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Creative and algorithmic reasoning 
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tomas bergqvist and mathias norqvist

This study is based on a framework of algorithmic and creative mathematical rea-
soning and focuses on students’ strategy choices in both practice and test. Previous  
research indicates that students that practice mathematics with tasks with given 
solution methods are outperformed in later test by students that have to construct 
solution methods during practice. Video recordings, students’ written solutions, and 
student interviews from ten university students provides data on strategy choices. 
The analysis was carried out to capture students’ strategy choices and reasons for 
these choices. The results showed that there was no real difference in how the stu-
dents solved the tasks in the test. Regardless of practice condition, more or less the 
same solution strategies were used in the test situation.

Many students practice mathematical methods without connecting 
them to conceptual aspects. Memorizing a set of solution methods is 
one of the most efficient learning strategies in a short-term perspec-
tive, while it could be harmful in the long run (Hiebert, 2003; Hiebert 
& Grouws, 2007). It is possible to solve the majority of all tasks in upper 
secondary school textbooks by imitating solution templates (e.g. Jäder 
et al., 2020). It is even possible to pass most exams in the first term of 
university studies by memorizing a set of solution strategies (Bergqvist, 
2007). However, when you look at mathematics learning in a longer per-
spective, it is doubtful if learning a set of algorithms results in any deeper 
conceptual understanding (Hiebert, 2003). 

Of course, without a given template, solving a task will be consider-
ably more difficult. Brousseau (1997) clarifies that when students fail to 
complete a solution process it is a normal step in the students’ knowledge 
building. It is in fact not a failure, but a necessary step towards concept 
acquisition (Kapur, 2010). Bjork and Bjork (2011) also argue that these  
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difficulties are desirable when learning, but the desirable difficulties must 
be surmountable and concern the subject that is supposed to be learned. 
Solving tasks by imitating solution templates removes most difficulties 
and will therefore reduce the students’ opportunities to understand the 
concepts involved.

In multiple studies the research program Learning by imitative and  
creative reasoning, LICR, (Lithner, 2017) have shown that students who 
practice mathematics by constructing solutions, outperform students 
who are given a solution template during practice (e.g. Jonsson et al., 
2014; Karlsson Wirebring et al., 2015; Norqvist, 2018; Olsson & Granberg, 
2019). In the study by Jonsson et al. (2014), the students who used a solu-
tion template scored about 95 % on the practice tasks, whereas students 
who had to construct their own solutions scored just above 60 %. On 
the test, the group who used a solution template during practice scored 
significantly lower than the other group. These results have been veri-
fied in other studies (e.g. Karlsson Wirebring et al., 2015; Norqvist, 2018; 
Olsson & Granberg, 2019). The reasons for the difference in performance 
between the two student groups is however not clear. One possible expla-
nation is connected to differences in the students’ need to struggle with 
the tasks during the practice session (Jonsson et al., 2016), but several 
other possible explanations exist. 

There is a lack of information about what the students actually are 
doing in the practicing and test sessions. In this study we therefore focus 
on understanding more about the students’ activities in two ways. Firstly, 
by characterizing students’ strategy choices in both practice and test 
sessions, and analyzing the relation between these choices. Secondly, by 
interviewing students to understand more about their experiences of the 
practice and test session.

Background
In this section we will explore the foundation of the present study. The 
background will start with the importance of mathematical reasoning, 
which leads to the notions of strategy choices and the use of algorithms 
when learning mathematics, and finally, a summary of the earlier studies 
in the LICR-program will lead us to the aim and research questions of 
this study.

Mathematical reasoning
One of the competencies in mathematics is the ability to reason, that 
is, to give mathematically founded arguments for a solution method or  
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strategy (e.g. Niss, 2003; Kilpatrick et al., 2001). This ability has, in one 
form or another, been a part of the mathematics syllabi in many coun-
tries (e.g. USA, Denmark, Singapore and Sweden) for at least two decades. 
In the late 1980’s the American teacher association National council of  
teachers of mathematics first included reasoning as part of the mathe-
matics curriculum (NCTM, 1989), and this is elaborated in the 2011 
Common core state standards for mathematics (NCTM, 2011). The Danish 
KOM-project defined eight competencies needed to get a full grasp of 
mathematics, where reasoning is one of them (Niss & Jensen, 2002; Niss, 
2003). The KOM-project has also influenced the Swedish syllabus. In the 
current Swedish syllabi, learning to reason mathematically is part of the 
aim of mathematics teaching together with procedural knowledge, com-
munication, conceptual understanding, and problem solving (Skolverket, 
2011a, 2011b). 

