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The aim of this article is to exemplify and discuss what teachers using learning activity 
need to consider when planning and supporting students’ collective theoretical work 
on algebraic expressions. Data are from two iteratively developed research lessons 
in two grade 7 classes. The analysis focuses on students’ tool-mediated actions, the 
mathematical content processed, how the content is dealt with, and on identifying 
the crucial aspects that enable collective theoretical work. The result provides examp-
les of how the content of the task, its design, and its tools, as well as the teacher’s and 
students’ tool-mediated actions are crucial factors in the promotion of collective 
theoretical work.

Today’s mathematics educational research emphasises that students must 
be given the opportunity to develop mathematical thinking. This makes 
students’ theoretical thinking or conceptual understanding a central goal 
in today’s mathematics teaching. In relation to this, whole-class discus-
sions focusing on students’ reasoning, argumentations, and problem 
solving, are considered a means for such development. However, whole-
class teaching is challenging, since the teacher must not only invite the 
students to explore mathematics content collectively but must also create 
conditions that focus on and maintain creative and collective reasoning 
(Emanuelsson & Sahlström, 2008; Ryve et al., 2013). In the research lite- 
rature, there are also noteworthy examples of how to orchestrate whole-
class discussions that are student-centred and targeted to advance impor-
tant mathematical ideas (e.g. Larsson, 2015; Larsson & Ryve, 2011; Stein et 
al., 2008; Taflin, 2007). In a research project, Larsson and her colleagues 
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found that the use of mediating tools, like tables and graphs presented 
on the blackboard, helped students to focus on the content in whole-
class discussions (Larsson, 2015; Larsson & Ryve, 2011; Ryve et al., 2013; 
see also Sfard, 2008). Principles illuminated in these studies relate to 
whole-class discussions as a consequence of students’ work, often done 
in pairs or small groups. Viewing whole-class discussion as a phase that 
follows students’ work on a problem is apparently common (Stein et al., 
2008). Using whole-class, tool-mediated discussions as a means of helping 
students to review their own and others’ arguments and solutions col-
lectively, especially when using mediating tools, can thus be regarded 
as a promising teaching strategy (Larsson, 2015; Larsson & Ryve, 2011; 
Ryve et al., 2013; Liljedahl, 2016). Vygotsky (1978) argues that students 
develop theoretical thinking or conceptual understanding in a zone of 
proximal development (ZPD) and that higher order thinking occurs first 
on a social level, in a social activity (as an interpsychological activity) and 
later on an individual level, in the form of independent thinking (as an 
intrapsychological activity). This provides a strong motive for organis-
ing the teaching of theoretical concepts as a collective problem-solving 
activity (Arievich, 2017; Vygotsky, 1978). Viewing whole-class teaching 
as a collective – or joint – activity, it is possible to take advantage of the 
idea that theoretical thinking first emerges socially in a collective zone 
of development where everyone’s competences are of value and where it 
is possible to borrow experiences from others. 

Following Vygotsky’s legacy, Davydov and his colleagues have deve-
loped a theoretical framework for teaching, in the West known as learn-
ing activity, in which students collectively use each other’s experiences 
and specially designed mediating tools – learning models – to solve 
subject-specific problems (Davydov, 2008; Davydov & Rubtsov, 2018). 
Thus, the whole-class activity can transform into a student-driven, tool-
mediated learning activity exploring, for example, theoretical structures 
and relationships in algebraic expressions. 

Therefore, we claim that there is a need for strategies and actions, 
especially communicative actions, to be used by teachers when realis-
ing a learning activity that can support students’ agency in collective 
(whole-class) problem-solving discussions with a specific content or 
learning outcome in mind. Within the research field of early algebra 
(see below), Davydov’s mathematics programme, framed by the theory 
of learning activity, has been referred to as a promising alternative route 
for young students’ theoretical learning, that is, development of young 
students’ algebraic thinking and algebraic problem-solving abilities (Cai 
& Knuth, 2011; Kaput et al., 2008; Kieran et al., 2016). The fundamental 
idea of learning activity is a teaching that helps students to develop their  
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analytical and theoretical thinking through their reflections (Davydov & 
Rubtsov, 2018). This suggests a teaching that enables theoretical think-
ing, a teaching that we refer to as theoretical work. Theoretical work can 
be described as a process in which the principles and internal relations of 
specific concepts are explored, a process which can lead to an understand-
ing of a theoretical concept (Davydov, 2008). Given the findings indicat-
ing that whole-class discussions benefit from the use of visual mediat-
ing tools, and the promising results from the use of Davydov’s learning 
activity (see below), we still need to know more about what to consider 
when planning and realising tasks, tools, and communicative actions in 
order to establish a problem-solving theoretical work in a collective form. 
This knowledge needs to be both fine grained and particularly specified 
through empirical studies (see Dewey, 1929/2013).

