS) and Dynamic geometry 
environment(s) (DGE) (Freimann, 2020; Sutherland & Rojano, 2014). In 
a DGE, mathematical representations are dynamically linked, making 
it possible to explore, test and develop conjectures (e.g. Drijvers et al., 
2009). In general, digital tools may quickly produce various representa-
tions acting as the basis for students’ discussions (Drijvers et al., 2016). 

Empirical results show that mathematical communication may change 
when using DT (Schacht, 2018). For example, mathematical communi-
cation may also involve ”pragmatic descriptions” of how a tool is used 
(Jones, 2000; Schacht, 2015) or when using a DGE, mathematical com-
munication may become more dynamic, meaning they may use words 
that indicate temporality or movement (e.g. Kaur, 2015; Ng, 2019). In 
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addition, students may develop their mathematical communication by 
talking about mathematical objects in a more general manner (e.g. Ng, 
2016; Oner, 2016). 

This paper focuses on students’ ”mathematical communication com-
petency” when using a DGE. Mathematical communication competency 
is one of eight mathematical competencies defined in the Danish compe-
tency framework (KOM) (Niss & Højgaard, 2011, 2019). KOM addresses 
what it means to master mathematics across different levels of educa-
tion from a competency perspective. Mathematical communication 
competency focuses on students’ ability to engage in mathematical  
communication situations. 

This paper is part of a design research project, which iteratively tests 
a design. This paper aims to refine design principles to exercise students’ 
mathematical communication competency when using a DGE. Exercis-
ing a competency does not imply practising or training. Exercising a com-
petency instead means ”udøve” (in Danish) and implies doing something 
active or putting it into practice. Thus, the following research question is 
addressed: How does one formulate a set of design principles to exercise stu-
dents’ mathematical communication competency when using a DGE? First, 
”humble design heuristics” are presented. Second, two students’ mathe-
matical communication and their use of a DGE are analysed, acting as 
a critical case (Flyvbjerg, 2006). Finally, design principles are discussed 
and refined. 

From humble design heuristics to refined design principles 
Design research has a dual aim of developing theory and practice (Cobb 
et al., 2003) and an iterative structure of testing designs. Across itera-
tions, theoretically grounded design principles are tested and developed 
using empirical results (Prediger, 2019). Design principles are heuristic 
in nature and may be defined as:

If you want to design intervention X [for the purpose/function Y in 
context Z], then you are best advised to give that intervention the 
characteristics A, B, and C [substantive emphasis], and to do that via 
procedures K, L, and M [procedural emphasis], because of arguments 
P, Q, and R.  (van der Akker, 1999, p. 9)

Prediger (2019) emphasises the logical structure of design principles by 
building on Toulmin’s (1969) argumentation structures. Thus, design ele-
ments are developed using explanatory arguments, qualifiers of condi-
tions for realising the design elements, and purposes of the intended 
effects of the design elements. At the beginning of a research project and 
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before the design principles have been tested empirically and refined, the 
principles are labelled ”humble design heuristics”. 

This project includes three iterations of testing the same design within 
different classrooms and schools. The paper has two parts: it aims to 
develop humble design heuristics into refined design principles. Part 1 
describes the humble design heuristics prepared for the first iteration. 
The humble design heuristics include literature on mathematical com-
munication competency (Niss & Højgaard, 2011, 2019) and the instru-
mental approach to mathematics education (Artigue & Trouche, 2021). 
Part 2 involves additional theoretical perspectives on semiotic registers 
and mathematical languages. A case of two students is analysed, and 
finally, the humble design heuristics are refined into design principles 
in a discussion.

Humble design heuristics
This section introduces the theoretical background used to define the 
humble design heuristics, which involves the KOM framework and the 
instrumental approach to mathematics education.

Mathematical communication competency
Mathematical competency is generally defined as ”someone’s insightful 
readiness to act appropriately in response to a specific sort of mathemati-
cal challenge in given situations” (Niss & Højgaard, 2019, p. 14). ”Insight-
ful readiness” refers to the conceptual understanding of mathematics 
related to a given challenge and being ready to act on such understanding. 

Mathematical communication competency concerns communication 
in, with and about mathematics, and it involves being able to express 
oneself mathematically and interpret and understand others’ mathe-
matical expressions (Niss & Højgaard, 2011, 2019). Niss and Højgaard 
(2019, p. 18) clarify what characterises mathematical communication: ”[...]  
mathematical communication oftentimes invokes mathematical notions 
and concepts, terms, results and theories, or other features of mathema-
tics as a discipline and a subject, and often involves the use of one or more 
mathematical representations”. 

Hence, there is a substantial relationship between students’ mathe-
matical communication and mathematical representations (Niss &  
Højgaard, 2011, 2019).

A competency may be exercised or developed in a particular situa-
tion and cannot be completed or ”possessed”, only exercised in a given 
situation. The term ”exercise” is defined within the introduction. A  
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competency may be assessed using KOM’s ”three dimensions”, which 
concern a student’s possession of competency in various situations: 
”degree of coverage”, ”radius of action”, and ”technical level”. The degree 
of coverage concerns ”the extent to which all the aspects that define 
and characterise the competency form part of that individual’s posses-
sion of the competency” (Niss & Højgaard, 2019, p. 21). The three sub-
dimensions may be defined as 1) expressing oneself mathematically or 
interpreting other’s mathematical expression; 2) medium of commu-
nication (i.e. visual, gesture, speech and writing); 3) how mathemati-
cal communication is expressed within and across various kinds of dis-
courses/registers/languages (as in Bach & Bergqvist, submitted). The 
radius of action concerns the various mathematical contexts and situ-
ations in which a student displays competency (Niss & Højgaard, 2019). 
In this paper, the radius of action is restricted to mathematical task con-
texts, such as algebra, geometry, statistics and probability (Niss & Høj-
gaard, 2019). The technical level focuses explicitly on the mathematical 
content and objects in question. Thus, the technical level ”denotes the 
level and degree of sophistication of the mathematical concepts, results, 
theories and methods that the individual can bear when exercising the  
competency” (Niss & Højgaard, 2019, p. 21).

