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In this systematic literature review, we investigate the connections between computa-
tional thinking and problem solving in the context of primary and secondary mathe-
matics education. We do this by exploring how and at which steps in the mathe- 
matics problem-solving process seven peer reviewed studies report on the inclusion 
of computational thinking concepts, practices and perspectives. Overall, the studies 
show that it is possible and at times beneficial to include computational thinking in 
mathematics problem solving. However, more research is needed to see whether 
simply including computational thinking and its programming tools enhances  
students’ problem-solving skills in mathematics.

In recent years, several countries have added computational thinking 
(CT) to school curricula. Whilst countries like Denmark, Hungary, 
Italy, Portugal and Turkey have introduced CT as a separate informatics 
subject, Sweden, Finland and France have incorporated CT into exist-
ing subjects, including mathematics (Bocconi et al., 2016; Gueudet et 
al., 2017; Heintz et al., 2017; Hemmi et al., 2017). Mathematics has been 
found to provide a meaningful context with a relevant set of problems for 
applying CT (Hambrusch et al., 2009). With Norway’s 2020 curriculum 
revision, it joined countries introducing CT into mathematics curricula 
across grade levels (Directorate of Education, 2020). In the new curricu-
lum, CT is described as ”a process for developing strategies to decompose 
and solve a problem systematically, with or without the use of digital 
tools” (Directorate of Education, 2020), indicating a close relationship 
between problem solving and CT. 

In the context of education and schooling, CT was first introduced by 
Papert (1980). Whilst his notion of CT did not include a definition, he 
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related CT to the construction of ideas that are explicative, accessible, 
and powerful (Papert, 1996). He argued that the process of learning is 
transformed when programming computers (Papert, 1980). Hence, he 
introduced the programming language Logo as a learning environment 
for students to explore geometry and learn programming, but because 
of difficulties in learning programming languages, Papert’s idea of a CT 
for all was to some extent ahead of its time (Resnick et al., 2009). Papert 
saw that implementing this type of thinking had challenges because 
the ”visions of how to integrate computational thinking into everyday 
life were insufficiently developed” (Papert, 1980, p. 182). This assertion 
was later supported by empirical studies of Logo programming; teachers 
were found to provide more assistance than instruction, with few child-
ren improving their thinking skills (Kurland & Pea, 1985; Kurland et al., 
1986). As a result, Logo disappeared from the school context within a 
decade (Noss & Hoyles, 1996).

In 2006, Wing’s approach gave CT a renewed focus of attention. She 
modified Papert’s ideas and defined CT as ”the thought processes involved 
in formulating a problem and expressing its solution in a way that a 
computer – human or machine – can effectively carry out” (Wing, 2006, 
p. 33). Thus, CT is not restricted to computation or designing computer 
programmes; it represents a type of analytical thinking that connects to 
mathematical thinking through various ways of solving problems (Wing, 
2008). We shall now see how, in the wake of Wing (2006), a variety of 
definitions and operationalisations were set forth. 

CT facets
There has for long been little or no agreement about precisely what CT 
encompasses (Brennan & Resnick, 2012; Grover & Pea, 2013; Shute et al., 
2017; Zhang & Nouri, 2019). To capture its complexity, some well-received 
operationalisations of CT have influenced and guided ongoing research, 
such as Weintrop et al.’s (2016) taxonomy and Brennan and Resnick’s 
(2012) CT framework. Due to how Brennan and Resnick’s (2012) CT 
framework (see table 1) makes clear distinctions between computational 
concepts (the concepts students engage with as they program), computa-
tional practices (the practices students develop as they engage with the 
concepts) and computational perspectives (the perspective students form 
about the world around them and about themselves), we continue in this 
review to use this way of speaking about different CT dimensions. We 
do this because, together, these dimensions appear to capture many CT 
facets in the growing body of research involving CT.
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CT Concepts CT Practices CT Perspectives

Sequences Being incremental and iterative Expressing

Loops Testing and debugging Connecting

Parallelism Reusing and remixing Questioning

Events Abstracting and modularising

Conditionals

Operators

Data 

Table 1. Operationalisation of Brennan and Resnick’s (2012) CT framework

Despite the lack of consensus noted above, CT in education has recently 
received considerable attention in policy initiatives (Bocconi et al., 2018; 
Hsu et al., 2018) in being a necessary 21st-century skill and competence 
in problem solving (Voogt et al., 2015). Recognising that problem solving 
has long played a key role in mathematics education and is a top priority 
in curriculum development (Liljedahl & Cai, 2021), it is easy to argue for 
including CT in mathematics education: in a world of high demands, the 
ability to efficiently interpret new information, in which problem-solving 
skills are a prerequisite, is viewed as becoming more important than an 
individual’s specific knowledge (Green & Gilhooly, 2005). 