Kilpatrick et al. (2001) defines five strands of mathematical profi-
ciency, where ”adaptive reasoning” is one of them. Adaptive reasoning 
is seen as ”the glue that holds everything together” (p. 129) and includes 
a broad view of what reasoning entails. Here, both intuitive and induc-
tive reasoning, such as finding patterns, and more formal mathematical 
reasoning, such as proofs, are included. This indicates that mathemati-
cal reasoning can be done by all, even young children, but that the argu-
mentation may be of a different type. As long as a solution or theorem 
can be justified by logical arguments (based on the knowledge the child 
has) reasoning has occurred. This broader view of reasoning matches up 
with how reasoning is viewed by Lithner (2008, 2017). Lithner (2008, 
2017) argues that mathematical reasoning always occurs when a task is 
solved, even though it might be rudimentary or is provided by a textbook, 
peer, or teacher. To distinguish between different sub-types of mathe-
matical reasoning, Lithner (2008, 2017) suggests definitions for several 
types, and two of these, Algorithmic reasoning (AR) and Creative mathe-
matically founded reasoning (CMR), are central for the present study. The  
definitions of these two types of reasoning are as follows: 

Algorithmic reasoning is an attempt to ”solve a task by applying a given 
or recalled algorithm” (Lithner, 2017, p. 939), where an algorithm is 
defined as a ”fixed set of step-by-step procedures for solving (mathe-
matics) problems” (Fan & Bokhove, 2014, p. 486). This also includes 
pre-defined steps without calculations (e.g. measuring an angle in 
a figure). When students work with tasks designed for algorithmic 
reasoning (AR), they use a given or recalled solution strategy. 

Creative mathematically founded reasoning is when the solver creates 
or recreates a solution sequence that is new (or forgotten) for the 
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solver (Lithner, 2008, 2017). The solution should be supported by 
predictive and verificative arguments, and the arguments should be 
anchored in the intrinsic mathematical properties that are involved. 
When the students work with tasks designed for creative mathe-
matically founded reasoning (CMR), they create a new solution 
strategy or recreate a forgotten one.

Strategies and strategy choice
In research literature, the word ”strategy” is most often used in its every-
day meaning, a way to address a task. For example, Andrews et al. (2021) 
presents a thorough literature review on computational estimation and 
uses the word strategy to mean the ways students perform computational 
estimations. Polya writes in his famous book (1945) about ”heuristic 
strategies” as a tool for problem solving. Schoenfeld (1985) expands this 
concept to mean ”rules of thumb for successful problem solving, general 
suggestions that help an individual to understand a problem better or to 
make progress towards its solution” (p. 23). This indicates that a strategy 
can be of different types and should be given a rather broad definition.

In this study we will base our definition on Bergqvist and Lithner 
(2012), so that a ”strategy” can vary from very local procedures to general 
approaches. The ”choice” is then used in a broad sense, for example, recall-
ing a strategy, constructing a strategy, or choosing between two or more 
known strategies. In many situations there might in fact not be a choice 
involved since the students only have one strategy available. However, a 
strategy will be used when trying to solve mathematics tasks. 

When students work with mathematical tasks, they can often imitate 
a template or use a given algorithm, that is, use a solution strategy pre-
sented in the book or by the teacher (e.g. Newton & Newton, 2007; 
Shield & Dole, 2013). Jäder et al. (2020) found that 79 % of all tasks in the 
common textbooks in twelve countries (including, for example, USA, 
Singapore and Finland) could be solved by imitating a given procedure. 
Tasks used in tests look for the most part the same as the tasks in the text-
book. However, there is one large difference: there is nothing to imitate 
during the test. This means that students must rely on memory from the 
training or create a new solution during the test (Lithner, 2017). Neither 
strategy is something that students normally practice.