Aim and research questions
Taking the perspective of learning activity, in which students’ tool-media-
ted collective reflections are central, the aim of this article is to narratively 
exemplify and discuss what teachers need to consider when planning and 
supporting students’ collective theoretical work on algebraic expressions. 
The aim is specified by the following two research questions. 

RQ1: What indicates that collective theoretical work is established 
in whole-class discussions focusing on algebraic expressions?

RQ2: What in the task – its content, its design, its staging, and its 
tools – creates opportunities for students to engage in collective 
theoretical work on algebraic expressions?

Algebraic thinking
Algebra has a special position in mathematics and is relevant for most 
other mathematical areas (Hemmi et al., 2021). If the students have a 
good understanding of algebra, it enables them to succeed in their mathe-
matics studies (Kieran et al., 2016). For a long time, algebra was equated 
with solving equations, but nowadays it has a much broader meaning. 
Algebra can be described as generalised arithmetic – arithmetic con-
cerns operations on number, whereas algebra concerns systems of objects 
and operations on these (e.g. Krutetskii, 1976). Traditionally, algebra has 
been regarded as difficult for students, and is therefore introduced later 
in secondary school or in upper secondary school (Bråting et al., 2018; 
Hemmi et al., 2021; Stacey & Chick, 2004). In recent decades, researchers  
have focused on students’ insufficient algebraic knowledge or failures – 
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from lower secondary school and onwards (Kieran et al., 2016). This can 
be seen as a background for the growing interest in the research field of 
early algebra, in which students’ algebraic thinking is addressed (Kieran 
et al., 2016). 

In early algebra research, questions about conditions for students’ 
development of algebraic thinking as a basis for formal algebra have been 
discussed for some decades (Blanton et al., 2015; Kaput et al., 2008; Kieran, 
2018; Warren et al., 2016). Kieran (2004) describes algebraic thinking in 
early grades as involving:

the development of ways of thinking within activities for which let-
ter-symbolic algebra can be used as a tool but which are not exclusive 
to algebra and which could be engaged in without using any letter-
symbolic algebra at all, such as, analysing relationships between quan-
tities, noticing structure, studying change, generalizing, problem 
solving, modeling, justifying, proving, and predicting. 
  (Kieran, 2004, p. 149)

From a socio-cultural perspective, with the legacy of Vygotsky (1978), 
the cultural historical tradition where theoretical thinking is crucial for 
development of higher order thinking, algebraic thinking needs to be 
understood in relation to the youngest students as well (Cai & Knuth, 
2011; Kieran, 2004; Radford, 2021). Today, there is a growing interest in 
the El’konin-Davydov curriculum (ED curriculum) in mathematics (e.g. 
Cai & Knuth, 2011; Kieran et al., 2016) as it introduces algebraic think-
ing as a foundation for arithmetical operations and as a basis of number 
sense (Schmittau, 2004). The ED curriculum is built on a specific theory 
of learning that in English is called learning activity (Davydov, 2008). 

Learning activity as a theoretical perspective
The theoretical perspective for the research project behind this article 
was learning activity (Davydov, 2008). As mentioned above, this theory 
addresses students’ development of analytical and theoretical thinking, 
which in relation to mathematics is understood as algebraic thinking 
(Schmittau, 2004). Grasping the general in a mathematical concept is 
thus seen as a solid point of departure for students’ learning. Learning 
activity draws on activity theory which states that becoming knowledge-
able requires opportunities to become familiar with knowledge-specific, 
tool-mediated actions that define a specific practice (Leontiev, 1978). 
Theoretical thinking, in our case algebraic thinking, within this per-
spective is seen as a social practice – a praxis cogitans (Wartofsky, 1979). 
Thus, teaching requires that the students be provided opportunities to 
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work theoretically to become familiar with subject-specific tools and 
their functions. From an activity theory perspective, the development 
of theoretical thinking presupposes collective agency. If the students 
identify a problem, and thereby develop a motive, they may collectively 
establish a learning activity. Thus, the way the teacher constitutes the 
support in the classroom is pivotal for the students to successfully engage 
in a learning activity. The teacher’s role is not to tell or instruct in a direct 
way. Instead, the teacher needs to promote student agency since a learn-
ing activity is depen-dent on students’ actions. Davydov (2008) charac-
terises students’ theoretical work in a learning activity as ascending from 
the abstract to the concrete. In relation to early algebra, the ”abstract” 
could, for example, be an algebraic expression such as ax + b. When the 
students are familiar with this type of structure, they can transform 
it into concrete operational tasks of diverse types. Central concepts in 
learning activity are briefly described below. 