If looking at one or two situations, a student’s exercise of communi-
cation competency may be analysed in these situations. If looking at 
situations over time, or changes in, for instance, how a student commu-
nicates mathematically, a student may develop communication compe-
tency (Niss & Højgaard, 2011, 2019). Niss (personal communication, 11 
November 2021) adds that developing a competency requires ”exercising 
and reflecting”. 

The use of digital tools
The instrumental approach to mathematics education concerns stu-
dents’ use of digital tools. A fundamental process of this approach is 
”instrumental genesis”, which includes four concepts: artefact, instru-
ment, instrumentalisation and instrumentation (Artigue & Trouche, 
2021). An artefact is a material thing that an individual cannot yet use 
for a given purpose. An instrument is an artefact that the student uses 
for a particular purpose in a specific situation (Verillon & Rabardel, 
1995). Hence, instrumental genesis refers to the process of an artefact  
becoming an instrument for a student (Trouche, 2005a).

Instrumentalisation and instrumentation are two opposite processes. 
Instrumentation is directed from the artefact to the student (Trouche, 
2020b) and is closely related to conceptualisation (Trouche & Drijvers, 
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2010). Instrumentation depends on the various information tools involved 
(e.g. the tool, communication with peers and mathematical theory), the 
mathematical knowledge in question and the strategies applied to com-
pleting a task (Guin & Trouche, 1998). Instrumentalisation is directed 
from the student toward the artefact and concerns the student’s mani-
pulation of the artefact (2020a). Thus, it is related to the student’s use of 
the digital tool and what the student believes is the intention of using 
it (Trouche, 2005a). Two such processes are time-consuming (Trouche, 
2020a; 2020b).

Students may use various information tools during instrumental 
genesis, such as multiple artefacts/calculators, other students or teachers,  
and mathematical knowledge (Guin & Trouche, 1998). A DGE offer 
several artefacts within one artefact (Drijvers et al., 2013). The multip-
le artefacts in a DGE have different potentials. In a review on DGEs, 
Højsted (2020) identifies dragging, measuring, feedback and tracing. 
Thus, it is crucial to identify a tool’s various affordances for instrumen-
tal genesis (Leung, 2017). Nevertheless, making sense of dragging is a 
rather complex task involving interpreting different representations and 
changes within them (Arzarello et al., 2002). 

When a digital tool is used, it represents many representations of the 
same object (Lagrange, 1999), and mathematics learning is closely related 
to interpreting and translating between representations. Artigue (2005, 
p. 239) adds that: ”An efficient instrumentation requires some sensiti-
vity to these problems which are linked to the representation of formal 
objects, and to the development of instrumented schemes allowing the 
user to take these phenomena into account in computations.” 

For instrumental genesis, students must explore and test conjec-
tures (Guin & Trouche, 1998; Lagrange, 1999; Leung, 2011). Tasks must 
promote interaction between the computer, technical results, and paper 
and pencil calculations. By doing this, students conjecture, test, complete 
a task and check results. The focus is then on the role of mathematics, 
not on the computer (Guin & Trouche, 1998).

Presentation of humble design heuristics 
Four humble design heuristics were defined based on the theoretical back-
ground of mathematical communication competency and the instru-
mental approach. The criteria for each heuristic was that it involved 
aspects related to both mathematical communication competency and 
the instrumental approach. For both students’ mathematical communi-
cation competency and the use of a DGE, it is necessary to focus on dif-
ferent task contexts, mathematical representations, and procedures for 
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answering a task. In addition, the dialectic individuality and collabora-
tion also seemed to be relevant. Using van der Akker’s concepts (1999), 
humble design heuristics involved the design characteristics of a possible 
task (Prediger, 2019). Tasks must be designed so that:

DH1: There is a progression across situations and content, having 
various task contexts, increased complexity of the content, and 
collaboration in pairs.

DH2: There are various representations offered by tasks for explora-
tion, interpretation, linking, and choosing.

DH3: Various artefacts with different affordances that support tracing, 
dragging, measuring, and feedback in a DGE are included in the 
tasks and artefacts must be introduced gradually.

DH4: There is room for individual and collective processes, achieved by 
tasks involving individual problem solving and tasks focusing on 
communicating.

The conditions for success are that students use a DGE and develop or 
express an understanding of the mathematical object in question.

Semiotic registers and mathematical language 
As mentioned, mathematical representations are vital in mathematical 
communication (Niss & Højgaard, 2011) and instrumental genesis. Guin 
and Trouche (1998, p. 207) note that ”the two key points for learning are 
the functional differentiation and coordination of semiotic registers”, 
and Duval (2006; 2017) describes an essential characteristic of mathe-
matics: our only access to the objects is through their representations. 

Duval (2006) describes four semiotic registers that depend on whether 
the representations are discursive or not and whether they are algorith-
mic or not. A crossing table presents the semiotic registers (see table 1). 

The distinction between the monofunctional and multifunctional 
register is closely related to what is mathematics and what is not. Rep-
resentations, which are characteristic of mathematics, are monofunc-
tional and controlled by algorithms, such as equations and graphs. Yet, 
multifunctional representations are not less important, particularly for 
learning, communicating and processing. The discursive representa-
tions include signs and words, such as letters and numbers, whereas non- 
discursive representations do not. 

Transformations between different representations may be either 
treatments or conversions. Treatments are transformations within a 
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register, for instance, when reducing symbolic expressions. Conver-
sions are transformations across registers, for example, from an equa-
tion to a graph, and these are important to mathematical understand-
ing, which ”is a cognitive process, which involves ’coordination of at least 
two registers’ ” (Duval, 2017, p. 110). A computer performs constant treat-
ments, which means that students can manipulate semiotic representa-
tions as real objects (e.g. rotating and zooming in/out). Furthermore, the 
linguistic register is often neglected when using a computer, as verbal  
expressions may be reduced to buttons or commands (Duval, 2017).

Duval’s (2006, 2017) semiotic registers are related to the mathemati-
cal representations, but they do not offer tools for analysis within the 
linguistic register. Yet, the linguistic register is relevant to mathematical 
communication competency (Niss & Højgaard, 2019). 

An existing framework relates Duval’s (2006) semiotic registers to 
three languages: ”everyday language”, ”school language” and ”technical 
language” (initially presented by Prediger & Wessel, 2011, 2013) 1 (Predi-
ger & Neugebauer, 2021). The three languages exist on a continuum from 
contextualised to generalised, decontextualised language (Gibbons, 2015; 
Schleppelgrell, 2004).

