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mario sánchez aguilar and anna baccaglini-frank

Taking its departure point in critical mathematics education, mathematical compe-
tencies, and the use of digital technologies in mathematics teaching and learning, 
the paper sets out to discuss and describe a technocritical mathematics education. 
Not least this is due to the increase of hidden mathematics in technology of society 
today, both inside and outside the classroom. It is argued that a technocritical mathe-
matics education must enable students to exercise the processes of ”packing” and 
”unpacking” (hidden) mathematics as part of becoming citizens in a modern society. 
The paper raises the questions of what mathematical cases might enable students 
to develop competence with regard to these processes, and what might characterise 
such mathematical cases. Part of the answer to this point is a so-called embedded 
”matryoshka doll” feature of such mathematical cases. Two examples of mathematics-
based technologies – public-key cryptography and blockchains for cryptocurrency – 
on which our modern-day society are deeply dependant are displayed and discussed 
in the light of a technocritical mathematics education.

In a context of democracy and subject matter didactics, Misfeldt and 
Jankvist (2020) argue for a ”technocritical mathematics education” which 
focuses on enabling students to ”pack and unpack mathematics”. In this 
regard, packing and unpacking concern both the use of digital techno-
logy in the classroom and are related to students’ enquiring their own 
technological surroundings. It is well known that digital technologies 
in our everyday life hide a lot of mathematics. Almost twenty years ago, 
the now past applied mathematician and philosopher of mathematics 
Philip J. Davis said: 

It’s a wonderful subject, mathematics, of course, and the interesting 
thing is that it is coming into our lives more and more. The age is 
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the mathematical age. Most of the mathematics is hidden. It’s invi-
sible to people, because it’s in programs, it’s in chips, it’s in laws … So, 
you don’t see it – and if you don’t see it, you don’t think it is there.

(Philip J. Davis in Jankvist & Toldbod, 2005, p. 321)

The situation today appears to only have increased in respect to the hidden 
mathematics in society. Surprisingly, perhaps, this also goes for what 
is taking place inside the mathematics classroom (Misfeldt & Jankvist, 
2020). With the heavy introduction of digital technologies (DT) – such as 
dynamic geometry environments (DGE) and computer algebra systems 
(CAS) – in both lower and upper secondary schools, quite a bit of mathe-
matics is hidden for the students today. Mathematical procedures are 
packed away into CAS procedures such as ”solve” for solving linear equa-
tions and ”desolve” for solving practically any type of differential equa-
tion, and DGE procedures as ”ruler” and ”drag”. Such procedures have 
been documented to have both unintended negative consequences for 
the students’ mathematics learning due to blackboxing of mathematical 
processes and content (e.g. Buchberger, 1990, 2002; Jankvist et al., 2019) 
as well as new learning potentials such as a lever potential, which allows 
students to focus on conceptual mathematics without getting stuck in 
tedious calculations (e.g. Dreyfus, 1994; Heid et al., 2012). Even though 
these insights reveal different takes on the consequences of packing 
and unpacking mathematics for students’ learning, none of them talk 
about the processes of packing and unpacking as goals in their own right. 
This is the purpose of technocritical mathematics education (Misfeldt & 
Jankvist, 2020), since this takes as its outset that the end goal of learn-
ing mathematics is citizenship and critical awareness, along with the 
fact that technology plays a large and growing role in shaping our society  
(Harari, 2016; Zuboff, 2019).

Technocritical mathematics education is of course based on critical 
mathematics education (Skovsmose, 2023), which is primarily concerned 
with societal inequality from a mathematics education point of view. 
Even though research in critical mathematics education does address the 
role of DT in democratic processes related to inequity, economics, etc., it 
does not focus on the cognitive function of DT when working with math-
ematics; its focus is on the role of hidden mathematics in DT concern-
ing critical and democratic processes in society (e.g. Skovsmose & Yasu-
kawa, 2004). The observation that DT hides mathematics both inside 
and outside of the mathematics classroom, i.e., in the wider society, calls 
for a new focus in mathematics education. As put forward by Misfeldt 
and Jankvist (2020), perhaps a newly organised mathematics education, 
where the teaching and learning focus is on the ”translation processes” 
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that pack and unpack mathematics, respectively. That is, the transforma-
tions that hide and uncover mathematics in relation to the given situa- 
tions and purposes. It thus becomes a democratic objective that stu-
dents learn to distinguish between use of technology as lever potential 
and as black box, respectively. To be able to address complex problems 
from a holistic point of view, it is important to be able to simplify – or 
”hide” – single elements. Yet, from the point of view of citizenship in a 
democracy, it is important to be able to uncover the involved mathematics  
again, both in relation to mathematical concept formation and the use of 
mathematical models in society. To this end, DT in the form of mathe-
matical software (DGE, CAS, etc.) plays a central role, since these tools 
train exactly this. Critical mathematics education has some similarities 
to mathematics that are related to ”the real world” either by focusing on 
realistic contexts (Van den Heuvel-Panhuizen & Drijvers, 2020), mathe-
matical modelling (e.g. Cevikbas et al., 2023; Geiger, 2017; Lesh & Doerr, 
2003; Maas et al., 2022), or mathematics developed in practice (Nunes et 
al., 1993). However, the combination focusing on students’ empowerment 
and on critical and reflective uses of mathematics, is distinct for critical 
mathematics education and makes this perspective rather relevant when 
considering how mathematics can and should contribute to students’ 
mathematical literacy.