Hence, problem solving (in the context of mathematics education) has 
been used as an argument to include CT in mathematics (Barr & Stephen-
son, 2011; Kallia et al., 2021; Pérez, 2018; Selby & Woollard, 2013; Sneider 
et al., 2014; Wing, 2008). This approach could give CT a central role in 
mathematics education: problem solving is found everywhere in mathe-
matics curricula, textbooks and lesson plans (Cai et al., 2011; English & 
Gainsburg, 2015; Jäder et al., 2020; Lester et al., 2016; Lye & Koh, 2014). 
Indeed, as we now shall see, problem solving has over the years been 
granted the status of an essential competency in mathematics (Niss & 
Højgaard, 2002, 2019). 

Mathematical problem solving 
One of the most prominent ways of looking at the concept of problem 
solving dates to Polya’s (1954) four-step model for solving a problem. In 
the context of mathematics education, Polya’s (1954) contribution and 
Schoenfeld’s (1985) six-step refinement (reading, analysis, exploration, 
planning, implementation, and verification) are essential in providing 
stepwise outlines for approaching problem-solving tasks. As problem 
solving involves taking on tasks that are significantly different from those 
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learned by heart, a major part of the challenge is in deciding which bits 
of one’s toolkit of mathematical skills will help (Burkhardt & Bell, 2007, 
p. 395) and if and to what extent more recent technological advances and 
associated CT can help in the problem-solving process. 

In recent decades, with technological advances resulting in computa-
tional, modelling and programming tools important to solving mathe-
matical problems (Carreira & Jacinto, 2019; Liljedahl & Cai, 2021), 
problem solving has been increasingly influenced by technology and 
digital competency (Geraniou & Jankvist, 2019). These advances have 
”given rise to a new set of competencies that need to be developed” 
in individual problem solvers (Liljedahl & Cai, 2021, p. 727) and their  
teachers (Nordby et al., 2022a). 

Acknowledging the affordances and advances stemming from includ-
ing digital tools in problem solving led Carreira and Jacinto (2019) to 
bring together two frameworks: the outline of the problem-solving 
process proposed by Schoenfeld (1985) and a digital literacy framework 
proposed by Martin and Grudziecki (2006). This resulted in the Mathe-
matical problem solving with technology (MPST) framework that addresses 
the use of digital resources when solving a task or problem (Carreira & 
Jacinto, 2019).

The MPST framework
As the aim of our review is to better understand CT’s role in mathematics 
problem solving, we present the MPST framework (Carreira & Jacinto, 
2019) in table 2, while mapping it onto the five steps in Schoenfeld’s 
(1985) problem-solving process, as Carreira and Jacinto (2019) did. We see 
the MPST framework as a way of talking about the role of not only digital 
resources in problem-solving processes, but also the thinking behind it 
in CT. While students engage in MPST, ”learners have the opportunity 
to expand or enhance not only important problem-solving heuristics 
[…] but also to construct and incorporate ways of reasoning associated 
with the use of the tool” (Santos-Trigo, 2019, p. 86) through CT. The role 
of heuristics has always been central to mathematical problem solving. 
However, in line with the increasing influence of digital technology in 
mathematics education, we see in the literature that digital technologies 
and programming languages have the potential to expand or enhance 
students’ problem-solving strategies.

In this literature review, we seek to better understand the role of CT 
in mathematics problem solving in the context of primary and secondary  
mathematics education and thus pose two research questions (RQs): 
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1. How and at which stages in the problem-solving process does 
primary and secondary mathematics research report on the  
inclusion of CT?

2. To what extent, if any, do the included studies report on  
a) improved mathematics learning and b) improved mathematics 
problem-solving skills among students after the inclusion of CT?