Problem situation as a theoretical concept is generally a well-planned 
situation with a built-in, contentful contradiction from which it should 
be possible for the students to identify a problem to be solved (Repkin, 
2003). The situation itself is thus not a stated problem to be solved. The 
students need to analyse what is given in the situation. Further, the 
students need to evaluate what previous knowledge can be used. If the 
problem situation is well designed, the students will experience a need 
for new knowledge. Thus, the problem situation should create a meaning-
ful context in relation to which their current knowledge is, to a certain 
extent, insufficient. A problem situation can be rather narrow, in which 
the teacher, for example, says, ”in another class, some students gave this 
solution. How were they thinking about the problem?”. The students 
are then supposed to analyse the given situation to identify what type of 
problem needs to be solved.

The concept of contradiction is crucial when designing a problem situ-
ation for a learning activity and draws on the idea that every activity is 
driven by historically developed contradictions (Engeström & Sannino, 
2010). A contradiction often manifests as a conflict or a dilemma but 
in a teaching situation the idea of contradiction can be manifested in 
a problem as a hook or as an apparently incompatible condition, for 
example, when two different statements are presented as correct. To 
determine if both are correct or if something is wrong, the students must 
analyse the situation. Thus, a contradiction can be a trigger for the stu-
dents to examine the situation. At best, the teacher succeeds in creating a 
contradictory situation, but a contradiction can also be unplanned due to 
a comment, question, or solution given by the students (or by the teacher). 
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When students work with theoretical mathematics content such as the 
structure of algebraic expressions, mediating tools in the form of learn-
ing models can, through modelling, help them to visualise the abstract 
content (Davydov, 2008). Learning models can be constructed out of 
symbols (such as x or a = b + c), schemes (represented with line segments 

 ), graphs (such as those depicted in coordinate 
systems), and physical representations (such as Cuisenaire rods or paper 
models). With learning models as tools, students can explore abstract 
phenomena (Davydov, 2008; Davydov et al., 2003; Gorbov & Chudi-
nova, 2000; Zuckerman, 2004). A learning model can be created by both 
the teacher and the students or collectively in the classroom and should 
not be compared with formal mathematical models but rather seen as 
a materialised representation of the abstract that can be elaborated and  
developed. 

In learning activity, collective reflection is primarily seen as a collective 
practice. That is, to become aware of one’s own thinking, one needs to see 
one’s own arguments and explanations in the light of others’. By reflect-
ing on the explanatory actions of others, the individual student can also 
become aware of their own thinking and actions (Zuckerman, 2004).

Teaching activity vs. learning activity
Stressing students’ collective agency, it is possible to differentiate between 
teaching activity and learning activity (Eriksson, 2015). In a teaching 
activity, the teacher is the one who directs the work, often through a 
communicative question–answer pattern that is usually described 
with the abbreviation IRE 1 (Mehan, 1979). Further, the teacher retains 
the main responsibility for defining and presenting the problem to be 
solved and the students are expected to follow (passively or actively) the  
teacher’s directive actions. In a learning activity, the students must 
develop a need for new knowledge and thus a motive to engage in the 
work. The actions taken in a learning activity are thus dependent on the 
students’ agency. Davydov (2008) talks about learning actions – actions 
concerning: problem identification; reflection and analysis of graphical 
or letter models and actual knowledge in its ”pure form”; testing of and 
elaboration on a general problem-solving method; and finally, assessment 
of the problem-solving methods.

The learning actions taken by the students require students to acti-
vate their current theoretical thinking and test their previously known 
methods and conceptual tools to analyse the problem situation, and iden-
tify and define what the problem was about and how to model it to find 
plausible solutions. 
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Methods
Data for this article come from a three-year research project (2017–2019) 
financed by the Swedish institute for educational research. 2 The overarch-
ing aim of the project was to develop knowledge of how teaching can be 
designed to promote students’ ability to reason algebraically. Each of the 
five research lessons, including lesson plans, tasks, learning models, and 
communicative actions were adjusted and refined iteratively and collec-
tively. The data are taken from the third and the fourth research lesson 
in a grade 7 class (students aged 13). The teacher’s role was to conduct the 
jointly planned lessons while the researchers were responsible for docu-
menting the lessons with written notes and video. The lessons were tran-
scribed with the aim of capturing oral communication, complemented 
with gestures and intonation to provide meaning in culturally familiar 
situations (Nordin & Boistrup, 2018; Roth & Radford, 2011). Transcrip-
tion followed the principles of a word-for-word, speech-neutral text, 
organised in dialogic form (Linell, 1994). Gestures and intonations were 
captured in square brackets and words emphasised by the speaker were 
underlined. Students’ names were changed. Although the teacher con-
ducting the research lessons was part of the school’s ordinary staff, he did 
not ordinarily teach grade 7 that year and was therefore not acquainted 
with the students.