As pointed out by Davis in the introductory quote, if you cannot see 
the mathematics, you do not think it is there. For this reason, a tech-
nocritical mathematics education must begin with training the students 
in spotting situations and contexts involving hidden mathematics. More 
concretely, this means that the use of DT in mathematics teaching should 
include a direct focus on the processes of hiding mathematics and reveal-
ing already hidden mathematics. Still, it is clear that to exercise these pro-
cesses, students must possess some mathematical capabilities and under-
standing – they must possess mathematical competencies. In this paper, 
we thus ask the following questions:

 What might be examples of mathematical cases that enable stu-
dents to develop and engage with the processes of packing and 
unpacking hidden mathematics related to use of DT? And what 
characterises these cases from a technocritical mathematics  
education point of view? 

As a means for addressing these questions, we provide two illustrative 
mathematical cases from our everyday surroundings: one related to pub-
lic-key cryptography, which is used in much of our digital communica-
tion, online shopping, etc.; and one related to blockchain technology 
which is used in relation to cryptocurrency. But first there is a description 
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of the theoretical perspectives on which we build our argumentation. In 
particular, we draw on two strands of mathematics education research 
that both – each in their own way – augment the critical mathematics 
education approach. 

Mathematics education theoretical perspectives
We use three bodies of literature to describe the problématique. Criti-
cal mathematics education, which as mentioned above, focuses on the 
role mathematics plays in developing critical thinking and democratic 
citizenship, and serves to develop an awareness about how mathemat-
ics education may contribute to inequality. Furthermore, we relate to 
the Danish mathematical competencies, the so-called KOM framework 
(Niss & Højgaard, 2019), which focuses on how the ability and willing-
ness to do mathematics is an important outset for participating in indus-
try and democracy. The last body of literature we draw upon concerns 
what technology, and the use thereof in teaching, does to students’ con-
ception of mathematics and their motivation for and ability to engage  
mathematically in society. 

Critical mathematics education 
Critical mathematics education can be described in terms of its ”con-
cerns” or issues of interest. One of its main concerns is to provide students 
with a mathematical education that allows them to identify, judge and 
criticise the uses – and misuses – of mathematics in their own societal set-
tings. Under this perspective, it is intended that students use mathemat-
ics as a tool that enables them to analyse and criticise their own societal 
reality. Skovsmose and Nielsen (2014) affirm that the concerns of critical 
mathematics education cover the following issues:
(a) Citizenship identifies schooling as including the preparation of stu-

dents to be an active part of political life.

(b) Mathematics may serve as a tool for identifying and analysing criti-
cal features of society, which may be global as well as having to do 
with the local environment of students.

(c) The students’ interest emphasises that the main focus of education 
cannot be the transformation of (pure) knowledge; instead, educa-
tional practice must be understood in terms of acting persons.

(d) Culture and conflicts raise basic questions about discrimination. 
Does mathematics education reproduce inequalities which might 
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be established by factors outside education but, nevertheless, are 
reinforced by educational practice?

(e) Mathematics itself might be problematic because of the function 
of mathematics as part of modern technology, which no longer can 
be reviewed with optimism. Mathematics is not only a tool for  
critique but also an object of critique.

(f) Critical mathematics education concentrates on life in the class-
room to the extent that the communication between teacher and 
students can reflect power relations. 

(Skovsmose & Nielsen, 2014, p. 1257)

These six perspectives, when presented in totality, illustrate how criti-
cal mathematics education presents a coherent approach to mathematics 
education, which questions some of the naturalised understandings of 
what mathematics is and why it is taught. Issues (b) and (e) are of special 
interest to the discussion of the relation between mathematics and tech-
nology, because of the analytical apparatus that mathematics provides in 
understanding our technical surroundings (issue b), and because mathe-
matics itself is part of technologies that have a questionable or problema-
tic impact on our lives (issue e). Critical mathematics education has ques-
tioned and criticised the very idea of ”modernity” conceived as an ideal of 
social progress based on the advancement of science and the development 
of technologies – in which mathematics has much to do – and where 
the objectivity and neutrality of science and technological advances are 
assumed and left unquestioned.

One scholar who has questioned this presumed neutrality of moder-
nity and the role of mathematics in its constitution is D’Ambrosio (1994):

In the last 100 years, we have seen enormous advances in our know-
ledge of nature and in the development of new technologies. [...] And 
yet, this same century has shown us a despicable human behaviour. 
Unprecedented means of mass destruction, of insecurity, new ter-
rible diseases, unjustified famine, drug abuse, and moral decay are 
matched only by an irreversible destruction of the environment. 
Much of this paradox has to do with an absence of reflections and 
considerations of values in academics, particularly in the scientific 
disciplines, both in research and in education. Most of the means 
to achieve these wonders and also these horrors of science and  
technology have to do with advances in mathematics. 

(D’Ambrosio, 1994, p. 443)
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It is in this context that the notion of mathematics in action (Skovsmose, 
2004) becomes important. The notion refers to the identification of 
the role of mathematics in the technological planning of society and in 
decision-making. The notion also considers how mathematics becomes 
installed in society and starts operating as part of technological devices, 
although in a way that is not visible to everyone. 

Indeed, as noted by Skovsmose (2020), ”most often the mathematics 
that is brought into action is operating beneath the surface of the prac-
tice” (p. 605). An example used by Skovsmose (2020) to illustrate this, is 
the process of shopping at the supermarket. Particularly the moment in 
which the cashier scans the bar codes of the products to calculate the 
total of the purchase, and the shopper uses her credit card so that an 
electronic reader subtracts from her bank account the amount of money 
that covers the total of the purchase. Even though neither the shopper 
nor the cashier are required to do any arithmetic to perform this process, 
and although there is no mathematics in sight, there is a considerable 
amount of mathematics involved in the process.