Brousseau (1997) makes it very clear why it is inefficient to use ready-
made algorithms in the learning process. He explains that an algorithm is 
a task-solving method that guarantees success if you follow all the steps, 
and that the algorithm is created to avoid having to regard the mathemat-
ical properties of the task. The idea with the algorithm is actually that 
you don’t need to understand, only blindly follow the procedure. There is 
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clear evidence that such activities will not lead to deeper understanding 
or develop central mathematical competencies (Hiebert, 2003; Lithner, 
2017). It is claimed that extensive use of algorithms is contra-productive 
(Hiebert, 2003; Niss, 2007), which indicates that the change from rote 
learning to learning for in-depth understanding is a very important task 
for the whole mathematics education community. 

Research has shown that additional effort during practice will ease later 
retrieval of the practiced material (e.g. Pyc & Rawson, 2009; Wiklund-
Hörnqvist et al., 2014). Solving tasks without solution templates (i.e., 
creating one’s own solution strategies) is more efficient for later retrieval 
than solving tasks where solution templates are given (e.g. Fyfe & Rittle-
Johnson, 2017; Jonsson et al., 2014; Norqvist, 2018), and this is the main 
rationale behind the LICR-program.

Results from the LICR-program
The main idea of this study is to understand more about possible expla-
nations to previous results in the LICR-program. Jonsson et al. (2014) 
studied the eventual difference in task efficiency between tasks where 
the students were given a solution template or a formula (called AR-tasks, 
Algorithmic reasoning) and tasks where the students had to construct 
their own solution (called CMR-tasks, Creative mathematical reason-
ing). The efficiency was measured by post-test performance. The group 
of students who had practiced CMR-tasks outperformed the group prac-
ticing AR-tasks, and additionally there were indications that practicing 
CMR-tasks was especially beneficial for low-performing students. One 
critique to these results has been that similarities between practice tasks 
without solution templates and test tasks, so called transfer appropriate 
processing, could be the reason for the difference in test performance. 
Jonsson et al. (2016) studied how transfer appropriate processing and 
productive struggle influenced test scores for tasks with and without 
solution templates. Although there was a minor effect of transfer appro-
priate processing, the main reason for the observed difference in test 
scores was the increased effort needed during practice without solution 
templates. Variants of the study by Jonsson et al. (2014) illuminate dif-
ferent aspects of the situation. Norqvist (2018) argued that if an expla-
nation of why the algorithm works was added to the AR-tasks, similar 
to textbooks or teacher instructions, the efficiency of these tasks could 
increase. The study did however show no such performance gain. CMR-
tasks has also been shown to be beneficial when incorporating GeoGe-
bra in mathematics education (Granberg & Olsson, 2015; Olsson, 2017; 
Olsson & Granberg, 2019). Olsson and Granberg (2019) confirmed that 
students that practiced with CMR-tasks showed a significantly higher 



bergqvist and norqvist

Nordic Studies in Mathematics Education, 27 (1), 5–25.10

post-test performance than the AR-practice group, although all stu-
dents utilized GeoGebra during both practice and test. Eye-tracking has 
revealed that students that solve practice tasks with solution templates 
will focus on either a given formula or a solved example, while students 
that practice without solution template will have a larger focus on the 
illustration (Norqvist et al., 2019). However, Norqvist et al. (2019) showed 
that among the students that practice without solution templates there 
are a few students (six out of 25), with slightly lower cognitive abilities, 
that seemed to search for solution templates to imitate, focusing more 
on non-helpful information. 

Earlier studies (Bergqvist et al., 2008; Liljekvist, 2014; Lithner, 2003) 
have shown that it is likely that tasks with solution templates will be solved 
by AR, while tasks without solution templates will mainly be solved by 
CMR. Several studies in the LICR-program also support the claim that 
when students are given an algorithm, they will use it (Jonsson et al., 2016; 
Lithner, 2017; Norqvist, 2018; Norqvist et al., 2019). This means that we 
will have a clear dividing line between the two types of tasks. 

Aim and research questions
Previous studies have shown that CMR-practice is more efficient than 
AR-practice as measured by scores on a post-test (e.g. Jonsson et al., 2014; 
Norqvist, 2018). However, we do not know enough about the reasons 
for the difference in performance between students who practice on  
CMR-tasks and students who practice on AR-tasks. 

The aim of this study is twofold, both to understand more about the 
students’ choices of solution strategies during the practice and the test, 
and to gain insight into students’ experiences from the practice and the 
test. Therefore, we will answer the following research questions:

 RQ1: What types of solution strategies are used during practice and 
test and how do they relate to the two practice conditions (AR and 
CMR)?

 RQ2: How do students experience AR and CMR tasks in the  
practice and test conditions?