The design of the research lessons 
In relation to the overarching aim of the project, the content was chosen 
to enable the students to develop a theoretical understanding of an alge-
braic expression (e.g. ax + b), and specifically, to reason about algebraic 
expressions without assigning specific values to the variables. When 
designing the research lessons, we followed the principles of learning 
activity theory (Davydov, 2008; Repkin, 2003). Inspiration for the design 
of different problem situations and learning models used in the project 
and the planning of the staging of the research lessons was taken from 
the ED curriculum (Davydov, 2008; Schmittau, 2004; Zuckerman, 2004). 
Previously in the project, three critical aspects that indicated what the 
students needed to discern in an algebraic expression had been identified 
(Wettergren et al., 2021). They were: 

– the components have different functions, 

– same variables must have the same value 3, and

– the value of a variable is determined in relation to other components. 
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The construction of the problem situations included algebraic expres-
sions and illustrations. In the first part of the lesson (not analysed in this 
article), the problem situation contained an expression and some geomet-
rical illustrations that the students were to collectively reflect on. In the 
second, an expression was given and the students in pairs were asked to 
draw matching representations. However, when planning for staging the 
problem situation we decided to use premade illustrations as fictive stu-
dents’ solutions instead of drawings that different pairs of students had 
created. Experience from earlier research lessons was that students’ dis-
cussions around ”neutral” examples flowed more freely than with examp-
les produced by the students themselves. Another experience was that 
when using premade illustrations, the teacher could more easily make 
statements or ask questions that directed the students’ awareness towards 
theoretical aspects of algebraic expressions. Constantly presenting the 
premade illustrations using pairs of different representations created an 
implicit contradiction in the form of conflicting information between 
two versions. The conflicting information could be used by the teacher 
as a tool to urge the students to further their analysis. In other words, 
the premade illustrations together with the prepared teacher questions/
statements was supposed to trigger the students to further analyse  
theoretical aspects of the algebraic expressions.

Analysis
The analysis was done in two steps. First, a narrative of the students’ and 
the teacher’s actions in the classroom was constructed. The construc-
tion of the narrative was based on an analysis of what learning actions 
the students, supported by the teacher’s actions, realised in relation to 
the given problem situation. These learning actions in a classroom situa-
tion are expressed as communicative actions (verbal and non-verbal). In 
the video recordings and the transcriptions, we paid special attention to 
situations in which the students found something to be problematic; for 
example, where they got stuck or opposed a contradiction in the given 
situation. The focus was the communicative actions where the students 
contributed to the discussion, for example, by providing arguments and 
challenging these, especially the actions on the board aimed at the other 
students. Of specific interest were the parts where the learning models 
were used. In the next analytical step, we used the constructed narrative 
to highlight some core findings in relation to the two research questions. 
In the analysis, the main analytical focus was on students’ elaborations 
in the form of communicative actions relating to the problem situation. 
More precisely, we focused on how, with the help of tools and each other’s 
suggestions, they jointly built up an argument and an explanation to solve 
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the problem in the problem situation – thus, focusing on the interrelation 
between the design of the task and the potential of the task to help stu-
dents discern the mathematical content. In relation to the research ques-
tions, the main analytical focus was directed towards those aspects of the 
teacher’s and students’ tool-mediated actions that facilitated the theoreti-
cal work. In the analysis, questions like: ”who is doing what?”, ”with what 
tools?”, and ”what are actors trying to accomplish?” were posed.

Result 
The result is presented in two parts. In part 1 the narrative is divided into 
two sequences. In part 2 some aspects of the narrative are highlighted. 
The examples chosen come from two different groups participating in 
the lesson iterations three and four, respectively. The two sequences (see 
below) followed the same design idea and built on an algebraic expression 
that the teacher wrote on the whiteboard.

Part 1. Establishing collective theoretical work 
Before the narration starts, the students have been presented with two 
different schemes to be used as learning models. One was a line segment 
model (figure 1) and the other was an area model (figure 2).

Figure 1. Line segments as a model of the addition x + y
Note. Panel A is from the lesson video. Panel B is a reproduction of the same illustration.

Figure 2. Area as a model of the multiplikation xy
Note. Panel A is from the lesson video. Panel B is a reproduction of the same illustration.
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The learning models were introduced in a task where the students had 
to argue for how the algebraic expression 3x + 9y could be understood 
in relation to two geometric representations. The learning models were 
supposed to work as mediating tools in the students’ exploration of the 
algebraic expressions by visualising the theoretical aspects of addition 
(perimeter) and multiplication (area). 