The items are coded and the codes are read mechanically; the codes 
are connected to a database containing the prices of all items; the 
prices are added up; the credit card is read; the amount is subtracted 
from the bank account associated to the credit card; security matters 
are observed; schemes for coding and decoding are taking place.

(Skovsmose, 2020, p. 605)

There are two important things to consider here. First, that mathe-
matics-based technology is found everywhere in modern societies: in 
banking transactions, in different forms of electronic communication, 
in economic planning, in insurance companies and risk calculations, in 
techniques for surveillance and control, in military devices, etc. Mathe-
matics in action is an integral part of the socio-technological structures 
of modern society. Second, that mathematics in action can have diffe-
rent qualities – not necessarily positive ones. They can be ”productive, 
risky, dangerous, benevolent, expensive, dubious, promising, and brutal” 
(p. 607). An example to illustrate this kind of undesirable qualities is the 
use of drones by the American military in the Afghanistan war.

The operation of the drone includes a range of mathematics brought 
in action. The identification of a target includes complex algorithms 
for pattern recognition. The operation of a drone can only take place 
through the most sophisticated channels of communication, which in 
turn must be protected by advanced cryptography. Channels of com-
munication as well as cryptography are completely mathematized.  
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The decision of whether to fire or not is based on cost-benefit analy-
ses: Which target has been identified? How significant is the target? 
What is the probability that the target has been identified correctly? 
What is the probability that other people might be killed? What is 
the price of the missile? Mathematics is operating in the middle of 
this military logic.  (Skovsmose, 2020, p. 606)

As pointed out by Skovsmose (2020), mathematics in action often seems 
to act in an ethical vacuum that is determined by an ”objective” authority 
attributed to mathematics. Moreover, he argues that this ”objectivity” of 
mathematics is a myth that needs to be challenged. Overcoming such a 
myth is an educational challenge for mathematics education, since this 
should provide conditions for students to uncover, identify and critically 
reflect on any form of mathematics in action. We believe that it is in 
such contexts that the development of a technocritical mathematics edu-
cation becomes necessary, where focus is on the (increasing) amount of 
mathematics in action that is encoded into digital technologies as well 
as practices building on such technologies. 

Constructs related to the use of DT
Some three decades ago, Buchberger (1990) argued that before students 
should be allowed to use DT in a blackboxing manner, they must have 
studied the mathematical ”area thoroughly, i.e., they should study prob-
lems, basic concepts, theorems, proofs, algorithms based on the theorems, 
examples, hand calculations” (p. 13). The work with the mathematical 
content is what Buchberger (1990; 2002) refers to as the ”whiteboxing 
stage”. The order of this whiteboxing stage before any blackboxing, he 
named the ”whitebox/blackbox principle” for using DT, in his case CAS. 

Three decades later much has happened to the use of DT in the mathe-
matics classroom. Jankvist and Geraniou (2021) argue that Buchberger 
to some extent appears to have disregarded the potential of DT them-
selves serving a whiteboxing purpose in students’ work with unfamiliar 
mathematical areas. This role was, however, acknowledged by Cedillo and 
Kieran (2003), in their introduction of the term ”grayboxing” as well as 
by Drijvers (1995), who early on was critical of a too strict interpretation 
of Buchberger’s principle. Grayboxing combines blackboxing and white-
boxing, acknowledging that mathematics learning may take place in an 
environment that combines the two. For example, in a context of algebra, 
Cedillo and Kieran (2003) point out that DT can serve as ”a mediator  
of algebra learning – a tool that helps create simultaneous meaning for 
the objects and the transformations of algebra” (p. 221). Jankvist and 
Geraniou (2021) propose to ”define whiteboxing, still as the opposite of 
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blackboxing, but to be when digital technology serves the purpose of 
revealing mathematical aspects otherwise hidden or inaccessible to the 
students” (p. 222). 

Hence, the situation of DT in the mathematics classroom is not as 
black-white as one might expect at first sight. DT serve the purpose of 
packing down by blackboxing, but they may also play a role in concept 
formation and potentially unpacking hidden mathematics. This is to say 
that a balance must be struck between the role of DT as a lever potential 
(Dreyfus, 1994) and the fact that blackboxing in itself may leave students 
dependent on DT and with little experience of performing low-level 
mathematical processes (Nabb, 2010) as well as not being able to account 
for these (e.g. Jankvist & Misfeldt, 2015; Jankvist et al., 2019). 

In recent years, the use of computers in mathematics education has 
also started to address the intersection between mathematics and com-
puter science. This has mainly been done under the heading of working 
with computational thinking in the mathematical classroom (Kallia et al., 
2021; Pérez, 2018; Tamborg et al., 2023; Weintrop et al., 2016; Wing, 2006). 
Computational thinking is seen as related to problem solving, algorithms, 
recursion and abstraction (Wing, 2006), as well as to data, modelling, 
programming and system thinking (Weintrop et al., 2016). The focus 
on computational thinking in the teaching and learning of mathema-
tics suggests that these tools allow for new mathematical processes and 
meaning making that has some affinity to computer science (Pérez, 
2018; Ye et al., 2023). This means that mathematics has an increased 
responsibility to address students’ ability to understand their technologi-
cal surroundings. However, it also means that the ability to understand 
data, algorithms and recursion will be increasingly available as learning  
objectives and capabilities in the mathematics classroom. 