Everyday language is contextualised and personal (Schleppelgrell, 
2004). It involves everyday terminology or one’s own invented words 
(Prediger & Wessel, 2013). The representations accompanied by every-
day language are often concrete and verbal (Prediger et al., 2016). School 
language is a medium for learning and is often used by teachers (Prediger 
& Wessel, 2013). It is less contextualised and personal (Schleppelgrell, 
2004) and may include graphical or numerical representations (Prediger  
et al., 2016). Finally, technical language is even more decontextualised 
and impersonal and may involve more complex sentence structures 
(Schleppelgrell, 2004). In contrast to everyday language and school lan-
guage, symbolic and algebraic expressions may appear in the technical 
language (Prediger et al., 2016). Within this perspective, a sign of learn-
ing is if students express themselves in a less contextual language and 
describe the representations involved. Through language, the students 
must reason out the representations’ relations (Prediger & Wessel, 2013).

Discursive Non-discursive

Multifunctional Linguistic representations: 
written and oral language 

Figurative representations, 
e.g. images, figures

Monofunctional Symbolic representations: 
arithmetic calculation, 
equations 

Graphical representations, 
e.g. graphs, diagrams 

Table 1. Four registers of semiotic representation (Duval, 2006, p. 110)
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Method 
This design research project includes three iterations, which test a similar 
task design. As this paper presents the results of a third iteration, two pre-
vious iterations involved continuous design adjustments based on analy-
ses of students’ mathematical communication and their use of DGE. 
The task design was tested in 8th- and 9th-year classes in Denmark. 
For iteration 3, the testing involved 9th-grade students (15–16 years old). 
The adjustments of the tasks are explained when presenting the task 
design in the next section. The project uses previously described and 
tested tasks by Johnson and McClintock (2018). The tasks were adjusted 
to the humble design heuristics and for the classrooms in which they 
were tested. 

As part of the study design, the students collaborated in pairs. The stu-
dents had a computer each. The teacher paired the students to establish 
the best-functioning teams based on who they usually collaborate with 
and their proficiency in mathematics. GeoGebra is widespread in Danish 
schools, and the students were all familiar with it. They use GeoGebra 
for every written assignment (at least once a month) and sometimes in 
class. Mathematical communication competency is included as a goal 
in the Danish curriculum; thus, the teachers must aim to exercise the  
competency when teaching (Ministry of Education, 2019).

Data collection included written answers on worksheets and screen-
casts, including videos of students’ screens (to observe their use of the 
GeoGebra), their voices and their webcams (to identify who said what). 
Finally, a camera was placed behind selected pairs to observe the gestures, 
which were not captured by the webcams. In addition, the voice record-
ing quality was often better at the external camera than the computers’ 
voice recording. All communication (oral and written) was originally in 
Danish but was translated into English by the author when presented in 
this paper – for words, which was challenging to translate, the author 
consulted with colleagues. The data presented in this paper cover two 
students’ work and communication (i.e. written and oral communication, 
representations, and gestures, when applicable). The student pair was 
chosen as they worked together throughout the task, and data included 
both screencasts and a video camera behind them. Thus, it was possible 
to triangulate data sources and investigate the whole task design and the 
three dimensions of communication competency of the two students.

Nevertheless, different phases of students’ work are presented to iden-
tify the students’ mathematical communication competency across situ-
ations. The selection of the two students provides a potential ”critical 
case”, which ”can be defined as having strategic importance in relation 
to the general problem” (Flyvbjerg, 2006, p. 229). Such case makes it pos-
sible to generalise in the following manner: ”To achieve information that 
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permits logical deductions of the type, ’If this is (not) valid for this case, 
then it applies to all (no) cases.’ ” (Flyvbjerg, 2006, p. 230). As the students 
in this paper are carefully chosen, and the case aims to show students 
exercising mathematical communication when using the DGE – using 
different languages and uses of the DGE. Hence, if results do not apply 
to this case, it does not exist for others. On the other hand, if the results 
appear for these two students, they may also appear in others.

Task design 
The tasks were built on Johnson and McClintock’s (2018) dynamic inter-
preting of ”the bottle problem”. The problem presents a ”bottle” as a 
polygon, which may be filled by dragging in a point. The particular DGE 
used in this project is GeoGebra, and the students were provided with 
GeoGebra activity templates, which they access using links, designed to 
address such problems. The activity template presents GeoGebra but 
with pre-constructed polygons on the one hand and a point in a coordi-
nate system on the other. The two elements are related, and the task is 
for the students to investigate such a relationship using GeoGebra. 

The mathematical content of the tasks concerned functions such 
as covariation, meaning that a ”student using a covariation perspective 
could conceive of functions as specialised relationships between quanti-
ties” (Johnson & McClintock, 2018, p. 303). The tasks lasted 45-minute 
lessons. The tasks were split into two parts: the first part concerned a 
linear function, and the second part concerned quadratic functions. 

The first part, ”Filling the rectangle”, concerned a linear functional 
relationship. Students were asked to explore, conjecture and test the  

Figure 1. The template when the students access it at the beginning of the task 
sequence (inspiration from Johnson & McClintock, 2018, p. 305).  
Link to the template: https://www.geogebra.org/classic/jqjt7ecs
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relationship between the representations in the template. The repre-
sentations were a rectangle DABC and a point P. See figure 1. At first: a 
rectangle DABC was placed within a longer rectangle. These belong to 
the figurative register and are essential to the ”bottle problem” (Johnson 
& McClinktock, 2018; Swan, 1985). The point P belonged to the graphi-
cal register, and the properties of rectangle DABC defined it: the x-coor-
dinate was the length of AB, and the y-coordinate was the area of  
rectangle DABC. 

It was possible to drag point A, measure properties in the rectangle and 
trace point P. Hence, the task design included affordances for DGE use. 
The traces of point P showed a linear graph, which is defined as y = 3x 
(the height of BC is 3). See figure 2.