In the next task, the students in pairs were asked to produce repre-
sentations of the expression 2(k + 2m) that the teacher had written on 
the whiteboard. 

Sequence 1. A planned contradiction inherent in the tasks 
When the paired-up students have worked for about three minutes, the 
teacher walks around looking at their different suggestions. The teacher 
pretends to make copies of their work on a flip chart out of sight. After 
about six minutes the teacher interrupts the working phase and puts one 
flip chart, representing two different suggestions made by two pairs of 
students, in front of the class (figure 3), saying that he has copied two 
different student suggestions, in the form of rectangle representations 
of the expression 2(k + 2m). 

With an astonished voice the teacher asks the students if both examp-
les can be correct even though they do not look the same, and if both 
are correct, how that can be. The teacher also encourages the students 
to walk up to the flip chart and visualise their arguments by pointing 
or making marks on the flip chart or the whiteboard. Leya points at 
the flip chart, writes k = ?, and explains that both representations can 
be correct since k is unknown and therefore can be anything. Another 
student, Hampus walks up to the flip chart and continues Leya’s argu-
ment, saying that both examples are correct by talking about and  
visualising the meaning of the invisible multiplication sign. 

Figure 3. The teacher shows the first illustrations of the expression 2(k + 2m)
Note. Panel A is from the lesson video. Panel B is a reproduction of the same illustration.
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Excerpt 1 
Hampus:  We had this [points at the expression given, 2(k + 2m)]. It’s the same 

as that [points at the expression and at the two rectangles]. Two times 
[points between the numeral 2 and the parentheses], there’s an invis-
ible multiplication sign [writes the multiplication sign and points to 
the class as if marking the importance of this (figure 4)] so then it 
makes two times that [points at the k] and two times that [points at the 
2m]. And over there [points at the bigger rectangle] it is the same. So, 
there it will be 2k + 4m [writes under the expression given] and over 
there [points at the side of the bigger rectangle where it says k + 2m] 
it’s also like that.

Teacher: Wait a second, that one to the left ... [slowly stops talking, his voice 
signalling that he cannot follow Hampus’s argument].

Hampus: It’s the parentheses [points to k + 2m] that is marked on one side. Or 
both of these are correct [points at both rectangles]. Or, sort of right 
[hesitantly].

As Hampus states his arguments, he pauses and looks at the teacher for 
confirmation. The teacher, however, is hesitant, saying, ”wait a moment. 
But ...?” as if he cannot follow Hampus’s argument. Hampus then says 
that both rectangles are ”kind of” correct. 

A third student, Elin, then questions how both rectangles can be rep-
resentations of the same expression since they do not have the same area. 
At the same time, she says that the variables k and m can symbolise any 
number. 

Excerpt 2 
Elin:  [...] But if the two are separated [draws a line between the two rectan-

gles] then it can be correct because then that k is equal to that k and 
that m is equal to that m [points at k and m in the illustration].

Figure 4. Hampus draws a multiplication sign in the expression 2(k + 2m)
Note. The content shown on the flipchart is reproduced in figure 3, Panel B.
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Another student enters the discussion and argues that the two rectangles 
can be representations of the same expression. 

Excerpt 3 
Dante:  It doesn’t look like the same area, but it is, because you can’t know 

what it is. It can be anything [...] because that’s two different examples 
of what it can be [pause] you don’t get to know enough to calculate 
what it is [looks at the teacher, questioningly].

Teacher:  Mm ... [in a thoughtful tone, signalling that he isn’t fully satisfied].

During Dante’s argumentation, he tries to get confirmation from the 
teacher, who is again hesitant, saying ”mm”, thoughtfully. Hampus then 
enters the discussion again and tests his argument further by using  
determined numbers.

Excerpt 4
Hampus: They are both two times k plus m, and regardless of order you get the 

same answer. But if you, like, do it over again and k is maybe two and 
m is four, you get, like, two times six [Hampus says six not four] on 
both and then it’s twelve.

The teacher encourages Hampus to go back to the flip chart where he 
starts to illustrate his argument by first pointing at the variables on the 
sides of the rectangles and then starting to write on the whiteboard k = 2 
and m = 4 and concludes that the two rectangles have the same area. The 
teacher sums up, based on Dante’s and Hampus’s arguments, by saying 
that both rectangles can be a representation of the expression, although 
both represent an area. In this summary, the teacher repeatedly checks 
with Hampus that he has correctly understood what Hampus said.

When the students seem satisfied with having solved the problem and 
having established that the two rectangles were, in fact, equally adequate 
representations of the expression, the teacher moves on to discuss two 
other illustrations.