Method

Participants
The study comprised a convenience choice of 10 pre-service teacher 
students at a university in Sweden, studying to become primary school 
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teachers. A request to participate was given to a student group of 42  
students. From this student group, 10 students volunteered to partici-
pate in the study, and were informed about their rights as participants 
in the study.

Design
The study utilizes a within-group design (i.e., all participants provide data 
for both conditions), which implies that eventual differences in results 
will be between conditions, not between participants. Hence, indivi-
dual strengths or weaknesses among the informants will not affect the 
results since an important aspect of using a within-group design is that 
it compensates for individual competence. This design makes it possible 
to compare the results from this study with previous results in the LICR-
program, despite eventual differences in the participants’ mathematical 
level. We know from several studies (e.g. Bertilsson et al., 2017) that a 
within-group design works well enough for this type of study. The par-
ticipants were met individually on two occasions, a practice session and a 
test session. During the practice session all ten participants solved 6 task-
sets (see next section for a detailed description) with a suggested solution 
method (AR sub-tasks) and 6 task-sets without a solution method (CMR 
sub-tasks) (see figure 1). For five participants, task-sets 1–6 comprised AR 
sub-tasks and task-sets 7–12 comprised CMR sub-tasks. For the other half 
of the participants the task types were reversed (i.e., task-sets 1–6 were 
CMR sub-tasks and task-sets 7–12 AR sub-tasks). This was done to control 
for eventual differences in difficulty between task-sets. 

A test session was conducted one week after the practice session. The 
main reason for delaying the test was that in previous studies in the LICR-
program there was a one-week delay between practice and test. Such a 
delay is often the case in a school setting (i.e., the test takes place days 
or weeks after the individual lessons). Since we want to address previous 
results in the LICR-program, we wanted similar conditions in this study. 
During the test session, each participant worked on 24 sub-tasks (2 sub-
tasks for each practiced task-set), all of them similar to the CMR-tasks 
they got during practice, but with different numerical values. 

Tasks
The tasks mainly focused on algebraic thinking (e.g. recurring patterns) 
with different contexts. All practice sub-tasks provided basic descrip-
tion, an illustration, and a question. Additionally, the AR sub-tasks also 
provided a formula and a solved example (see figure 1). Since the AR sub-
tasks provide a solution method, they can generally be completed faster 



bergqvist and norqvist

Nordic Studies in Mathematics Education, 27 (1), 5–25.12

(this was also evident from previous studies in the LICR-program, e.g. 
Jonsson et al., 2014). Therefore, each AR task-set included 5 sub-tasks, 
while CMR task-sets included 2 sub-tasks each. Sub-tasks within the 
same task-set were also designed with increasing difficulty, starting with 
answers that could be deduced from, or by slightly expanding the figure 
(for example, in the task-set presented in figure 1 the first sub-task asked 
for 6 squares in a row), while the following sub-tasks demanded calcu-
lation or a mathematical idea to be solved. Hence, the only thing that 
differed between sub-tasks within a task-set was the numerical value 
of the question (e.g. the number of squares in figure 1). Altogether, each 
participant worked on 42 sub-tasks during practice, comprising 30 AR 
sub-tasks and 12 CMR sub-tasks. 

Test tasks were identical to the CMR practice tasks, albeit with other 
numerical values. However, during the test the sub-tasks were presented 
with decreasing difficulty (i.e., the reverse order of CMR-practice). This 

Figure 1. Example of AR (above) and CMR (below) tasks.
Note. For additional examples of tasks used in the LICR-program, see Norqvist et al. (2019).
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design was made to identify two aspects. Firstly, to see if the participants 
could use the practiced solution method, or a mathematical idea, on the 
first sub-task where an eventual (re)construction was harder. Secondly, 
if they could (re)construct the solution method on the simpler second 
sub-task, if it was forgotten. The similarity between test sub-tasks and 
CMR-practice sub-tasks stems from the fact that tasks that occur on 
tests in school seldom have given solution methods (which also is a part 
of a CMR-design).

Data
Data comprised practice and test scores, papers with students’ written 
solutions, video-recordings of practice and test, and an interview at the 
end of the recorded sessions. To try to eliminate an eventual effect of 
having an observer (one of the authors) in the room whilst solving tasks, 
we decided to observe and record half of the participants during practice 
and the other half during the test. In retrospect this might have been 
overly cautious since the participants did not seem to be bothered by the 
presence of a researcher and a video camera. Hence video-recordings and 
interviews did not include both sessions for all participants. To comple-
ment the lack of recordings we analyzed the written solutions from all 
students, both from the recorded and the non-recorded sessions.