The students are asked to answer the following questions:

1. Together. Which figures can you see? Explain why you think it is 
the figure in question. 

2. Together. Identify the height, width and area of the figure

3. (From now on, you may drag point A) Individually. What happens 
when you drag in point A? Describe your conjecture about the 
relationship between the figure and point P’s coordinates. Give as 
many arguments as possible. 

4. You can turn on ”show track” or have GeoGebra show point P’s 
coordinates.

5. Together. Present your assumptions from task 3 to each other. 
Write below what you agree on.

Figure 2. Template with measures on the rectangle DABC and coordinates and 
traces for point P (inspiration from Johnson & McClintock, 2018, p. 305)
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6. Individually. The table (see table 2) shows the lengths of the length 
of AB. Try to fill the table by finding the area of the DABC for a 
given length. 

7. Together. What is the equation of the function? 

8. Together. View the graph of the function in GeoGebra. Try to 
explain what the function’s graph looks like and why it looks the 
way it does. You may draw the graph on paper. 

9. Together. Which variable is dependent and which is independent? 
And why?

10. Together. How can you test that you have found the correct equa-
tion of the function and the graph you have found?

11. Together. What do you expect to happen to your function if you 
change the length of BC increases?

Individual and collective questions were emphasised throughout the task 
design, as our results indicated that students might focus either on using 
GeoGebra and interpreting representations or on having a conversation 
with their peers (Bach & Bikner-Ahsbahs, 2022). 

In iterations 1 and 2, the height and area of the rectangle were infi-
nite, and the rectangle was rotated 90 °. For iteration 3, the rectangle was 
rotated to appear as in figures 1 and 2, as some students were confused 
with the height of the rectangle increasing on the y-axis, which in point P 
were represented on the x-axis (Bach & Bikner-Ahsbahs, 2020, 2022). Pre-
vious editions of the template also had a visible algebra view that showed 
all points and figures. However, words in this algebra view also appeared 
to confuse some students and were a constraint in the instrumentation 
process (Bach et al., 2022b). 

In Iteration 3, an additional task was included to investigate a particu-
lar way of mathematical communication while using DGE. This task 
concerned 2nd order covariation. Yet, this part was not included in this 
paper as it is not part of the original task design. 

The second part, ”Filling the triangle”, concerned a quadratic function 
and built on the same structure as in part 1. The students were provided 
with a new template showing a triangle, a right trapezoid and a point, P. 
See figure 3.

Area of ABCD 1 3 8 15 20

Length of AB

Table 2. The table for task 6
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The second part used the same DGE affordances as part1, namely measur-
ing, dragging and tracing. The traces of point P showed a parabola, which 
could be converted into the equation f (x) = -½ x2 + x. The students were 
given a drawing (figurative register) to ease the conversion from the non-
discursive register to the symbolic register. As in ”filling the rectangle”, 
the students may also turn on tracing for point P. See figure 4. 

The students are asked to answer the following questions:

1. Together. What figures can you see? Please explain why you think 
it is the figures in question.

Figure 4. The template for ”Filling the triangle” with measures and traces for point 
P (inspired by Johnson & McClintock, 2018, p. 306)

Figure 3. Screen dump of the template for phase 3, filling the triangle (inspired by 
Johnson & McClintock, 2018, p. 306) 
Link to the template: https://www.geogebra.org/classic/zatbex7u
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2. Together. Find the side lengths and area of the figures. You can use 
GeoGebra to find it.

3. Individually. What happens when you pull in point D? Describe 
your conjecture about the relationship between the figures and the 
coordinates of point P. Give as many arguments as possible. 

 You may turn on ”show track” or have GeoGebra show point P’s 
coordinates.

4. Together. Read your thoughts from task 3 aloud to each other. 
Write below what you agree on.

5. Individually. The table (table 3) shows the size of AD. See if you can 
fill in the table by finding the area of ABDE to a given size of AD.

6. Together. What is the equation of the function? And why can it be 
written like that?

7. Together. Try to explain what the graph of the function looks like 
and why it looks the way it does. You are welcome to draw.

8. Together. Which variable is dependent and which is independent? 
And why? 

9. Together. What type of function is it? And why? 

10. Together. Describe how you can use GeoGebra to test if your 
results are correct. 

11. Individually. What will happen to your function if you change the 
lengths of BC and AB to become longer or shorter? They must still 
be the same length. 

12. Together. Present your thoughts from task 11 to each other. Write 
below what you agree on.

13. Together. Use this link https://www.geogebra.org/classic/k2qff6wb by 
dragging in point F to change lengths AB and BC. See if you can 
denote P’s x- and y-coordinates, the graph, and the equation of the 
function when the sizes vary.

Area of ABCD 0,2 0,4 0,6 0,8 1

Size of AB

Table 3. The table for task 5
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To summarise, there was a progression in the content provided by various 
task contexts, and the complexity of the content was achieved by includ-
ing polygons and functions and by providing two tasks (one on linear 
functions and one on quadratic functions). In the templates, polygons 
and points in a coordinate system were present, and the students were 
asked to fill tables and find equations of the functions. The tasks included 
measuring polygons, tracing and dragging.

Method of analysis 
The analysis is twofold. It includes analysing the use of a DGE and mathe-
matical communication. Thus, the processes of instrumental genesis and 
mathematical communication by distinguishing between everyday lan-
guage, school language and technical language, as presented by Prediger 
and Wessel (2011, 2013). 

Beginning with instrumental genesis, the students’ ”information 
tools” are described to identify their resources for completing the task 
and determining how they investigated the template. These may include 
their use of theoretical knowledge, the DGE, their peers and the internet 
(Guin & Trouche, 1998).

Second, the students’ mathematical knowledge (i.e. their conceptuali-
sation) was analysed from the perspective of semiotic registers, focusing 
on treatments and conversions within and across representations (i.e. the 
graphical register, the figurative register, the symbolic register and the 
linguistic register) (Guin & Trouche, 1998; Duval, 2006; 2017). The stu-
dents’ languages were also analysed, relating the different representations 
in play and the levels of contextuality within students’ language. Such 
categorisation makes it possible to determine if students use everyday, 
school or technical language. See table 4.