This paper is organised as follows. We first present our methodological 
approach, including search strategies with inclusion and exclusion cri-
teria, and an outline of the steps taken in the analysis. We next present 
our findings before concluding by discussing the implications of our  

Table 2. An adaptation of Carreira and Jacinto’s (2019, p. 45) mapping of the work 
of Schoenfeld (1985) and Martin and Grudziecki (2006).

* The descriptions of the different steps are quoted from Schoenfeld (1985, pp. 297–298).
** The descriptions of the different steps are quoted from Carreira and Jacinto’s (2019, 
p. 45) mapping of Martin and Grudziecki’s (2006) process of digital technology problem 
solving and Schoenfeld’s (1985) stages of mathematical problem solving.
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findings and offering suggested avenues for future primary and secondary  
mathematics education and associated research.

Methodology
A systematic review inspired by Shute et al.’s (2017) methodology was 
applied to provide a comprehensive understanding of how CT can 
be included in mathematics problem solving, and how mathematics 
problem solving can gain from the inclusion of CT. In this section, we 
give an account of our search strategy with two selection stages before 
we provide a description of data extraction and analyses. 

Search strategy
An initial search for research related to CT was conducted to gain an over-
view of how CT has been addressed. This initial search enabled the iden-
tification of several key terms that could help capture the publications 
of interest for this literature review and served to help the researchers  
familiarise themselves with the field. 

Wing (2006) marked a change from the constructing central to  
Papert’s (1980) Mindstorms to thinking and a focus on thought processes. 
Thought processes are central to Wing’s approach: CT is described as ”a 
kind of analytical thinking. It shares with mathematical thinking in the 
general ways in which we might approach solving a problem” (Wing, 
2008, p. 3717). After Wing, it became clear that CT was more complex 
than programming (Lye & Koh, 2014; Rodríguez-Martínez et al., 2019; 
Wing, 2008) and might even differ from programming skills (Ioannidou 
et al., 2011; Israel et al., 2015). CT emphasises thought processes, with 
problem-solving strategies deriving from computer sciences that could 
benefit educational settings. For this reason, this review begins in 2006, 
when Wing’s (2006) influential view entered the field.

The first papers read were all by Wing (2006, 2008, 2011). Reading 
her papers and examining related readings increased our understanding 
of relevant keywords for CT (e.g. computational literacy, computational  
modelling, algorithmic thinking and algorithms). Similarly, reading rele-
vant literature from the field of mathematics education helped to find 
relevant keywords for mathematics problem solving (e.g. mathematical 
thinking, problem-solving strategies, problem-solving model and mathemati-
cal competence). Moreover, because of the focus of our RQs, the search 
terms elementary school, primary school, secondary school and high school 
were included in searches to capture the target age span of this review. 

This first search string was tested in the ERIC and Web of Science data-
bases. A reading of abstracts and keywords in the resulting publications  
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helped us refine the search string to narrow the search. The final search 
was conducted in four databases: ERIC, Web of Science, Academic Search 
Ultimate and EBSCO’s Education Source. 

Inclusion and exclusion criteria. In selection stage one (see figure 1), the 
search resulted in 739 publications from the four databases. After dupli-
cate removal (n = 212), the remaining 527 papers were subject to a screen-
ing of the title, abstract and introduction based on the criteria in table 3. 

A total of 495 publications were excluded during this first screen-
ing, leaving 32 papers for the second screening, which consisted of full-
text reading. The first round of full-text reading resulted in a significant 

Type of criterion Inclusion Exclusion

Type of publica-
tion

Peer-reviewed papers  
Peer-reviewed conference papers

Reports  
Dissertations  
Books/book chapters*  
Editorials

Publication period 2006 – March 2021

Type of study Empirical papers Literature reviews  
Theoretical papers**

Language English  
Nordic

Educational level Primary and secondary education Pre-school/ kindergarten 
education 
Higher education  
Special education

Setting School context  
Summer school***

Out of school setting

Object of study Students (engaging in problem solving 
activities)  
Teachers (orchestrating problem 
solving activities)

Key terms in the 
title or abstract or 
introduction

Mathematics/Math/Maths 
Problem solving  
Computational thinking  
Programming  
Algorithmic thinking  
Computer science  
Primary/elementary school/education  
Secondary/high school/education

STEM (science, techno-
logy, engineering and 
mathematics)

Conceptualisation Computational thinking is defined/ 
operationalised/  
conceptualised

Programming when not 
being situated in the 
context of computational 
thinking

Table 3. Inclusion and exclusion criteria

* Books/book chapters were excluded because it is not always easy to determine whether 
they are peer reviewed.
** Literature reviews and theoretical papers are excluded because of our object of study.
*** Summer schools were included when the students’ normal school context was clearly 
outlined. 
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reduction from 32 to seven papers: this was due to how we used our 
RQs to exclude papers that were unclear on what they meant by CT; 
that is, they neither defined nor operationalised CT, focusing instead on  
programming. 