Despite the obvious differences, the use of DT in the mathemati-
cal classroom is a good starting point for investigating technologies in 
our surroundings. Some of the phenomena are similar. Mathematics is 
hidden or blackboxed in digital surroundings both in the classroom and 
outside the classroom. The way that teachers and students talk about 
blackboxing and whiteboxing as a strategy to learn with DT, does have a 
potential to transfer to discussions about how mathematics is hidden in 
our digital surroundings outside the classroom.

The KOM framework
As mentioned above, we draw on the KOM framework that considers 
the ability and willingness to do mathematics as an important outset 
for participating in industry and democracy, and that provides us with 
a language of mathematical mastery. This way we will be able to discuss 
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citizenship and democratic participation in work life in relation to the 
use of DT. Niss (2016) states that DT on the one hand may ”enhance a 
wide variety of mathematical capacities”, but on the other hand, also may 
”replace some mathematical competencies”, which surely is not desirable, 
since DT can

[…] replace students’ creation of meaning and understanding of 
mathematical concepts and results; replace reasoning and sound 
and critical judgment; replace problem-solving competency; replace 
symbols and formalism competency, including the ability to perform 
basic computations; construct, interpret, or validate mathematical 
models; and replace the work needed to understand ”what?,” ”how?,” 
and ”why?” in mathematics.  (Niss, 2016, pp. 248–249)

The KOM framework is a theoretical approach that conceptualises the 
meaning of ”being mathematically competent” (Niss & Højgaard, 2011; 
2019). Within this theoretical framework the notions of ”mathematical 
competence” and ”competencies” as well as their possible roles in the 
teaching and learning of mathematics, are fundamental. The notion of 
mathematical competence is defined as:

Someone’s insightful readiness to act appropriately in response to 
all kinds of mathematical challenges pertaining to given situations. 
It is essential to stress that the ”situations” referred to in this defini-
tion need not be mathematical in and of themselves, as long as they 
(may) generate mathematical challenges. 

(Niss & Højgaard, 2019, p. 12, emphasis in the original text)

As can be inferred from the definition above, the situations referred to 
may include intra- or extra-mathematical contexts. As noted by Niss and 
Højgaard (2019, p. 12), such situations

Actually or potentially call for the activation of mathematics in 
order to answer questions, solve problems, understand phenomena, 
relationships or mechanisms, or to take a stance or make a deci-
sion, endeavours that give rise to the ”challenges” we have in mind 
in the definition. 

The mathematical competence in turn is constituted by a set of eight 
mathematical competencies. These are the mathematical competencies 
of: thinking; problem handling; modelling; reasoning; representation; 
symbols and formalism; communication; and aids and tools (for more 
elaborated descriptions, please refer to Niss and Højgaard, 2011, 2019). 
It is important to note that, although they are usually presented sepa-
rately, these competencies may overlap – depending on the situation and 
context where they are activated. It is also important to note here that it 
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is not possible for an individual to possess a mathematical competency 
completely and exhaustively. That is to say, the framework assumes that 
the mathematical competencies of individuals are manifested in diffe-
rent contexts and situations but never in its full range. KOM offers three 
dimensions to characterise the degree of possession of a mathematical 
competency by an individual: degree of coverage, the extent to which the 
individual possesses all the aspects of the competency; radius of action, 
the range and variety of different contexts and situations in which the 
individual can successfully activate the competency; and technical level, 
the level and degree of sophistication of how the individual manages the 
mathematical concepts, results, theories and methods (Niss & Højgaard, 
2019). The KOM framework addresses a paramount concern in mathe-
matics education, namely, to change focus in education from facilitat-
ing students’ learning of specific mathematical content towards teach-
ing them a mathematical approach to life. The KOM framework allows 
a reification of mathematical processes that enables us to discuss these 
processes that we endorse in the teaching of mathematics across various 
specific classroom contexts, even though specific teaching situations can 
never be fully described by the eight mathematical competencies. 

Two illustrative ”mathematics in action” cases
In this section, we provide two illustrative mathematics in action cases 
from modern day society that rely on quite a bit of embedded, hidden, 
and packed mathematics. 

Situating the cases
Before we dwell into the mathematical details of the two mathematics 
in action cases, it makes sense to describe the technological and social 
situations that exist around these. As mentioned in the introduction, 
the first case is that of public-key cryptography, which dates back to the 
1970s and today is the basis for much of our online communication. The 
second case is that of blockchains, which is the technology behind cryp-
tocurrency that was invented approximately 15 years ago and now is a 
major player on the financial market. 

These cases are chosen because they both exemplify a type of mathe-
matics that has become important for public political discussions over the 
last decades as a response to the increased digitalisation. Cryptography 
and privacy are important themes when discussing the relation between 
state and citizen. Encrypted web browsing and text message services are, 
on the one hand, a guarantee for individual privacy, and on the other 
hand, a guard against criminals who could otherwise steal one’s bank 
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information when shopping online, or spy on people when texting their 
secret friends over services such as WhatsApp and Signal. Also citizens 
of autocratic regimes, and anyone with perhaps legitimate interests and 
information needs that are criminalised in the country that they live in, 
benefit from encryption. 