During the recorded practice and test sessions, an observer used short 
comments and questions of the type ”what are you doing” to prompt 
the student to think-aloud. The sessions varied from 37 to 80 minutes 
in length, with an average of 55 minutes. At the end of each recorded 
session, the students were interviewed for about 10 minutes on their 
experiences. The interview questions consisted of both task specific 
questions and more general questions. A task specific question was when 
the observer had identified an interesting strategy choice or had failed to 
understand what the student was doing on a specific task: ”How did you 
think on the task with the matches?” or ”On task 3 you started with one 
idea, but then you changed your mind. Why?”. The more general ques-
tions (especially after the test session) considered the whole situation: 
”What do you remember from the practice?” or ”Did you recognize the 
tasks?”. These general questions, or variants thereof, were asked of all 
recorded participants after the test session.

Method of analysis
The main analysis focuses on the choices of solution strategies. These 
strategies were identified using three types of data (i.e., written solutions, 
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video recordings and interview answers). We searched both for previously  
identified strategies and other ways of solving the tasks. There were two 
previously identified strategies, found in earlier studies in the LICR-pro-
gram (Lithner, 2017): i) understanding and completing the pattern, and 
ii) finding and analyzing the number series. For example, on the task 
presented in the framework-section above (figure 1), the first strategy 
would work like this:

– Realize that for each new square three new matches are needed

– Realize that you need do add an additional match to complete the 
pattern.

– This gives 3x + 1

– 3 x 20 + 1 = 61

The second strategy, to use a series of examples to find a number series. 
On the match-squares task this could work like this:

– 1 square = 4 matches

– 2 squares = 7 matches

– 3 squares = 10 matches

– 4 squares = 13 matches

- 4, 7, 10, 13, 16, 19, … , 55, 58, 61

Additional solution strategies were expected to be found in the analysis. 
We were open for many ways to solve the tasks, both correct and incor-
rect ways. Two such strategies were guessing a formula and adapting the 
solution to the illustration. By guessing a formula that solves a task it is 
possible to get a correct answer, but this is probably rare (none of the 
students who guessed a formula in this study got a correct answer). The 
strategy adapting the solution to the illustration means that a formula or 
relation that superficially matches the example given in the task is used 
for all situations (all answers created using this strategy were incorrect). 
For example, if 4 squares require 13 matches, then 20 squares will require 
five times as many: 5 x 13 = 65 matches.

The interview data was analyzed using thematic analysis (Braun & 
Clarke, 2012). In the first step we identified all relevant utterances regard-
ing the research questions. That is, utterances about strategy choice, solu-
tion strategies, the training situation, the test situation, and the relation 
between training and test. There were also utterances about difficulty 
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and the students’ own performance that were relevant for the aim of the 
study. 51 utterances were identified and coded into 10 different codes, 
based on similarities related to solution strategies and student behavior. 
Most of these 51 utterances came from the five students interviewed after 
the test session. The codes were combined into four themes, see table 1, 
where three of them were connected to students’ experiences and one 
regarded strategy choice. The themes will be presented more in detail in 
the results section.

Additionally, we also made a comparison of the differences between 
practice and test scores for each condition, as an indication of the effi-
ciency of practice. With such a small sample, an inferential statistical 
analysis would be of small or no use and therefore we only present mean 
values for the difference between practice and test scores on a group level.

Example of utterances Codes Themes

If you cut the first there will be this many pieces. 
When you cut one more there will be this many 
extra.

Patterns

Solution 
strategies

St
ra

te
gy

 c
ho

ic
e

So, if there are 45 gray you will need 44 blacks. Mathematical 
comments

I remembered this one from last time. Recognizing 
from training

It was raised to and such stuff, I can’t figure it out 
in my head. My brain doesn’t work that way.

Can’t solve this

Aspects 
of under-
standing

St
ud

en
t e

xp
er

ie
nc

es

I noticed that it was easier to solve those I had 
solved before.

Easier when 
you have been 
thinking about 
it before

Stupid that I can’t remember the formula ... but 
I should take a time b and then take away some-
thing ...