As figure 1 shows, selection stage two involved identifying papers 
through a Google Scholar search (see Haddaway et al., 2015) that returned 
all papers citing Weintrop et al. (2016) or Shute et al. (2017). These two 
texts were chosen because of their abundant citations and their theoreti-
cal contributions to the field in the form of a CT taxonomy (Weintrop 
et al., 2016) and a model showing the links between CT and mathemati-
cal thinking (Shute et al., 2017). This stage did not add any publications, 
so we ultimately had seven papers for this systematic literature review.

Data extraction and analysis
Analysing the seven studies involved several steps. First, a spreadsheet 
was used to capture important features of each paper 1, such as infor-
mation about the context, participants, aims, mathematical domain, 
theoretical frameworks, CT and problem-solving definitions and opera-
tionalisations, RQs, methods and results. Next, due to the authors’ opera-
tionalisation of the review’s RQs, columns were added and filled in after 
a second reading. These first two steps were conducted by both authors 

Figure 1. Overview of the search process
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separately leaving us with two spreadsheets consisting exclusively of 
quotes from the included papers. In the third step, the authors compared 
and merged their spreadsheets, adding comments and notes in green to 
record the authors’ common understanding of selected quotes. In addi-
tion to the features listed above, the spreadsheet now included columns 
capturing the following aspects: description of design, how reported data 
are analysed, programming languages and how they are used, what they 
report on, what the students in a study are assigned to do or engage in, 
any learning among students reported, main message and the concepts 
and constructs in relation to how they see CT. 

The combined results of these features, with a special focus on the 
report of any learning among students, enabled us to answer RQ2 on the 
extent, if any, to which studies report on improved mathematics learn-
ing and improved mathematics problem-solving skills among students 
after the inclusion of CT. 

To answer RQ1, on how and at which stages in the problem-solving 
process primary and secondary mathematics research reports on CT 
inclusion, a fourth step in our analysis process was taken. The way in 
which Carreira and Jacinto (2019) described the different processes in 
solving mathematical problems with technology (see table 2) enabled 
us to search the included papers in detail to determine when during the 
problem-solving process CT was included. Once this was established, 
we used Brennan and Resnick’s (2012) operationalisation of CT (table 
1) to assess whether inclusion was in the form of CT concepts, practices 
or perspectives. Table 4 provides an alphabetically ordered overview of 
the publications included in this literature review, building on relevant  
features from the spreadsheet.

Results
The seven papers were analysed to identify how CT and problem solving 
were related in the context of primary and secondary mathematics edu-
cation research. We organise this section in accordance with our two RQs, 
the first being concerned with how and at which stages in the problem-
solving process primary and secondary mathematics research report on 
the inclusion of CT, and the second asking to what extent, if any, the 
included studies report on improved mathematics learning and problem-
solving skills among students after the inclusion of CT. 

The inclusion of CT in problem-solving processes
To set forth how the seven papers report on the inclusion of CT in dif-
ferent mathematics problem-solving processes, we draw on the analysis 
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conducted in stage four of the process described above. The way in which 
Carreira and Jacinto (2019) describe the different processes in solving 
mathematical problems with technology (see table 2), and how the lens 
of Brennan and Resnick (2012) enabled us to see CT inclusion as involv-
ing CT concepts, practices, or perspectives (see table 1) helped us better 
understand how CT’s inclusion is reported in mathematics problem- 
solving processes. Table 5 gives a schematic overview of our findings. 

Five of the seven papers had a thorough description of the mathema-
tics problems assigned to different groups of students. Because of their 
research design, those in the last two columns provided no detailed infor-
mation about problem-solving processes during interventions and are for 
that reason less present in the next sections where we take a closer look 
at how the different papers report on use of CT in each of the steps given 
in column two in table 5. 