Nevertheless, some services are also becoming a haven for criminals. 
The value of private communication for criminals is of course not sur-
prising. Currently it could seem that various solutions for encrypted 
messaging is a major battle ground between criminals and international 
police intelligence service as seen in the recent ANØM case (ANOM, 
2023), where American and Australian intelligence services took over 
the control of an encrypted service used by criminals and kept running 
it while building cases against its users, leading to hundreds of arrests. 
Surely, this shows that criminals in general benefit a great deal from 
such services. All this is to say that the control over encryption raises 
several questions about the relation between state and citizens. To what 
extent does it make sense to ban encryption? And how can this be done 
in an international technology landscape? What is the balance between 
freedom and the control of crime? All these questions are political, yet 
they build on genuine techno-mathematical inventions. 

Blockchain and the derived cryptocurrencies are a large financial 
entity, even though the total value of cryptocurrencies is still less than 
one percentage of the entire world’s money. The idea in cryptocurrencies 
is a peer-to-peer means of value transportation that is not regulated by 
any state, and hence sets its owner free from governmental control. Many 
people argue that cryptocurrencies have similarities to Ponzi schemes 
and hence possess a danger to the entire economy. In addition, the carbon 
footprint, and the occupation of computational resources for mining and 
maintaining cryptocurrencies are not trivial (Buiter, 2022). Surely, bit-
coins and other cryptocurrencies are also often used by criminals. For 
all these reasons, there is an ongoing debate whether cryptocurrencies 
should be regulated or not, and if so, then how this could be done. 

Public-key cryptography
Today, most cryptosystems draw on the idea of a so-called ”one-way func-
tion”. That is an injective function, f, which for every x in its domain is 
easy to calculate f (x), but for every y = f (x) in its range for all practical 
purposes impossible to calculate f -1 (y) = x. The phrase ”for all practical 
purposes” is of course not a well-defined mathematical term. Neverthe-
less, the idea is that it may take moments to calculate f (x), while it may 
take eons to calculate f -1 (y).
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The idea of public-key cryptography is that a person, Bob he is usually 
called, by means of such a one-way function generates a public encryp-
tion key, one to which only he knows the decryption key, i.e., the inverse 
function. Another person, who is usually named Alice, interested in 
sending a secret message to Bob can then use his public key to encrypt 
a message and send it. Bob is then the only one capable of decrypting 
this message. Due to the nature of the one-way function, a cryptanalyst, 
Eve, eavesdropping on the line will not stand a chance of breaking the 
code, even though she knows both the encrypted message, dependent 
on f, and the public key. The situation is illustrated in figure 1. Different 
mathematical fields offer different examples of such one-way functions, 
e.g. projective geometry and number theory. The latter is the most well-
known and is oftentimes ascribed to Ron Rivest, Adi Shamir and Leonard 
Adleman (Rivest et al., 1978), and thus named RSA. RSA builds on the 
problem of prime factoring large numbers.

Generating a very large number n, for example 400 digits long, by means 
of multiplying two, also, large primes p and q is a straightforward opera-
tion. However, going the opposite way, that is prime factoring n, is ”for 
all practical purposes” impossible. In RSA, the public encryption key 
consists of two numbers; n, the product of two large (secret) primes p and 
q, and a number e which is determined in such a way that gcd (e, (p – 1)
(q – 1)) = 1, gcd being the greatest common divisor. The encryption pro-
cedure on the message M, a natural number, revealing the cipher text C 
is defined as C ≡ Me (mod n), meaning that the integer C is congruent to 
the integer Me modulo the integer n. This means that n divides (C – Me ) 
with remainder 0, i.e. n | (C – Me ). The private decryption key, besides also 
consisting of n, consists of a number d, which is an inverse of e modulo 

Figure 1. Public-key cryptography as originally described by Diffie and Hellman 
(1976). One public key (#1) is used to encrypt the message P before transmission. 
Another private key (#2) is used to decrypt after reception
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(p – 1)(q – 1), that is to say ed ≡ 1 (mod (p – 1)(q – 1)) (d can be calculated 
using the Euclidean algorithm and Bezout’s identity). The decrypting 
procedure is defined as Cd ≡  M (mod n).

From a mathematics point of view, we of course need to prove that the 
decryption procedure of RSA actually leads to the original message M. 
Rivest et al. (1978) did this using well established results from number 
theory. To be exact, the proof builds on Euler’s theorem, the special case 
of this known as Fermat’s little theorem, as well as the so-called Chinese 
remainder theorem. We do not provide the proof here. Still, diving into 
these theorems illustrates yet another mathematical layer of the case.

Cryptography is of course a good way to ensure privacy, but as men-
tioned above there are a number of political concerns around this tech-
nology, e.g. criminal activities, surveillance and espionage. From a critical 
mathematics education perspective, we argued earlier that we should (or 
even have to) provide students with the necessary mathematical (and 
quite arguably life) skills that enable them to identify, judge and criticise 
the uses – and misuses – of mathematics in their own societal settings. 
So, equipping our students with knowledge and understanding of public-
key cryptography should better prepare them for the challenges brought 
forward by the current state and policies around online communications. 
How private are their own personal communications? How does society 
respect (or not) every citizen’s privacy? We are sure that students nowa-
days are brought up in a digitalised world, and some do not necessarily 
reflect on what ”hidden” mathematics exist in the ways we communicate 
online, or even they simply do not care. Of course, we are not saying that 
all students need to care about every single detail and become experts in 
number theory and public-key cryptography. However, being exposed 
to the mathematical ideas behind secure online communications and 
”activating” mathematical thinking to understand the phenomena and 
mechanisms involved in public-key cryptography should foster students’ 
development of a mathematical way of thinking about the world that sur-
rounds them and lead to mathematical competence necessary for their 
future societal life. From a digital technologies’ perspective, modelling 
the ”problem” diagrammatically or with the help of digital technology 
(e.g. a simulation) would most certainly unveil some of the ”mechanisms” 
of public-key cryptography and help students unpack the hidden mathe-
matics (see the next section as well). But one could ask: Is knowing how 
something works, but also ”seeing” how something works with the help 
of technology necessary in mathematics education? The answer could be: 
It depends. Do we want to create problem-solvers, reflective and logical 
thinkers or do we want to develop efficient users of technology who are 
reliant solely on technology and its ”magic” in solving problems for them? 
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Both ”types of citizens” can survive in a digitalised society. But what is 
key here is what the latter ”type of citizen” is equipped to do (or not) 
when technology breaks.