Can’t remember 
the solution

Memory

I get so annoyed on that formula... you take that 
times that and that, I think it was like that, kind 
of, and then you took minus b times 2 or raised to 
2 or something.

Remember-
ing there is a 
formula

Remembering stuff you have been taught takes 
much longer than something you have found out 
yourself. 

Easy to remem-
ber what you 
have found out 
yourself

Really, this was so much easier last time because 
that time we had a formula.

Easy with a 
formula

Formula
I don’t think formulas has helped me later, only 
in the moment 

The formula 
helps locally

Table 1. Examples of the thematic analysis
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Results
In this section we will present the results in relation to our research 
questions. First, we will present what strategies the students used on the 
tasks, both in practice and in test, along with practice and test scores, to 
see if solution strategies differ between the two practice conditions and 
in that case how. Secondly, we will present how the students commented 
on their experiences from the practice and test, to investigate how the 
two practice conditions might influence their strategy choices.

Strategy choices and their impact on scores on practice and test tasks
To answer the first research question, we categorized the students’ stra-
tegy choices based on how they approached the tasks. All students made 
an initial strategy choice at the start of every task-set and clung to it 
throughout each sub-task within that task-set. Hence, we have chosen 
to present a total of 60 instances of strategy choice (6 task-sets x 10 stu-
dents) for each condition, in total, 120 instances. Six solution strategies 
were observed during the practice and test sessions (see table 2). 

Within the AR practice task-sets, only one strategy was observed (i.e., 
utilizing the given formula to solve the task). When practicing with 
the CMR task-sets, four different strategies were observed. The most 
common by far was to try to understand the pattern and how this related 
to the question at hand (27 out of 60 instances). This included instances 

Observed Strategies Practice Test

  AR  CMR *

Solution 
strategy after 
AR practice

Solution 
strategy after 
CMR practice

Understand the pattern - 27 39 32

Find a number series - 1 5 7

Guess the formula - 3 - -

Adapt to illustration - 5 - 1

Remember the formula - - 7 6

Use the given solution template 60 - - -

Not distinguishable ** - 22 9 14

Table 2. Instances of observed solution strategies during practice and test

Notes. A total of 60 possible instances in each column (6 task-sets x 10 students).
* Two task-sets were left unanswered
** Includes situations where only an answer was produced or other instances where the 
solution strategy could not be determined.
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when students were either drawing new illustrations or discussing 
the pattern given in the sub-task. In nine instances the students used 
other strategies: finding a number series (1), guessing a formula (3), and  
adapting the solution to the illustration (5).

During the test the most common strategy, regardless of practice type, 
was again to understand the pattern (71 instances), followed by finding 
the number series (12 instances). There were also instances when stu-
dents remembered, or tried to remember, the formula from practice (13 
instances), and adapting the solution to the illustration occurred once.

In some situations (both in practice and test sessions) it was not possi-
ble to determine what strategy the students used. The reasons varied, but 
in most of these situations only an answer was given. In other situations, 
there were a few things scribbled on the paper, but no connection to the 
task could be identified. These were all put in the ”not distinguishable” 
category. Where the sessions had been captured on video, some student 
comments or expressions were used to help us to classify their solution 
strategy. The interviews could provide indications of the sort ”it is just 
to use the formula”, or ”half are white here [points to the illustration], 
if I take all tiles, we need 3774, then, technically, half of them should 
be red” or other expressions, indicating the student’s strategy choices. 
These types of expressions were coded into the first theme, solution stra-
tegies, in the thematic analysis but used here to help determine students’  
strategy choice.

To get an indication of an eventual difference between practicing by 
AR and by CMR we also compared the difference between practice and 
test scores (see table 3). A mean difference between practice and test 
scores for the AR and CMR conditions shows that the tasks practiced by 
CMR yielded a 29 % higher score (from 44 to 57) on the test than during 
practice, while the performance on the tasks practiced by AR decreased 
by 35 % from practice to test (from 96 to 63). This could indicate that 
CMR-practice provides opportunities to practice lasting solution strate-
gies which AR-practice does not. If only test scores for tasks where prac-
tice was successful are included, there is a clear difference between the 
two practice conditions in favor of CMR-practice (see table 3).

Condition Practice Test – all tasks Test – successful practice

AR 96 (8) 63 (22) 64 (23)

CMR 44 (23) 57 (28) 83 (23)

Note. Numbers in brackets indicate standard deviation.