At the early stage of grasping the problem at hand, which involves 
ingesting the problem (Schoenfeld, 1985), an appropriation of the prob-
lems was necessary to make it fit with the predetermined digital tool or 
programming environment at hand. At this stage, those five studies pro-
viding descriptions of the mathematics problem at hand report on how 
students include CT in terms of different CT practices. Most often, we 
see how the chosen programming language and mathematical concepts 
together form the problem-solving task assigned. For instance, in Cui 
and Ng (2021) and Ng and Cui (2021), who report on the same study, the 
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Reading Grasp Practise Practise Practise Practise Practise

Analysis Notice

Interpret Practise Practise Practise

Exploration Integrate Concepts Concepts Concepts Concepts Concepts Concepts

Explore Practise

Planning/
implementa-
tion

Plan and 
Create*

Practise Concepts Practise Concepts Practise

Verification Verify Practise Practise Practise Practise Practise

Disseminate Perspective

Table 5. Inclusion of CT in different problem-solving processes

* Because it was hard to separate Plan and Create when analysing other people’s 
research, we have followed Schoenfeld (1985) who combines them.
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students were asked to develop a program for a physical object (Arduino) 
to present a green light for prime numbers and a red light for composite 
numbers. Here, the students needed to appropriate the mathematical 
problem entirely and convert it so it could be solved in the given block-
based programming language, using CT practices like translating and 
decomposing (Cui & Ng, 2021). In Kaufmann and Stenseth (2021), the 
students were given a runnable code in the Processing programming lan-
guage to make a wheel rotate. The students had to understand both the 
program code and the mathematics involved to change the spinning of 
the wheel, which was their task. Kaufmann and Stenseth (2021) report 
on students’ engaging in troubleshooting as a CT practice (Brennan & 
Resnick, 2012). Calder (2018) reports on students developing a game in 
Scratch to facilitate year 1 students’ understanding of numbers, which 
happens through an ”iteration” of action and reflection practice, whereas 
Pei et al. (2018) report on a study that used the digital environment Lattice 
Land, in which the students engaged in CT practices when breaking the 
polygons into a series of sub problems. Hence, we see an extensive use of 
different CT practice at this stage. 

The next step in Carreira and Jacinto’s (2019) outline of Schoenfeld’s 
(1985) problem-solving process is notice. At this stage, Carreira and Jacinto 
(2019) propose the need for an initial attempt to comprehend the mathe-
matics the students find relevant and the digital tools that may be needed. 
As revealed in table 5, this step did not apply in any of the papers since 
the digital tools or environment were chosen in advance (by teachers  
or researchers) to fit the problem at hand. 

Following how interpreting is described by Carreira and Jacinto (2019), 
we found that, when students accounted for the affordances in the 
digital tool or environment they were engaged with, they decomposed 
or reframed the problems. For instance, in Pei et al.’s (2018) study, the 
students decompose a polygon problem to be able to solve it within the 
possibilities embedded in Lattice Land, which is exactly what Carreira 
and Jacinto (2019) mean by the term interpreting (see table 2). Similarly, 
in Cui and Ng (2021) and Ng and Cui (2021), the students had to prepare 
mathematics problems to solve them in the block-based programming 
environment; in some cases, the students applied the same set of codes 
to new problems, which included the CT practices remixing and reusing 
(Ng & Cui, 2021). In this way, we see examples of CT practices at this 
stage as well. 