Blockchain 
The ”one-way function” described in the previous section can also be 
used to create hash functions, which are digital identifiers for any dataset, 
mapping data to simple strings in an injective manner. In this case, no 
private key exists that allows us to calculate the inverse. A hash function 
can be used to guarantee that no one has messed with your data. 

As an example, say that you calculate the hash function of a word docu-
ment, e.g. testament.doc, where you testament all your AC/DC t-shirts to 
your brother, write the hash down and place it in a secure place (it could 
be h(testament.doc) = 4353tfew4), and then keep the document on the 
family computer hard drive. If your sister now tampers with the docu-
ment, so that she gets the t-shirt from the ”Highway to Hell” tour, the 
hash would be different, and the scam can be revealed.

This use of one-way/hash functions has several applications. One of 
them is that they make blockchains possible. A blockchain is an open 
and connected database of information that can be read by everyone, 
but not copied or altered. The idea is to store data in a series (chain) of 
code-blocks. Each block contains the data to be stored in the specific 
block and a little more information to make the chain secure. This extra 
information consists in that each block is given a hash label (the result of 
calculating the hash function of the block), and this hash-label is stored 
in the block together with the hash-label of the previous block in the 
chain (figure 2). 

Blockchains have several applications, cryptocurrency being one of 
them and smart contracts another. With blockchains, we can be sure 
about ownership and transactions of currency without keeping track of 
who owns what in a central governmental database. If the currency is 
spent once, the chain will be altered, and it cannot be spent again.  

Figure 2. A connected chain of data blocks containing information about testimo-
nial information, if one block is tampered, the hash function is changed, and the 
chain is broken. 
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There is a heavy critique and debate about the use of blockchains for 
cryptocurrency. As mentioned above, it has been argued that these cur-
rencies mainly act as Ponzi schemes and consume an enormous amount 
of energy while not adding anything good to human life.

Similarly to what was argued with regards to a critical mathematics 
education perspective for the public-key cryptography case, it seems rea-
sonable to argue that a sound understanding of blockchain is an impor-
tant element in participating in political discussions about regulations 
and taxations of such monetary instruments. Debates over cryptocur-
rency often build on arguments where mathematics lends objectiv-
ity and security to the financial constructions in a way similar to what  
Skovsmose and Nielsen (2014) describe as: ”Mathematics is not only a 
tool for critique but also an object of critique” (p. 1257). This because the 
mathematical and precise nature of the blockchain does not guarantee a 
financial stable asset. 

Packing and unpacking – the ”Matryoshka doll” metaphor
In both mathematics in action cases above, a full understanding of the 
mathematical situation requires quite a bit of technical work and a high 
level of abstraction on behalf of the students. In a sense this makes these 
two cases hard to include in actual mathematics school teaching. Never-
theless, both cases point to mathematical artifacts that are important to 
learn about in order to promote democratic citizenship. Furthermore, 
if these artifacts should be taught in relation to a school topic, it seems 
relevant to teach them within our mathematics programmes. Yet, this 
leaves the question of how to do this without just talking ”about” the 
cases, but providing the students with hands-on experiences with the 
involved mathematics, i.e. one-way functions, number theory, etc. The 
two cases have of course been chosen in such a way that they allow for 
packing and unpacking of the mathematics involved.

Now, surely our education systems should equip students with the  
necessary skills to enter nowadays society, where digital technology 
makes frequent appearances in everyday life. Such skills include digital 
competencies, as well as mathematical competencies. To ensure that 
our students are critical thinkers and can understand the mathematics 
behind certain processes and activities that involve technology – or not 
– we may need to rethink the current mathematics curriculum (Pepin et 
al., 2023) to ensure that students have the necessary mathematical know-
ledge, but also the competencies needed, involving abstracting, reason-
ing, etc., as well as using tools to effectively reach a solution (to mention 
a few from the KOM framework). 



jankvist, misfeldt, geraniou, aguilar and baccaglini-frank

Nordic Studies in Mathematics Education, 28 (3-4), 9–34.24

Going back to the public-key cryptography case, we could break down 
the mathematics that needs to be taught to students at different levels 
as follows. The very idea of public-key cryptography can be explained 
to students at a rather elementary level, e.g. by comparing with the idea 
of private-key cryptography and the potential risks of such. This will of 
course need to involve a discussion of the idea of a mathematical ”one-
way function”, to the extent that this is possible. Moving to lower secon-
dary mathematics education, where the concept of function is known 
to the students, a deeper discussion of function and its inverse can be 
carried out. Also, actual number examples can be introduced, and the 
students can carry out their own calculations involving the numbers p, q, 
and e, as described in the case above. Surely, this will entail an introduc-
tion to the modulo operation and congruence (and the congruence sign), 
with which they may not be familiar. However, the notion of a greatest 
common divisor (gcd) as well as exponent and powers should not be alto-
gether unfamiliar to the students. Of course, the Euclidean algorithm 
and Bezout’s identity could be ”packed” away through an outsourcing 
to DT. At upper secondary level, a full unpacking with proof of the cor-
rectness of RSA, involving actual number theoretic results such as Euler’s 
theorem, the Chinese remainder theorem, etc. can be implemented. (For 
an example of such an implementation in upper secondary school, please 
refer to Jankvist, 2011). 