Sequence 2. An unplanned contradiction inherent in the lesson flow
In this lesson the teacher by mistake wrote 2(k + 4m) instead of 2(k + 2m) 
on the whiteboard. This situation was chosen because since neither of the 
premade solutions on the flip chart (figure 5) corresponded to the expres-
sion, the problem became more complex. The teacher introduced the new 
problem situation, by saying ”since both were correct before, isn’t it rea-
sonable that both of these are also correct?” That is, the teacher tried to 
signal to the students that if two different representations could be used 
to explain an expression in one task this must always be the case. The 
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dilemma created by the teacher’s mistake – the expression did not corre-
spond to either of the two illustrations – seemed to trigger the students to 
further analyse the components and variables in the algebraic expression. 
Oscar identifies the problem and starts to explain why it is problematic.

Excerpt 5 
Oscar:  They don’t show the expression, not really.
Teacher:  Don’t they? [surprised]. You’ll have to go up and show it, you’ll have 

to explain why [Oscar walks to the flip chart].
Oscar:  If we start with seeing the perimeter as the expression, then we write 

k plus two m plus k plus two m [writing the operation]. That makes 
two k plus four m. And that is not the same as that expression [points 
to the expression given].

Oscar starts to explain why both cannot be correct by using the peri-
meter and area introduced in the beginning of the lesson as mediating 
tools (see figure 5). 

Excerpt 6 
Oscar:  [continues] Because if we were to reduce this [points to 2(k + 4m)], 

it would be two k plus eight m [writes it after the expression given] 
which is not the same as two k plus four m [...] And this [points to the 
bigger rectangle], would be two k plus four m plus two k plus four m 
which makes four k plus eight m [writes on the flip chart], which still 
isn’t the same as [points to the expression given] two k plus eight m. 
And then the area would be k times two m [writes on the flip chart] 
on this [points to the left rectangle] and that’s not the same either, as 
two k plus eight m [...]. And on this [right rectangle] two k times four 
m [writes on the flip chart] it’s not [points to the expression given] two 
k plus eight m either.

Figure 5. Oscar points to the expression given: 2(k + 4m)
Note. Panel A is from the lesson video. Panel B is a reproduction of the same illustration.

A



eriksson, fred, nordin, nyman and wettergren

Nordic Studies in Mathematics Education, 26 (3-4), 29–52.42

After Oscar’s explanation, the teacher asks the other students if they 
agree with Oscar’s statement that the rectangles cannot be representa-
tions of the expression, and further, what should be written on the sides 
of the rectangles to make them correctly represent the written expres-
sion. Another student, Albin, walks up to the flip chart and gives an 
example of what variables to write on the sides of each rectangle.

Excerpt 7 
Albin:  This one [points to the left rectangle] can be changed to be like that 

[points to the expression given] two k plus four m. So, we can change 
it like this: [writes 4m under 2m on the flip chart] from two m to four, 
that gives k plus [writes and speaks simultaneously (figure 6)] four m 
plus k plus four m. [Pauses and looks at what he has written]. It’s really, 
we see it, two k and four m [points to what he has written]. So, we can 
write it in this way [writes 2(k + 4m) adjacent to where he has written 
k + 4m + k + 4m]. And for the other we can [shrugs and points at the flip 
chart], well, we can really just cross this over [voice signalling that it 
is a suggestion] the two [crosses the numeral 2 in front of the variable 
k] then we only have k and four m again. And that fits the expression.

While Albin writes his suggestions of what variables could be written 
on the sides of the rectangles, he explains why they can be changed in 
this way.

Albin’s work visualises the function of the parenthetical notation 
by showing how the two representations can be adjusted to fit the  
expression given.

Thus, the problem presented on the flip chart enabled the students 
to continuously work together on the same problem. This together with 
the staging of the lesson where different representations of the same 
expression one by one were latched to each other, revealed an abundance 
of algebraic properties.

Figure 6. Albin writes: k + 4m +  k + 4m = 2(k + 4m)
Note. Panel A is from the lesson video. Panel B is a reproduction of the same illustration.
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To sum up, the students are apparently engaged in theoretical work in 
the two sequences given in the narrative above. What is indicating this? 
First, the content of the discussion is dense and focused. Second, the stu-
dents build on each other’s arguments. Third, when they do not receive 
confirmation from the teacher, they continue to substantiate their  
suggestions themselves.

Part 2. Collective theoretical work enhanced by task, design and tools
In Sequence 1, the two rectangles were different, but their sides were 
labelled identically (2 and k + 2m, respectively). This created an opportu-
nity to discuss the varying property of variables. One side being labelled 
k + 2m also highlighted the fact that a singular entity, like the length of 
the side of a rectangle, could potentially be in a complex form, like the 
expression k + 2m. 