Finally, the students’ instrumentation, instrumentalisation and mathe-
matical communication are summarised. Students’ instrumentation base 

Everyday language School language Technical language 

Language  
characteristics

Contextualised 
and personal

Less contextuali-
sed and personal

Decontextualised, 
impersonal and 
complex

Representations Concrete and 
verbal

Graphical and 
numerical

Symbolic and  
algebraic

Table 4. An overview of language and representations used to determine the stu-
dents’ language, both focusing on the contextuality of the language and the represen-
tations used (Prediger & Wessel, 2013; Prediger et al., 2016; Schleppelgrell, 2004)
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on their information tools, mathematical knowledge and strategies. As 
instrumentation is related to conceptualisation (Trouche & Drijvers, 
2010), the mathematical knowledge is analysed by applying Duval’s (2017) 
concepts of transformations of representations to identify if the students 
coordinate the registers of the template, which indicate learning. Stu-
dents’ instrumentalisation is analysed by identifying the various features 
used in GeoGebra and the indications of what the students may believe 
to be the intended uses of this tool (Trouche, 2005a). Finally, the students’ 
mathematical language is related to their work.

Data and analysis
Two students, Amelia and Charlie (fictitious names), collaborated 
throughout the task sequence. This section is split into two parts: a pre-
sentation of students’ dialogue and related written answers and the sub-
sequent analysis of these excerpts. The students’ written answers are 
presented as close to how they wrote – for instance, using a lower-case a 
(for point A) instead of a capital letter.

Individual investigations of ”Filling the rectangle” 2

The students began by defining the rectangles (see figures 1–2), and then 
they used commands in GeoGebra’s graphical view to identify the rec-
tangle’s length and area. Next, the students worked on the individual task 
of investigating the template by dragging point A and thus conjecturing 
about the relationship between point P and rectangle DABC (question 
no. 3).

1 Amelia Can I drag point A?
2 Charlie Yes. [he drags point A back and forth, both quickly and slowly]
3 Amelia [begins to drag point A] Oh see [she drags very quickly back and 

forth], I don’t understand this

The two students briefly discussed whether this part of the task should 
be done individually or together. After being told that it was to be done 
separately, they worked on their own. Amelia dragged a bit more before 
writing down her answer.

Charlie’s friend came over, and they discussed ”what is the equation 
of the function”. Together, the two friends agreed that it is y = 3x. The 
friend left. However, Charlie was uncertain how to present his results 
and asked the teacher, who told him to just try to do the task on his own. 
Finally, Charlie drew a line (y = 3x) and tested the results by dragging.
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Amelia’s written answer to the individual task: If one drags A to the left, 
point P moves upwards, if one drags A to the right, point P moves  
downwards.

Charlie’s written answer to the individual task: P goes between 0 and 57 
because A = 57. P moves by 3x because the rectangle is 3 high.

Analysis of individual investigations of ”Filling the rectangle”

Beginning with Amelia, her primary information tool is dragging in 
GeoGebra utilised to investigate the template. When considering the 
mathematical knowledge in question, Amelia referred to both point A 
and point P. Yet, she did not refer to the properties of the rectangle. Ame-
lia’s answer did not include deep descriptions of the representations used, 
and it included everyday words such as ”moves’, ”upwards”, ”downwards”, 
”left” and ”right”. Her answer expressed particular actions when using 
GeoGebra (”If one drags”). The use of ”one” instead of ”I” depersonalised 
her answer, but the reference to dragging made it more contextualised. 
Amelia’s strategy for investigating the template was dragging and relat-
ing the representations to each other. However, the representations were 
not deeply interpreted, nor were the treatments and conversions caused 
by dragging. During the process of instrumentation, Amelia struggled to 
understand the representations and their relations. Relates to instrumen-
talisation, Amelia seemed to be unfamiliar with some parts of GeoGe-
bra, and her understanding of its purpose in the given situation was 
limited. Thus the GeoGebra template appeared not to be an instrument. 
Amelia used everyday language due to her contextualised descriptions, 
use of everyday terms and superficially described relations between the  
representations.

Charlie’s information tools included dragging, measuring when iden-
tifying the properties of the rectangle, calculation, when writing the 
equation y = 3x, and his friend (which was not consistent with the guide-
lines of this task). In terms of mathematical knowledge, Charlie’s written 
answer included symbolic representations and verbal language. Charlie 
referred to the area and the height of rectangle DABC and its relation-
ship to point P. Hence, Charlie made conversions from the graphical to 
the figural register and the symbolic register (i.e. 3x). The language was 
impersonal, without directly referring to dragging, and it included mathe- 
matical terms, symbols and argumentation (”because” is a conjunction 
indicating reason). Charlie used several strategies: dragging for investi-
gating the relationship and validating symbolic and verbal explanations. 
Charlie’s process of instrumentation was less complex. The rectangle 
and point P were related by interpreting and describing treatments and 
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conversions, revealing a conceptual understanding of linear functions. 
Charlie used technical language, which uses algebraic expressions; it is 
decontextualised and impersonal.

Collective work on ”Filling the rectangle”
After investigating the template separately, Amelia and Charlie began 
to discuss question no. 4. They were a little confused about what to do 
and asked for help to clarify the goal of the task (i.e. presenting their  
conjectures to each other).

4 Amelia But I don’t really know what the relationship is … I have written that 
”if you drag A to the left, point P goes upwards, and if you drag A to 
the right, point P goes down.”

5 Charlie Okay, Amelia, what I have written ... [he drags point A quickly back 
and forth] ”P goes by 3x. It is like 3x when it goes one to the right. It 
goes 3 up.” Try to see [while pointing with a pen on his graph]. Try to 
see, can you see it? [he drags slowly for six seconds] And then if you 
drag it a little further …

6 Amelia So, we agree that if it goes three up. It goes 3x up [as she points at her 
screen with her pen without a graph] or?

7 Charlie If you zoom out, then you can see that.
8 Amelia The equation is … At least …
9 Charlie So it goes up to 57, and here it goes down to 0 [he points at the graph 

and drags point A until the area of DABC is 0, then 57, and finally he 
returns to the graph to illustrate this]

10 Amelia Okay. So, it is actually ...
11 Charlie It is the area of the rectangle.
12 Amelia It is the area of it [she drags very quickly back and forth for two 

seconds] ...
13 Charlie Yes.
14 Amelia Mmm. So, when you drag it, it can go up to 57 and down to 0. The 

area. Okay. When you drag point A, when you drag point A to the 
left [she is talking slowly, as she is writing at the same time], left, P 
can move up to 57 ... [mumbling]

15 Amelia Mmm. What do you say? That P follows 3x?
16 Charlie Yes

The dialogue continued for a few minutes.