Schoenfeld’s (1985) exploration is divided into integrating, that is ”com-
bining technological and mathematical resources within an exploratory 
approach” and exploring, which means ”using technological and mathe-
matical resources to explore conceptual models that may enable the  
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solution” (Carreira & Jacinto, 2019, p. 45). We see that most studies report 
on integrating rather than exploring, even those in the last two columns 
in table 5: In both Psycharis and Kallia (2017) and Rodríguez-Martínez 
et al. (2019), students were taught how to explore and solve mathemati-
cal problems within a programming language or environment. Psycharis 
and Kallia (2017) report that, during the intervention, the students in 
the experimental group were taught how to develop a source code. The 
students’ solutions were generalised so they could solve similar prob-
lems. This was even more apparent in Rodríguez-Martínez et al. (2019), 
where the students had a programming intervention in which they were 
acquainted with several CT concepts necessary to engage with Scratch 
(e.g. sequence, iteration or loop, event handling, conditionals). In papers 
of a more qualitative nature, like Calder (2018), the activity in Scratch 
helped students understand the link between the numerical value of an 
angle and the size of the corresponding visualised angle or turn. In Cui 
and Ng’s (2021) and Ng and Cui’s (2021) studies, the students explored the 
assigned problems while using different computational concepts, such as 
sequence, repetition or loops, events, and conditionals (Ng & Cui, 2021). 
While Kaufmann and Stenseth’s (2021) contribution differs from the 
others in the way the students were given a piece of programming code to 
change, the students turned to the CT concept variable while exploring 
the code, which turned out to be especially important since this concept 
has different meanings in CT and in mathematics. Further, in Pei et al. 
(2018), we clearly see that the students’ use of the dynamic and interactive 
characteristics of Lattice Land enabled them to explore the relationship 
between the shape of a triangle and the resulting area by moving points 
to change the triangle’s shape while keeping its area fixed. In crafting a 
mathematical formula, the students used the CT practice of creating an 
abstraction. The other included papers did not report on any dynamic 
use of programming languages, but those who did, mainly report on the 
use of CT concepts at this stage, and to some extent, CT practices. As we 
shall see, this was also the case in the next step. 

While Carreira and Jacinto (2019) describe the steps of planning and 
creating separately (see table 2), conducting a meta-analysis of other 
peoples’ research made it difficult to distinguish between the two, and we 
have thus merged them. In most cases, we found planning and creating to 
be highly important – if not central – to using CT in mathematical prob-
lem-solving processes. In several papers, this was the explicit aim: the 
students were to develop a solution to a mathematical problem in a given 
programming language or digital environment (Calder, 2018; Cui & Ng, 
2021; Ng & Cui, 2021; Pei et al., 2018). This made them engage in several 
CT concepts and practices. For example, the students in Calder (2018) 
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combined Scratch with geometric concepts while developing and modi-
fying a program on numbers through iterations of action and reflection. 
In Pei et al. (2018), the students combined Lattice Land with geometry  
to develop new strategies and create an abstraction for solving polygon 
problems, while Ng and Cui (2021) used a block-based programming lan-
guage with a physical tool with numbers in mathematics, reporting on 
how students learned, for example, how to use CT concepts like variab-
les, events and conditions. Since the students in Kaufmann and Sten-
seth (2021) had a pre-produced programming code, they were engaged 
in troubleshooting as an iterative process, which was a slightly different 
approach to planning and creating. 

In the verifying step, students across the included studies appeared to 
draw on different CT practices (such as debugging and troubleshooting) 
when justifying their solutions. For example, in Kaufmann and Sten-
seth (2021), Cui and Ng (2021) and Ng and Cui (2021), the students had 
to check, analyse, and modify their solutions. In Pei et al. (2018), verifi-
cation occurred when students switched between formulating the rela-
tionship between variables and testing unique polygons. Overall, at this 
step, we found that students engaged in CT practices when explaining or  
justifying their solution to mathematical problems.

The final step of disseminating is about how the problem solvers pre-
sented their solutions to relevant others, a step less reported on in the 
included studies. However, Calder (2018) reported on students engaging 
in an ”iteration” of action and reflection, which led students to modifying 
their solutions after having received feedback from the intended users of 
the block-based game they produced. Here, for the first time, we see how 
different CT perspectives come into play when the students presented 
and explained their program to their teachers and their year 1 peers. 

Having seen how the papers in this review report on the inclusion 
of CT concepts and practices, and to a lesser extent CT perspectives 
in mathematical problem-solving processes, we now turn to our second 
research question. 

Improved mathematics learning and problem-solving skills
While each included study reported on students’ engaging in problem-
solving tasks, the nature of the different research designs employed was 
found to be decisive for how they reported on a) improved mathema-
tics learning and b) improved mathematics problem-solving skills in stu-
dents after CT’s inclusion. The crucial distinction is between those with 
an experimental design and associated hypothesis testing (Psycharis & 
Kallia, 2017; Rodríguez-Martínez et al., 2019) and those taking a more 
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qualitative perspective in the form of a case study (Calder, 2018; Kauf-
mann & Stenseth, 2021; Pei et al., 2018) or design-based research approach 
(Cui & Ng, 2021; Ng & Cui, 2021). We start by looking at the former. 