To connect the expression to the rectangle representations, the stu-
dents had to identify the additive structure of length when represented 
as the perimeter of the rectangle. This way, focus is placed on the equa-
lity 2(k + 2m) = 2k + 4m, and enables the students to process the invisible 
multiplication signs in the expressions. 

In Sequence 2, the two rectangles were also different but here their 
labelling was not identical: one was labelled k x 2m, the other 2k x 4m 
(figure 5). In Sequence 2, the teacher made an error and gave the students 
the expression 2(k + 4m) instead of 2(k + 2m). Thus, the premade rectang-
les on the flip chart were both incorrect representations of the expres-
sion. This created a problem that triggered the students to elaborate on, 
and in this case the solution required an algebraic manipulation either 
on the expression or the labelling of the rectangles. It also opened the 
task for interpreting the expression’s connection to the rectangles both 
through the additive structure of length and through the multiplicative 
structure of area. 

Promoting students’ collective theoretical work 
As highlighted above, the task and its transformation into a problem 
situation provided opportunities for the students to reflect upon the 
structural aspects of the algebraic expression. But the transformation 
of the task into a problem situation and the students’ theoretical work 
was dependent on the teacher’s actions as well. Thus, the theoretical 
work can be seen as a joint action in which the teacher strove towards  
promoting students’ agency. 

The teacher’s actions in these two sequences were using intonation 
and gesture to signal his hesitancy or signalling that he could not follow 
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some of the arguments. Apparently, this type of action (response) encou-
raged the students to develop their collective theoretical work. The stu-
dents’ learning actions during these two sequences consisted mainly of 
identifying problems, testing and modelling structural aspects, trans-
formations of the models used, and testing and proving possible solu-
tions. But the teacher’s actions also included constantly balancing the 
students’ theoretical work, using claims, suggestions, and questions, thus 
pushing the collaborative discussion forwards and in the direction of the 
intended goal for the lesson. The teacher adopted an ”unhelpful” posi-
tion and carefully ”sabotaged” the discussion with incorrect claims and 
suggestions rather than filling the logical gaps in the students’ reasoning. 
Only when the teacher believed that the students had discerned the most 
central parts of the content did he confirm by sensitively summarising. 

It is difficult for the teacher to plan exactly what to say during such 
a phase; it demands clearly defined ideas of what actions the students 
could take and what could be mathematically advantageous for the lesson 
and then being very attentive to what the students say and do during 
the discussion. In this delicate balance, the teacher can be guided by  
students’ suggestions or their attempts to explicate, rather than pointing 
out mistakes or providing correct solutions. 

In addition, it became clear that promoting the discussion to be acces-
sible for the whole class, by writing on the board or on the flip chart, 
avoiding erasing what others had written, and thus enabling the students 
to clarify their arguments by pointing, played a crucial role in the whole 
class discussions. In other words, creating a collective memory on the 
board or on the flip chart was important for maintaining the theoretical 
work as collective one.

Discussion 
In relation to the aim of the article, we want to discuss what teachers 
working within a learning activity perspective need to consider when 
planning for and staging students’ collective theoretical work on alge-
braic expressions. In the result, we specifically highlighted what in the 
content of the task, its design, and its tools creates opportunities for stu-
dents’ theoretical work and what in the teacher’s and students’ collective 
tool-mediated actions facilitates the students’ theoretical work.

The content of the task, its design, and its tools
The result indicates, in accordance with criteria from Taflin (2007, 
p. 237), that problems the students work with must introduce impor-
tant mathematical ideas. From a learning activity perspective, a specific  
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mathematical idea or concept, for instance, algebraic expressions and 
their components and functions, must be introduced in a way that enables 
the students to explore the relational and structural features. That is, the 
general and theoretical aspects must first be the focus of the students’ 
work for them to ascend from the abstract to the concrete (Davydov, 
2008). Thus, what from a learning activity perspective can be considered 
a rich task, must capture the core theoretical principles (Davydov, 2008; 
Schmittau, 2004). Taflin argues further that the problem should be easy 
to understand. It may seem like a minor discrepancy between the idea 
of a problem that is easy to understand (Taflin, 2007) and students being 
responsible for identifying a problem. However, our findings suggest 
that the students’ problem-identifying actions are essential if a learning  
activity is to be robust. 

The examples chosen from the research lessons illustrate that the stu-
dents initially scrutinised the teacher’s claims about the correctness of 
the representations. Thus, defining the problem as acknowledging that 
an algebraic expression can be interpreted in different ways. Their work 
subsequently involved dismantling the expression to describe its func-
tional components and in so doing discerned the critical aspect identi-
fied for the groups. Thus, if students identify a problem they regard as 
worth solving, they may perceive it as a challenge and hence will develop 
a motive to solve it. 