Amelia’s written answer for the collective task: When one drags a to the 
left, p goes up to 57, which is also the area of the figure. P follows 3x. The 
rectangle ABCD has a direct relationship to P’s position.
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Charlie’s written answer for the collective task: P follows 3x. The rectangle 
ABCD’s area has a direct relationship to P’s y position.

Analysis of the collective work on ”Filling the rectangle”

Amelia’s and Charlie’s information tools were dragging, measuring, and 
communicating with each other. For the mathematical knowledge, they 
referred to representations in all four registers. They made the conver-
sions from rectangle to point P when dragging (lines 5 and 12) and point-
ing at the screen (lines 5, 6 and 9). In the discussion, the students’ commu-
nication was contextualised and addressed what happens when dragging 
point D. For instance, Charlie utilised deictic terms such as ”it” in state-
ments such as ”can you see it”, and ”if you drag it a little further” (line 5). 
It was used often, sometimes referring to the rectangle and sometimes 
to point P (e.g. lines 5, 6, 9, 10, 11, 12 & 14). The students also used tech-
nical terms such as ”rectangle”, ”area”, and ”point”. Also, Amelia repeated 
some of Charlie’s sentences (e.g. 11–12). Thus, the language lacked mathe-
matical specificity and was contextual and more personal (the use of 
”you”). In contrast, if we consider the students’ written answers based 
on their discussion, their answers were less contextualised, as there were 
no deictic words and fewer personal references. Charlie’s answer may be 
defined as a technical language, with symbolic expressions (e.g. ”3x”), 
which reduced the context references in the texts, and compact lan-
guage. Amelia’s written answer also repeated some of Charlie’s verbal 
statements. Yet, it also presented transformations between and within 
the registers. However, this was decontextualised as Charlie’s technical 
usage. Thus, it was school language with a few symbolic expressions.

All in all, the two students had different experiences to bring into 
their discussion after their individual investigations. Yet, both Charlie 
and Amelia could both use GeoGebra as an instrument. They inter-
preted representations and made transformations within and across 
registers, indicating instrumentation. They also utilised various fea-
tures of GeoGebra, and they could use it for their intended purposes, 
indicating instrumentalisation. When comparing the dialogue to the 
written answers, there appears to be a shift from contextualised to  
decontextualised language.

Individual investigations of ”Filling the triangle”
Charlie and Amelia began the ”Filling the triangle” task by looking at the 
polygons shown in graphical view in GeoGebra and finding both heights, 
lengths and area (questions no. 1 and 2; see figure 4). They wrote that the 
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figures were a right-angled triangle and a trapezoid. They also noted that 
the trapezoid’s height varied from 0 to 1. Hence, the students had to indi-
vidually investigate the relationship between the trapezoid and point P 
by dragging point D in the trapezoid (question no. 3). When they began 
to do so, they turned on tracing for point P.

Charlie dragged point D slowly up and down for some time (about 
15 seconds) for BD being 0–0.2. Charlie dragged for approximately 1 
minute. While dragging, he pointed at AB and said, ”it is because down 
here, it is wider”.

Amelia primarily looked at Charlie’s template as he dragged and 
tracing was on. Then she asked Charlie to drag it again. She talked to 
herself, ”so it goes along like that. It goes one … [she made an arc with her 
hands]. It rises and goes like that … It rises and then”.

Amelia’s written answer for the individual task: When you pull in D, p goes 
in an arch.

Charlie’s written answer for the individual task: P comes further away 
from 0.0 as figure 2’s [his labelling of the circumscribed triangle for the  
trapeziod] area is bigger.

Analysis of individual investigations of ”Filling the triangle”
Amelia again used dragging, including tracing point P, as an information 
tool. For her mathematical knowledge, Amelia was focused on the treat-
ments of point P and the slope/curve that the tracing made. She made 
gestures with similar forms to the traces for point P. The answer indicates 
that she did not make conversions between the trapezoid and point P. 
Amelia used everyday language with everyday terms, such as ”arch”. It 
is difficult to understand without the template. Amelia’s strategy was to 
describe the graph that point P’s traces make. Amelia did not use GeoGe-
bra. Her answer did not indicate instrumentation (i.e. conceptual under-
standing of the concepts in play), and a process of instrumentalisation 
was not evident.

Charlie used dragging and tracing as information tools, but he also 
measured the lengths of the polygons. For instance, he referred to the 
area of the trapezoid when investigating the relationships. Concern-
ing Charlie’s mathematical knowledge, he made conversions between 
point P and the area of the trapezoid. The description used everyday 
language, such as ”P moves …”. It was closely related to the context, and 
changes in the representations were not profoundly done. Charlie used 
dragging and relating the representations as strategies for completing 
the task. Charlie used various information tools, yet he appeared to lack 
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a mathematical understanding of the object in question (i.e. quadratic 
functions). His work showed a process of instrumentalisation that used 
several features of GeoGebra (i.e. information tools). Thus, his written 
answer revealed difficulties in understanding and communicating the 
relationship between the trapezoid and point P.

Collective work on ”Filling the triangle”
After the two students wrote their answers individually, they had the 
following discussion (question no. 4). 

18 Charlie Okay. I have written that it comes further away from 0.0 [pointing 
at the screen].

19 Amelia I have written that when you drag in D, p goes in an arch.
20 Charlie That’s technically right, but there’s not that much about it.
21 Amelia But what did we find out then?
22 Charlie It is not exponential, but it is decreasing [”decreasing” is not trans-

lated]
23 Amelia Exponential.
24 Charlie That’s how it is. You know where ... it’s like a power.
25 Amelia Power?
26 Charlie You know, like 2 + 2 it is 4, 4 + 4 it is 8, 8 + 8 it is … it does not get larger 

and larger.
27 Amelia When it’s like that, where it’s like 1 to 1, uh no.
28 Charlie Uhm, but it’s like that ... the slope number, it drops [the pencil moves 

in jerks upwards].
29 Amelia Yes, okay.