Having laid out all of the above, we do not propose that students need 
to be taught cryptography per se at school, but instead we simply propose 
that we should try to equip students with the competence to identify the 
”hidden” mathematics in various aspects of our lives and scientific dis-
ciplines, such as cryptography. Students should become critical thinkers  
as to how, when and for what purpose technology and mathematics may 
be used outside school. Of course, making some links to the mathema-
tics that support a discipline such as cryptography, and mentioning those 
links at a high level, including blockchain and cryptocurrency, could 
encourage students to look for the ”hidden” mathematics in various other 
disciplines too. In other words, we envisage that providing students with 
”advanced” and real examples and presenting these as a necessary ”tool” 
for secure digital communications, transactions, data protection, etc. 
would instil the need for looking further into the mathematics that may 
be hidden as a way to understand the world around them. 

As for blockchains, connecting information in an open chain, where 
the hash function ensures that information cannot be changed, is an 
example of using computational thinking to pack and unpack informa-
tion. Students in lower secondary school can easily learn about the value 
of non-editable and chained information by looking at examples such as 
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databases and cryptocurrency. Furthermore, by adding a little bit of pro-
gramming and algorithmic thinking, it is possible to create or modify a 
simple blockchain, and if the students are up to it, it can be fun to create 
simple hash functions. Such hash functions can be rather elementary, 
e.g. basic words or character counts, or more advanced, e.g. hash func-
tions that avoid or minimise unfortunate collisions (where two different  
documents lead to the same hash, making the blockchain insecure). 

How ”deep” students’ mathematical knowledge is and how competent 
they may become in applying their knowledge outside school mathemat-
ics is a challenge for all educators. What activities we decide to include as 
part of their school education that help them in accessing the ”hidden” 
mathematics, ”seeing” and understanding its different layers (according 
to the matryoshka doll metaphor) of mathematical knowledge is vital. We 
surely want to support our future citizens in developing a technocriti-
cal mathematical discourse that will enable them to be active, critical, 
techno-mathematical literate members of their society.

Both cases of public-key cryptography and blockchains share the feature 
that they can be packed and unpacked according to the educational level 
and context. A teacher can decide how many layers to peel off. We can 
think of the two mathematics in action cases as possessing a ”matryoshka 
doll” feature, where one can choose to focus only on the outer doll, the 
second outer, etc., or to simply go all the way. One can unpack or pack, 
depending on the educational needs at hand, while still illustrating to the 
students that (and how) mathematics is embedded in these technologies. 
Of course, we can also argue that such competence is necessary for stu-
dents to have in the digital age, and therefore a teacher should consider how 
best to ”train” her students. This could be viewed as a long-term ”project 
work”, to be carried out perhaps even over several years (in educational 
contexts in which this is possible, like in the Italian educational system), 
where the teacher plans accordingly and reveals the different ”matryoshka 
dolls” gradually to her students, considering when and whether students 
are ready as well as the best pedagogical approaches to do so.

Towards a technocritical mathematics education
From the perspective of critical mathematics education, the matryoshka 
doll metaphor can be used to highlight a few central aspects of the rela-
tion between technology in our society and the teaching and learning 
of mathematics education. When preparing students to become active 
citizens and participate in political life, the ability to pack and unpack 
mathematics can be crucially important. Opaque technologies can be 
unpacked with mathematical knowledge and approaches (as shown in 
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the two cases above). Participation in debates about laws and regulations 
around such technologies requires that one can parcel the concerns in 
play with the appropriate mathematical depths and the right concerns 
”packed down” inside the doll. Also, ”matryoshka dolls” are a way to look 
at the world around you as consisting of interesting things that can be 
opened with mathematics. In a sense, this is not unlike taking a model-
ling perspective on the world and activating the analytic part of KOM’s 
modelling competency to critically analyse and evaluate existing or pro-
posed models. Still, this is critical if we want students’ interest and ability 
to act in the centre of the educational enterprise, and if we want them to 
reflect upon inequalities and misconducts that often exist in a modern, 
highly technological society, and often are hidden away or encoded in 
technology. In a sense, we want students not only to use mathematics as 
a ”tool for critique, but also an object of critique” (Skovsmose & Nielsen, 
2014, p. 1257), as this enables them to understand and appreciate those 
possible inequalities and misconducts in our society.

The mathematical competencies that are needed when opening and 
closing the matryoshka dolls change. At each level of the doll, specific 
mathematical competencies are needed. Yet, the deeper we penetrate the 
doll, the more is demanded of our possession of the specific mathemati-
cal competencies in play. This is where the KOM framework’s descrip-
tion of a person’s possession of a competency’s three dimensions: the 
degree of coverage, the radius of action, and the technical level (Niss & 
Højgaard, 2019) as mentioned earlier, may become relevant, and support 
in identifying the degree of possession of a mathematical competency 
by an individual. 