Furthermore, a task should be framed and staged as a problem situation 
into which the teacher must build contradictions or hooks. If the problem 
is too easy for the students or if the teacher explains it, this may hinder 
students’ agency. The teacher should not explain what the students are 
supposed to find out, which tends to happen with the teaching tradition 
that Schwartz et al. (2011) call ”tell and practice”. Actively promoting 
students’ theoretical work without verbal or non-verbal evaluation or 
correction creates a different communicative pattern to the dominant 
IRE-pattern (Mehan, 1979). 

In learning activity, the concept of learning model (Gorbov & Chudi-
nova, 2000) is crucial. However, in the data from the selected lesson it is 
not obvious that the students transformed and tested the models given 
in the beginning of the lesson (see figures 1 and 2). Instead, the results 
indicate that the students used the geometrical representations and the 
symbolised expressions as learning models (e.g. excerpts 2 and 6). 

Teachers’ and students’ tool-mediated actions 
From the narrative and the analysis, we draw the conclusion that when 
planning and staging a learning activity in which the students are given 
opportunities to work theoretically on algebraic expressions, teachers  
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need didactical tools and strategies. This is of great importance in teach-
ing situations where the students (and the teacher) are unfami-liar 
with learning activity. The didactical tools identified in this study are  
categorised as ”contradictions”, ”playful format” and ”collective reflec-
tions”. These can be regarded as specified didactical tools that have 
emerged from empirical and experimental research lessons of a type 
that are argued by Dewey (1929/2013).

Contradiction – with the idea that contradiction is a core driving force 
behind development in societal activities, this concept can also play a role 
in the design of teaching. Especially if the overarching goal is student 
agency in theoretical work. When planning for a learning activity to 
emerge, the task needs to be designed in such a way that the students 
are motivated to explore it. With built-in contradictions, it seems that 
students engage in problem-solving discussions – not only seeking a solu-
tion but also seeking to understand what is problematic. In the design 
of the task exemplified in this article, the idea was to provide students 
with illustrations depicting alternative representations of an algebraic 
expression. To ensure that the illustrations would create a situation of 
contradiction, we used premade illustrations (pretending that they were 
examples from the students). This made it possible for the teacher, for 
example, as in sequence 1, to ”choose” two representations that looked 
different but in fact could be considered to be equally good representa-
tions of the expression. Thus, a productive contradiction can be planned 
and built into the task. But a contradiction can also arise during the 
lesson as a consequence of the teacher’s or the students’ action (as in 
sequence 2). This is something that the teacher must be attentive to and 
if such a situation emerges, the teacher must be sufficiently alert to make  
productive use of it to enhance the lesson’s theoretical investigations.

Playful format – in planning for a certain learning object, the problem 
situation can be ”dressed” in a fictive frame, or as van Oers (2009) says, in 
a playful format. In the result section, we described how this was exemp-
lified by the teacher’s signalling that he did not understand, could not 
follow the argument, wanted someone else to explain, etc. For a playful 
format to be a powerful didactical tool, the teacher must be serious while 
staging it and the students must believe and play along. In the research 
lessons, we noted that this happened.

Collective reflections – the result indicates how powerful it is to create 
a common working space on the board, encouraging students to work in 
this space, not only to vaguely point to or say something but to explicitly 
write, adjust, and add while explaining. During the first iteration of the 
research lesson, the teacher allowed previous suggestions to be erased. 
However, it became clear to the research group that the students needed 
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access to all the suggestions, and therefore, our conclusion that previous 
suggestions on the board should not be erased. The suggestions on the 
board functioned as a collective memory and thus enhanced the students’ 
collective reflections on the problem (Davydov & Rubtsov, 2018; Zucker-
man, 2004, see also Eriksson et.al., 2019). Further, the use of gestures such 
as pointing to a concrete aspect of the task or the model on the board 
helps to visualise one student’s thinking for the others.

To summarise, a task, its tools, and its staging as a learning activity 
in which students’ (and teachers’) learning actions have the potential to 
realise what Wartofsky (1979) sees as a social practice or a praxis cogitans, 
as in our case concerns algebraic thinking.
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Notes

1 IRE: the teacher initiates a question, the student responds, and the teacher 
evaluates the answer.

2 The research project underlying this article consisted of four different 
series of research lessons following the principles of learning study (Carl-
gren et al., 2017). Approximately 310 students in four different schools 
(grades 1, 5, and 7 and year 1 in an upper secondary school) participated in 
the project. The teachers collaborated with the researchers related to their 
own school, respectively. Over 90 % of the participating students, the  
teachers, and the research group, were Swedish born.

3 Two different variables, for example, c and b, may have the same value; 
however, it is not appropriate to represent a general relation with a specific 
relation in which the variables have the same value.
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