Amelia’s written answer for the collective task: p becomes larger the further 
you pull in d, but the coefficient decreases. It is a parabola.

Charlie’s written answer for the collective task: P becomes larger together 
with the area of figure 2 but the coefficient decreases.

Analysis of the collective work on ”Filling the triangle”

The students’ information tools included dragging, measuring, tracing 
(from previous investigations), calculations (line 26) and each other. Con-
cerning the mathematical knowledge, the students tried to communicate 
the equation of the function based on the traces of point P. The students 
made different conversions using the traces for point P. For instance, in 
lines 26 to 27, the students described it as a quadratic function without 
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mentioning parabola or power. Also, in line 28, Charlie stated that ”the 
slope drops”. He probably meant that it did not increase as for a linear 
function because a parabola does not have a slope. They displayed eve-
ryday language as it was contextualised, and they used everyday words 
and improvised usage (e.g. decreasingly ”drops”). When we consider the 
written answers, these neither included symbolic or algebraic representa-
tions. Both answers include ”slope decreases”, which was incorrect. Both 
written answers were contextualised (e.g. referring to ”figure 2” instead 
of writing ”trapezoid”; referring to dragging), yet impersonal. It is unclear 
how ”parabola” ended up in Amelia’s answer. Their strategies may be 
interpreted as applying semantic interpretation based on their dragging, 
but they do not validate their results.

The students’ instrumentalisation was lacking in this task, and they 
did not explore additional artefacts in GeoGebra to help them to com-
plete the task. The instrumentation process revealed difficulties in 
making transformations within and between registers and a lack of a 
specific vocabulary. Hence, the students used everyday language, includ-
ing mistakes in the mathematical representations and contextualisation.

Summarising the results
There appeared to be a relationship between Charlie’s and Amelia’s ways 
of communicating mathematically and their instrumental genesis, par-
ticularly when giving their explanations in writing. For instance, Amelia 
used everyday language in both tasks. Also, the treatments and conver-
sions in the representation were not done, and her process indicated that 
the instrumentation of the DGE template was absent. Their school lan-
guage indicated that they made conversions and treatments, and it did 
not include as many everyday terms. Amelia used school language in the 
written answers following a discussion with Charlie. Charlie used tech-
nical language in the first tasks. The relationship between their mathe-
matical language, the mathematical representations and the processes of 
instrumental genesis are summarised in table 5.

For table 5, the use of everyday language, school language, and tech- 
nical language appear to be closely related to students’ processes of 
instrumental genesis.

If we consider the students’ oral communication during the first task 
concerning the rectangle, they appeared to use school language, but it 
was contextualised and personal when communicating. However, when 
the students wrote after communicating, their communication was less 
contextualised and without deictic terms. On the other hand, when they 
discussed the second task concerning the triangle, they appeared to use 
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everyday language that lacked mathematical terms and improvised their 
own. Hence, the students’ oral language appears to be more contextual 
and personal than their written language.

Adjusting design principles for mathematical communication 
competency and the use of the DGE

Charlie and Amelia can be considered as a critical case showing how stu-
dents’ mathematical communication may develop – and differ – depend-
ing on the situation. Such situations regard both individual or collec-
tive tasks, the process of instrumental genesis, and the mathematical 
content in question. Hence, their mathematical communication com-
petency is exercised in the collective work when presenting the results 
of individual investigations, and their written answers develop based on 
these dialogues. Results also indicate that their mathematical commu-
nication competency is closely related to the processes of instrumental 
genesis (see table 5).

This section discusses the results and refines the humble design heu-
ristics (DHs) into a set of design principle(s) (DPs). Thus, the design 
heuristics are transformed based on the analysis of Amelia and Charlie  
(Prediger, 2019).

Language Language  
characteristics

Representations Instrumental genesis 

Everyday 
language

Contextualised, 
everyday terms 
and improvised 
usage.

Transformations 
within and across 
registers were done 
superficially. 

The initial phase of the instru-
mental genesis. The student 
were at the beginning of 
both instrumentalisation and 
instrumentation.

School 
language

Mathematical 
terms, less con-
textualised and 
personal. 

Transformations 
within and across 
registers were done, 
and the repre-
sentations were 
described  
dynamically. 

The tool was developing into 
an instrument, including 
instrumentation and instru-
mentalisation. Thus, students 
understood the representa-
tions, used different features 
in the GeoGebra.

Technical 
language

Decontextua-
lised, impersonal, 
complex structure.

Transformations 
within and across 
registers were done, 
and the repre-
sentations were 
described statically.

The tool was an instrument 
for the student, including 
instrumentation and instru-
mentalisation. Thus, students 
understood the representa-
tions, used different features 
in the GeoGebra and had the 
goal of the task in mind.

Table 5. An overview of relations between written language, representations and 
instrumental genesis
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Progression across situations and content (DH1)
When we begin by discussing DH1, KOM’s three dimensions of mathe-
matical communication competency are interesting. Related to the 
degree of coverage, Amelia and Charlie were asked to express themselves 
mathematically and to interpret each other’s mathematical communica-
tion across two media (oral and written), and they communicated mathe-
matically across different languages – everyday, school and technical. 
Related to the radius of action, the tasks included geometry and functions 
and related to the technical level; the students were faced with tasks on 
linear function and quadratic functions.

The results indicate that how they exercised mathematical commu-
nication competency depended on the situation. Charlie communicated 
using more registers than Amelia when focused on linear functions. 
Thus, Charlie’s degree of coverage was greater than Amelia’s when com-
municating about linear functions. Looking at the degree of coverage, 
Amelia showed progress in both tasks: from using everyday language to 
using school language. The data presented is not enough to display the 
radius of action for Charlie and Amelia, but the results indicate that both 
students could use GeoGebra to measure the figures in both tasks but not 
find the functional relationships. At the technical level, they communi-
cated less contextualised when working with linear functions than with 
quadratic functions. Thus, designing tasks with a progression of content 
makes it possible to exercise mathematical communication competency 
in various situations. 

DP1. Tasks must be designed so that there is a progression across situa-
tions and content, having various task contexts (e.g. geometry and 
functions) and increased content complexity (e.g. from linear func-
tions to quadratic functions). Hence, the three dimensions of  
competency can be exercised when using a DGE.