Blackboxing and whiteboxing are of course related to opening or 
closing the matryoshka doll. The literature on these topics (e.g. Buch-
berger, 1990; Jankvist et al., 2019; Jankvist & Misfeldt, 2021) points to 
potential problems that can occur when elements are blackboxed. Never-
theless, the matryoshka doll approach turns this around, and shows that 
the ability to blackbox and whitebox (in the sense described in Jankvist 
& Geraniou, 2021) mathematical complexity is as much an independent 
competence as it is a problem for mathematics learning. This is to say that 
in a sense the matryoshka doll is a prescriptive – or a normative version – 
of the blackboxing and whiteboxing processes, which traditionally have 
been used to describe learning processes with technology. The new thing 
here, however, is that the ability to do the packing and unpacking is a goal 
in itself of mathematics teaching.

Teachers are expected, to some extent required, to support students 
in this process of ”unpacking” the mathematics behind tasks, such as the 
mathematics in action cases presented earlier. Of course, this process is 
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not a straightforward one neither for students nor teachers, the latter who 
are meant to possess the necessary competencies for using pedagogically 
powerful technology-enhanced approaches to teaching mathematics. It 
is a process that needs time and commitment to appreciate how to sys-
tematically address this student competence. Hoyles et al. (2010) research 
on how to improve mathematics at work and how techno-mathematical 
literacies (TmL) can be integrated within working practices revealed the 
need for 

[…] employers to come to terms with the need for this new mathe-
matical understanding [this here is the mathematics expressed 
and the ways in which math is communicated in particular work-
places] and to develop new pedagogical approaches for training, 
so as to make TmL more visible and available for exploration and  
development.  (Hoyles et al., 2010, p. 168) 

Similarly, we argue for the mathematics that is used in certain tasks but 
hidden to the ”untrained” eye of a student, to become ”more visible and 
available for exploration and development” with the help of the teacher 
(or a teacher educator); all these of course aimed at ”training” students 
in becoming ”active” and mathematically literate citizens. All in all, this 
is of course a rather challenging ”project”, involving careful thinking 
about design of activities, the resources, and pedagogical approaches to 
be used. This careful thinking brings us back to the concerns of critical 
mathematics education – particularly (c) – because it suggests that the 
primary aim of education should not merely be the transfer of know-
ledge in its pure form. Instead, education must be viewed through the 
lens of students as active participants, where educational practices are 
defined by their actions and interactions, and students are led to become 
more and more aware of both the content they are learning and of their 
learning processes. In other words, we want to identify ways in which 
to showcase to students how mathematics is a tool ”for identifying and 
analysing critical features of society, which may be global” (Skovsmose 
& Nielsen, 2014, p. 1257), but at the same time are very relevant to the 
local environment of students. We therefore call for further research 
into technocritical mathematics education that can address these very 
issues. Based on our experience, for such a research field to embark and 
become sustainable, teachers should be strong believers in the value of 
technocritical mathematics education and actively engage in developing 
resources and transforming learning opportunities for their students, 
instead of being ”receivers” of advice and guidance. Resources should 
be revisited on a regular basis to be refined and aligned with the evo-
lution of techno-mathematical knowledge and technological advances. 
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On-going collaborative work between mathematicians, mathematics 
educators and researchers, in-service teachers from different disciplines 
(e.g. mathematics, science, computer science) should be promoted and 
empowered. Such work aligns with Skovsmose’s (2004) idea of ”mathe-
matics in action”. Recognising that the role mathematics can play in the 
technological planning of society and in decision-making is paramount 
in educating ”technocritical” and ”techno-mathematical” citizens.

Conclusions
Returning to the outset of the paper, we asked what might be examples  
of mathematical cases that can enable students to develop and engage 
with the processes of packing and unpacking hidden mathematics 
related to use of DT, and what might characterise such cases from a 
technocritical mathematics education point of view. We have provided 
examples of two such cases, public-key cryptography exemplified by RSA, 
and blockchains. Using Skovsmose (2004), we have characterised these 
cases as mathematics in action cases. Both cases display and discuss the  
”matryoshka doll” feature, i.e. that they can be packed and unpacked 
according to the mathematical level of students and mathematics pro-
grammes in question. A particular focus for developing students’ compe-
tence in performing the processes of packing and unpacking would at least 
involve fostering the following elements as part of students’ technocritical  
mathematics education.

– Awareness of critical mathematics education’s focus on mathema-
tics in action, in particular that mathematics comes to serve as a 
tool for identifying and analysing critical features of technology 
use in society for students.

– Awareness of both intentional and unintentional blackboxing of 
mathematics in technology, and experience of how to engage in a 
process of whiteboxing the mathematics when needed. 

– Awareness of a wide range of mathematics in action cases that to 
some extent possess the ”matryoshka doll” feature for students to 
exercise and develop their competence of packing and unpacking.

– Acquiring the needed level of mathematical competencies to 
engage in the above-mentioned elements of technocritical  
mathematics education.

Finally, we must mention that technocritical mathematics education is 
thus not a question of adapting mathematics teaching to a use of digital 
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technologies because these constitute new learning paths. Nor is it about 
the fact that it is an end in itself that students become good at using 
the technologies. The key ”problématique in play” is to develop the stu-
dents’ critical competences in relation to their digital surroundings, and 
especially their ability to activate their mathematical competencies and 
content knowledge to this end. However, we are not only suggesting 
developing the students’ ability to criticise modern technology. Tech-
nocritical mathematics education is just as much a restructuring, driven 
by a positive and goal-oriented argument, about uncovering the hidden 
mathematics in technologies that govern our society in order to support 
democracy and empower students to actively participate in identify-
ing and reflecting upon the potentially ”hidden” mathematics. This can 
assist students to activate their mathematical knowledge and competen-
cies to strengthen their technocritical thinking and their democratic  
participation in a modern technology-enriched society.
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