Psycharis and Kallia’s (2017) and Rodríguez-Martínez et al.’s (2019) 
pre- and post-test designs enabled them to propose different hypothe-
ses on how their experimental groups (using Pascal and Scratch, respec-
tively; see table 4) and control groups (not using any programming tools) 
deve-loped differently. When testing the effect of a computer program-
ming curriculum intervention on problem-solving skills in mathematics,  
Psycharis and Kallia (2017) found a statistically significant improvement 
in the performance of students in the experimental group. However, they 
noticed that students of both groups were involved in only some steps 
of the problem-solving process and that those steps were insufficient 
to reveal significant differences in the students’ problem-solving skills 
between groups. The authors thus rejected the hypothesis that computer 
programming would automatically improve students’ general problem-
solving ability.

Rodríguez-Martínez et al. (2019) studied how Scratch can provide an 
opportunity to study mathematical concepts, such as the least common 
multiple (LCM) and greatest common divisor (GCD) in grade 6 students. 
The main objective was to analyse the potential of programming activi-
ties using Scratch for both the learning of mathematical ideas and the 
acquisition of CT. Their two-phased intervention revealed how the first 
phase, which involved specific instruction in computational concepts, led 
to a significant increase in students’ CT levels. In the second phase, they 
found a relevant improvement in students’ proficiency in solving word 
problems related to LCM and GCF in the experimental group (using 
Scratch); however, the improvement was not significant in comparison 
with the control group, who used a more traditional approach. 

Turning to those studies using a case study approach, we found a more 
thorough outline of the activities the students were assigned. In Calder 
(2018), the students were challenged to design and build a mathema- 
tics game suitable for facilitating the number understanding of younger 
students; in Kaufmann and Stenseth (2021) the students were to upload 
and run a code and then revise it to meet some predetermined properties; 
and in Pei et al. (2018), the problem was to explore the shapes and sizes 
of lattice triangles to discover (or rediscover) some unexpected results 
when calculating the areas of increasingly more complex and less regular 
polygons. While none of these studies used any CT operationalisations to 
analyse or discuss their data, their focus on the problem-solving process 
and the close way in which they synthesise CT with mathematical think-
ing (Calder, 2018), mathematical habits of mind (Pei et al., 2018) and 
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mathematics as such (Kaufmann & Stenseth, 2021) enabled the various 
authors to report some tentative findings. 

In Calder (2018), when developing mathematical games in Scratch, 
the students drew on geometric concepts like angle size and measure-
ments. While Calder (2018) indicated that the students’ understanding of 
coordinates and their relative position on a Cartesian plane seemed to be 
enhanced through this activity, there was less certainty about the extent 
to which new mathematical learning occurred during this process. Pei et 
al. (2018) investigated how a computational tool (Lattice Land) explores 
geometrical lattice ideas. When looking at one interview in detail (which 
they later compared with other interviews that supported their find-
ings), they found that the student had gained strategies, after engaging in 
Lattice Land, that enabled her to calculate the area of a complex polygon, 
using a new boxing approach (which essentially meant detecting triang-
les in a complex polygon which she boxed in a rectangle whose area she 
was able to calculate). Kaufmann and Stenseth (2021) showed how stu-
dents engaged in a programming task involving a circle made possible the 
integration of programming into mathematics education.

The last two papers – Cui and Ng (2021) and Ng and Cui (2021) – 
reported on the same design-based research study in which the students 
faced three problems: to construct a thermometer and a room capa-
city detector, to create a machine that calculates the bank deposit and 
balance for a designated scenario and to make a prime and composite 
number detector. While Cui and Ng (2021) reported on challenges stu-
dents encountered while preparing tasks, programming, preparing com-
putational abstractions and troubleshooting and debugging, Ng and Cui 
(2021) focused more on how students engaged in mathematical thought 
processes. Neither study reported any gained learning outcomes among 
students, but Ng and Cui (2021) did indicate that block-based program-
ming encouraged students to deal with arithmetic sequences and geo-
metric sequences and series without using any algebra. Based on this, 
they suggested that the introduction of algebraic thinking and represen-
tations in the primary grades can be achieved through CT concepts like 
variables and iterations. 