Table 3. Mean solution frequency in percent in practice and test
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In summary, these results show that a given solution method, as in the 
AR-practice condition, will promote a utilization of the formula, with 
less regard given to the underlying mathematical principles. The CMR-
practice condition seems to require the students to mainly use strate-
gies that include some regard to the underlying mathematical principles 
(see table 2). However, there is no evident difference in strategy choice 
during the test between the two conditions. The results also indicate 
CMR-practice performance is somewhat stable between practice and test 
while the AR-condition shows a decline from practice to test, and that 
a successful practice is especially important for a good test performance 
in the CMR-condition.

Students’ experiences of the AR and CMR tasks
To answer the second research question, a thematic analysis of student 
comments and answers to interview questions was conducted, which 
resulted in four themes: Solution strategies (presented in the section 
above), aspects of understanding, memory and formula. The themes were 
based on comments from students in relation to both practice conditions 
(i.e., reasoning type) and was not correlated to a particular solution stra-
tegy. For example, a student talking about the formula could either have 
been talking about a given formula (as in the AR-condition), or about a 
constructed formula (as in the CMR-condition). Student comments in 
the three latter themes were used to get information of how the students 
experienced the difference between the two conditions. 

Student comments under the following three themes were stated 
during or after the test and were used to get a clearer picture of stu-
dents’ experiences of the two practice conditions. The notation by the 
quotes (AR or CMR) denote the practice condition for the specific task(s) 
that the students were referring to, and the number is an identification 
of the student (1–10).

Aspects of understanding
The students implicitly expressed different aspects of understanding, 
from when they did not grasp the mathematics or did not think that they 
would, to instances when they expressed that it was easier to work with 
the tasks when they had tried to construct solution methods during the 
practice (which also was a common comment after the test session). It’s 
easier to work with the tasks that you have already been thinking about, 
and if you succeeded last time, you would remember how you dealt with 
the task. 
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I can’t do this one. I know that immediately, because it was powers 
and stuff, I can’t figure that out in my head. My brain doesn’t work 
that way. (AR, 7)

I noticed that it was much easier to solve the tasks I had solved 
before. (CMR, 8)

The students also commented that if you had figured something out it 
is easier to recall what you have figured out than things you have read 
or been told.

Remembering things that I have learned takes a lot longer than 
something I have figured out myself. (CMR, 4)

Some comments also showed that the students were aware of solution 
methods that were more efficient but could not recreate them.

It feels like I should find an easier way, but I can’t find an easier way 
right now. (AR, 4)

Memory
There were also comments directly connected to memory traces of the 
practice tasks. Some students expressed that they recognized the tasks 
from the CMR-practice, or that they had worked on a task for a long time. 
They also expressed that they remembered that there were formulas in 
AR-practice, but in most cases, they couldn’t recall what they looked like. 

Oh no, I remember this one too. I worked on that one really long. 
(CMR, 8)

I remembered on some that it should be squared, but I don’t remem-
ber what parts. (AR, 7)

The students also commented that if you had figured something out it 
is easier to remember what you have figured out than things you have 
read or been told.

Remembering things that I have learned takes a lot longer than 
something I have figured out myself. (CMR, 4)

Formulas
Parallel to the students’ comments about memory, there were similar 
statements that focused more on the formulas themselves. They com-
mented that a formula is very good for solving the tasks, but when you 
don’t get the formula in the task the situation becomes difficult. 
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It was so easy when you had the formula, but if I don’t have it, that’s 
tough! (AR, 3)

One student formulated very clearly what other students also hinted at, 
that formulas only help you in the practice session, not in the long run.

I don’t think that formulas have helped me later, only in the moment. 
(AR, 2)

One student also commented on the difference between constructing his 
or her own solution during the test compared to using a given formula 
during practice.

It’s maybe easier since I have been brooding more over them [the 
test tasks] than I did last time when there was a formula, so even if I 
made three of each then ... maybe that’s it. At least if you’re like me 
and don’t get the formula but only use it, maybe. (AR, 7)

Summing up the students’ comments gives two insights. The first is that 
the students express that the AR-practice hardly helps in the choice of 
solution strategy when taking the test since they used the formulas 
without reflection during practice, and to a large extent they cannot 
remember them. The second is that the students indicate that CMR-
practice makes you a bit prepared since you have tried to solve similar 
tasks before and had to come up with solution strategies by yourself, 
which seems to be easier to recall. 