Using of various representations (DH2)

If we focus on using different representations and registers (DH2), trans-
formations within and across registers are closely related to mathematical 
understanding (Duval, 2017), which entails the process of instrumenta-
tion when using a DGE. The use of a DGE automatically offers treat-
ments of representations (Duval, 2017), which may result in dynamic 
mathematical communication (Bach et al., 2022a), also found in Amelia’s 
mathematical expressions. The dynamic features are embedded in eve-
ryday and school language, which may be due to the contextualisation of 
these two languages. However, Charlie did not embed dynamic features 
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in his mathematical communication when using technical language, 
which may be due to the decontextualised language, and his instrumen-
tation of the DGE, including the understanding of linear functions.

When Amelia and Charlie investigated the relationship between point 
P and the rectangle, they needed to address a variety of properties of 
the representations. Hence, if they were to identify the relationships 
in small steps (e.g. introducing and focusing on one representation at 
a time), more students might be able to follow this (e.g. also in Prediger 
& Wessel, 2013). The covariation perspective, involving coordination of 
more than one register, supports the potential to develop a mathematical 
understanding (Duval, 2017).

Using the Prediger and Wessel’s model (2011; 2013), the goal of mathe-
matical communication is to communicate in technical language, which 
may be reasonable, given that results indicate that instrumentation is 
necessary to use such language. However, when using school language, 
students may also show mathematical communication competency, as 
they use a vocabulary that is accepted and used in the classroom. Hence, 
both school language and technical language may include more sophis-
ticated mathematical language. To design a task aiming for these lan-
guages, students need to relate the various registers and languages, for 
instance, when formulating the task description in everyday language 
(Prediger & Wessel, 2013) or breaking it down for the students to not 
describe the whole situation at once, since dragging is highly demanding 
(Arzarello et al., 2002). By asking to relate all representations and tasks 
in small steps, the subdimensions of communication may also be more 
effectively taken into account (e.g. evoking everyday language, school 
language and technical language).

DP2. Tasks must be designed to address covariation, which involves at 
least two registers that support various languages by offering tasks 
for exploring, understanding and linking each representation and 
language in small steps, as mathematical representations are key to 
mathematical communication and instrumentation that involves 
conceptualisation.

Various artefacts in a DGE with a variety of affordances (DH3)

Concerning DH3, the tasks include various kinds of potential for using a 
DGE, such as dragging, tracing and measuring (Højsted, 2020). However, 
when dragging constant treatments and conversions within and across 
register in the DGE appear (Duval, 2017). For instance, Amelia also noted 
her dragging in her written responses (i.e. indicating both dynamic and 
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pragmatic mathematical communication). Dragging is related to instru-
mentation, which means making sense of the representations and the 
transformations. Dragging also relates to the instrumentalisation of the 
DGE, meaning whether a student can manipulate the DGE and how. 
However, the many potentials of a DGE should not be deployed all at 
once, given the complexity of the representations involved, which is 
closely related to DP2.

DP3. Tasks must be designed so that various artefacts in a DGE with 
a variety of affordances, which gradually support tracing, drag-
ging, measuring and feedback, are used in the task design. Students’ 
varying use of such artefacts are relevant to instrumentation and 
instrumentalisation and offer various opportunities for mathemati-
cal expression and representations when communicating mathe-
matically. For instance, dragging may be challenging, and conse-
quently, its affordances should not be introduced simultaneously to 
ensure that its potential is fully exploited.

Making room for both individual and collective processes (DH4)

In particular, Amelia developed her language when communicating with 
Charlie, which is related to DH4. When working in pairs, students may 
test their results and exercise different subdimensions of the commu-
nication competency throughout the task. Thus, students must work in 
pairs, as they may help each other, which is essential to both mathemati-
cal communication (Prediger & Wessel, 2013) and instrumental genesis 
(Guin & Trouche, 1998).

The process of instrumental genesis is time-consuming (Trouche, 
2020a; 2020b), and students need time to investigate the template. When 
they have time to investigate the template, it limits the risk of having 
a dialogue that is too contextualised and reduce listening. Thus, when 
students communicate after investigating the template, they focus better 
on communicating instead of using the DGE (Bach & Bikner-Ahsbahs, 
in press, 2022).

DP4. Tasks must be designed to allow individual and collective pro-
cesses by including individual tasks and tasks that focus on 
communication. Thus, students have time for the process of 
instrumental genesis, as well as time to focus on mathematical 
communication.

Using a DGE and exercising mathematical communication competency 
are demanding tasks. They are dependent on instrumental genesis, 
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particularly the process of instrumentation, which is closely related 
to mathematical understanding (Trouche & Drijvers, 2010). Hence,  
understanding involves coordinating at least two registers (Duval, 2017).

Conclusion 
When designing tasks intended to exercise, or even develop, students’ 
mathematical communication competency when using a DGE, it is 
important to separate – join – new separate 3 in steps relating mathemati-
cal representations (symbolic, graphical, figurative and verbal) between 
the registers in the DGE and making room for both collective and  
individual processes. 

Applying the set of design principles presented in this paper offers 
the opportunity to exercise – and possibly develop – mathematical com-
munication competency when using a DGE. Moreover, as this paper only 
includes one case, the design principles could be tested on other addi-
tional cases and possibly other tasks and mathematical content than what 
has been presented in this paper. 
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Notes
1 The original terminology referred to these three kinds of language as 

”registers”, but when using the concepts with Duval’s terminology, two 
different understandings of registers are rather difficult (Prediger & 
Neugebauer, 2021). In addition,the framework was initially developed for 
language learners (Prediger & Wessel, 2011, 2013). 

2 This first part of the students’ work on ”Filling the rectangle” have 
been presented and analysed in Bach (submitted), but not focusing on 
mathematical communication, describing the development of instrumental 
genesis and mathematical communication competency. 

3 Separate – join – new separate is a reference to Shvarts et al.’s (2022) design 
principle, concrete-abstract-new-concrete, based on Davydov’s (1990) work. 
Such a labelling refers to that the different phases of separating and joining 
brings new perspectives to the new phase of separating (e.g. when writing). 
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