While acknowledging that none of the included case studies and 
design-based research projects set out to measure changes in mathema-
tics learning and problem-solving skills in individuals, we find that the 
studies do report on how including CT made the students more engaged 
and motivated to use mathematical ideas in their problem-solving process 
(Calder, 2018; Kaufmann & Stenseth, 2021) and how they ”showed greater 
willingness to explore and share interesting findings” and discovered new 
methods for approaching unknown problems (Pei et al., 2018, p. 87). In 
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addition, the studies reported on improvements in students’ mathemati-
cal thinking (Cui & Ng, 2021), creativity (Pei et al., 2018), argumenta-
tion (Kaufmann & Stenseth, 2021) and communication and collaboration 
skills (Calder, 2018). 

Discussion and concluding remarks
Based on our close reading and careful analysis of seven studies, we assert 
that, together, the studies show that it is possible to include the CT con-
cepts, practices and perspectives from Brennan and Resnick (2012) in dif-
ferent mathematics problem-solving processes (RQ1) and that students 
experienced some gains following this inclusion (RQ2). This supports 
Wing’s (2006) initial suggestion – that CT and mathematical thinking 
share important features in how we might approach problems – and 
strengthens arguments for implementing CT through problem solving 
in mathematics education. 

One conspicuous commonality across the included papers was assign-
ing students a mathematical problem and a predetermined programming 
language or digital environment in which (Cui & Ng, 2021; Kaufmann 
& Stenseth, 2021; Ng & Cui, 2021) or with which to solve that problem 
(Calder, 2018; Pei et al., 2018; Psycharis & Kallia, 2017; Rodríguez-Mar-
tínez et al., 2019). For instance, in Kaufmann and Stenseth (2021), the 
students were told to work in the text-based development tool Processing 
to fine-tune a code, while the students in Calder (2018) were given the 
problem of creating a game for younger students using the block-based 
programming tool Scratch. This means, as table 5 reveals, that none of the 
included papers reports on students being challenged to find the relevant 
programming tool. This is not to suggest a shortcoming in the research 
literature – it is rather to raise an important issue for future mathematics 
teaching with CT, in line with the rare occurrence of the full integration 
of CT in mathematics education found in Nordby et al.’s (2022a) review. 
As an illustration of what we mean, consider how students, on their own 
initiative, use calculators, spreadsheets like Excel and dynamic software 
like GeoGebra as tools in their mathematics problem solving because 
they know that these devices can help them solve problems and spare 
them substantial amounts of work. 

The introduction of CT into mathematics is still recent (Barr & Ste-
phenson, 2011; Grover & Pea, 2013; Kallia et al., 2021), and teachers have 
not been trained in the programmes and tools available for bringing CT 
into mathematics classrooms (Nordby et al., 2022b); thus, the comparison 
with the foothold that calculators, spreadsheets and dynamic software 
have established in mathematics education may be unfair. Nevertheless, 
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we suggest that the comparison could be fruitful: as technology uses 
new approaches in mathematical problem solving (Carreira & Jacinto, 
2019; Santos-Trigo, 2019), students will need to become ”aware of which 
digital tools to apply within the different mathematical situations and 
context” and be ”able to use digital technology reflectively in problem-
solving and when learning mathematics” as part of their digital compe-
tency (Geraniou & Jankvist, 2019, p. 43). This is a goal worth pursuing 
in the future. 

We end this paper by returning to table 5. There we see that the experi-
mental studies (Psycharis & Kallia, 2017; Rodríguez-Martínez et al., 2019) 
report less on how CT was included in their studies. At the same time, 
we know from our RQ2 that it is precisely these studies that report mea-
sures of students’ outcomes. The combined results from RQ1 and RQ2 
lead us to propose more research using mixed methods as a way both to 
capture the details of how CT is included in problem-solving processes 
and to measure the outcomes of that inclusion. Adding to this, we would 
also like to draw attention to the challenges students encountered in, for 
instance, Cui and Ng’s (2021) study, in preparing tasks (they encountered 
difficulties in reframing the problem), programming (students’ miscon-
ception of CT concepts), creating computational abstractions (they had 
problems dealing with multiple variables and distinguishing them from 
how variables are used in mathematics) and CT practices such as trouble-
shooting and debugging. These challenges need to be addressed in future 
research initiatives, in the training of teachers and in planning the future 
implementation of CT in mathematics classrooms, including outside the 
problem-solving context. 
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Note

1 Because we had only seven studies, the authors were especially mindful of 
each included study’s list of references. All references were examined, but 
no new papers meeting our inclusion criteria were found.
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