Overall, the results from the two analyses indicate that CMR-practice, 
although more difficult, provides important experience, easier retrieval, 
and understanding, which AR-practice does not seem to do.

Discussion
Regarding solution strategies, our results show that the formula is used 
extensively during AR-practice, and is, as the students say, not really 
reflected upon. During CMR-practice most students used a strategy 
aiming at understanding the pattern, which also was the most common 
strategy during the test, regardless of practice condition. Hence, the 
results suggest that task design will influence students’ choice of solution 
strategies in a way that given solution methods are used but not always 
understood. It also appears likely that CMR-practice prepare students 
for solution strategies needed during a test, which AR-practice does not 
do unless the students remember the formula. Students’ experiences also 
suggest that the given solution methods during AR-practice are harder to 
remember than the solution methods they have constructed themselves, 
mostly since during AR-practice focus is on getting a correct answer and 
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not on understanding why the formula works. The experience of having 
to construct a solution during CMR-practice was also expressed as helpful 
when put in a test situation.

During the practice on AR-tasks, the students made almost no mis-
takes, they used the given formulas and found the answer easily. Some 
also reflected that practice was so much easier since there was a formula 
present, showing that they were aware that such practice tasks are very 
easy to solve. An interesting situation was when one student looked on 
a formula (on one of the first sub-tasks) for some time and then asked, 
”Do I need to understand the formula?”. When the researcher said that 
she was supposed to solve the task, she just used the formula and got a 
correct answer. This comes as no surprise, it is in line with how most tasks 
in mathematics textbooks function all over the world where 79 % of all 
tasks can be solved using a template or worked example (Jäder et al., 2020). 
This leads to a high competence at using templates or given formulas.

During CMR-practice, more errors are made, but the students indicate 
that the tasks are remembered better. One student said, ”Oh no, this is 
the one I didn’t succeed ...”. That the students might remember the tasks 
better is in line with previous studies (e.g. Jonsson et al., 2014). One pos-
sible reason could be related to the idea of ”productive struggle” (Hiebert 
& Grouws, 2007). The students work harder during CMR-practice and 
the additional effort will make the retrieval of the practiced material 
easier (e.g. Pyc & Rawson, 2009; Wiklund-Hörnqvist et al., 2014). The 
fact that we saw a slight increase in test score compared to the practice 
score for the tasks that were practiced by CMR, also support the notion 
that retrieval might be easier after an initial struggle.

There were no major differences between the solution strategies used 
in the test for the two conditions. The strategy choice in the test situation 
after both AR-practice and CMR-practice was mainly understanding the 
pattern. However, when practicing by CMR, students in general use the 
same or similar solution strategies as they later used in the test situation, 
something that is not true when practicing by AR. It is apparent in our 
results that AR-practice, when a solution method is available, will consist 
of applying that method with little regard to other solution strategies. We 
also have indications (see table 3) that a successful CMR-practice more 
often will yield a correct solution on the corresponding test task, which 
again can be related to the benefits of productive struggle (Hiebert & 
Grouws, 2007) during the practice session. Some students also indicated 
this benefit in their comments on the CMR-tasks. A successful practice 
is not as important during AR-practice, in part because AR-practice has 
fewer obstacles, hence less struggle, and does not require the student to 
have a deeper understanding of why the formula works (Brousseau, 1997), 
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and in part because they are tested on something that they have not been 
practicing (i.e., finding a solution method). 

Conclusions
Our main result is that there is no real difference in how students address 
a task in the test depending on the type of practice. This was not com-
pletely expected since the difference in practice condition could have 
made a difference in strategy choice during the test. However, when stu-
dents are taking tests on areas where they have practiced using solution 
templates, they are in most situations tested on something else than what 
they have practiced. If they are allowed to practice in the same way as 
they are tested, the students remember the tasks and can utilize similar 
strategies as in practice. The students must of course also be aware of, 
and accept, that during the practice you do not solve all tasks correctly 
without help. Formulas and algorithms are important tools in mathema-
tics but are not primarily constructed to provide understanding (Brous-
seau, 1997). It is therefore of importance that the teacher’s help does not 
include presenting a complete solution strategy, since that would increase 
the risk for students to utilize the strategy without reflection. 
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