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Finnish students’ flexibility and its 
relation to speed and accuracy in 

equation solving

peter hästö and riikka palkki

A total of 266 Finnish students participated in a flexible equation solving test. By flexi-
bility we understand the knowledge of multiple strategies and ability to choose the 
most mathematically appropriate strategy for a given task. Here we focus on the first 
aspect, namely knowledge of appropriate alternative, so-called innovative strategies. 
The test measured students’ capacity and inclination for producing innovative strate-
gies. We consider the relationship between these measures and students’ speed and 
accuracy in solving equations. We find that students with high capacity for innova-
tion have high speed and accuracy. On the other hand, some low capacity students 
had high speed or accuracy whereas others had low. Inclination for innovation is not 
related to speed or accuracy. 

Mathematical tasks can often be solved in multiple ways. Skilled problem 
solvers know multiple strategies and can use them effectively in various 
situations. It has been shown that comparing multiple strategies is a  
powerful tool to improve students’ learning of mathematics (see Star et 
al., 2015, for a review). However, many students believe that mathemati-
cal tasks can be solved in only one correct way which has been shown in 
advance by the teacher (Schoenfeld, 1992).

Linear equation solving is an area where every task can be solved by a 
single procedure, known as the standard strategy (cf. table 2). Neverthe-
less, equations are a challenge for students and errors persist when solving 
equations (Booth, Barbieri, Eyer & Paré-Blagoev, 2014). In the Finnish 
education system, algebra is seen as an area where the focus should be on 
learning rules for manipulating algebraic expressions and equations, i.e. 
procedural knowledge (Attorps, 2006; Hihnala, 2005; see also Andrews, 
2013, on more recent conceptual emphasis). 

Peter Hästö, University of Turku and University of Oulu 
Riikka Palkki, University of Oulu
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Star (2005) criticized the view that procedural and conceptual know-
ledge correspond to superficial and deep understanding, respectively; he 
posited that flexibility is a form of deep procedural knowledge. In the 
field of learning arithmetic, the term ”adaptive expertise” has been used 
to describe the same phenomenon (e.g. McMullen et al., 2017; Torbeyns, 
Verschaffel & Ghesquière, 2006; Verschaffel, Greer & De Corte, 2007). 
Flexibility is a step from mechanical use of fixed rules towards more 
reflective modes of working and requires both conceptual and procedural 
knowledge (Schneider, Rittle-Johnson & Star, 2011). 

While flexibility is explicitly emphasized in many curriculum docu-
ments (e.g. NCTM, 2000), the Finnish national standards refer only to 
related concepts such as creativity and allowing each student to develop 
their own strategies (Opetushallitus, 2014). In our work with dozens of 
Finnish teachers, we have found that there are mixed feelings about the 
importance of flexibility in school mathematics. Similarly, Buchbinder, 
Chazan and Fleming (2015) found that US teachers’ emphasis on the 
standard strategy in equation solving effectively hinders them from using 
multiple solutions to develop flexibility. On the other hand, Finnish 
mathematics teachers saw many positive aspects in using comparison of 
multiple solutions in learning mathematics (Palkki, 2018).

Obtaining a correct answer quickly is often seen by students as the 
paramount indicator of mathematical proficiency; mathematics educa-
tion researchers, on the other hand, emphasize conceptual understand-
ing, problem-solving skills and adaptive expertise (Hatano, 2003; Schoen-
feld, 1992; Törner, 1998). Furthermore, many students think committing 
errors is catastrophic whereas educators see great value also in mistakes 
(Streuer & Dresel, 2015). Thus, students may see mathematics as a ”time 
contest”. In elementary grades, Lemaire and Siegler (1995) found in that 
improved adaptivity was one source of increased speed and accuracy in 
multiplication tasks. On the other hand, Verschaffel, Greer and De Corte 
(2007) reviewed multiple studies to conclude that most children lack the 
disposition to use adaptive mental arithmetic when a well-learned stan-
dard strategy worked, even on tasks like 4002–3998 where they would 
provide great benefit. 

It seems that less attention has been paid to the relationship between 
flexibility and speed and accuracy in middle- and high-school mathema-
tics. In this article we compare such students’ performance on measures 
of speed and accuracy (highly valued by students) with their flexibility 
(highly valued by mathematics educators). We next describe these terms 
more precisely and state our research hypotheses. 

The strategy of an equation-solving task is the chain of deductions 
(intermediate steps) required to reach the answer. The strategy will be 
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deduced from the solution given by the student to the task as described 
in the next section. 1 We call the ability to correctly carry out a strategy’s 
individual steps accuracy whereas speed refers to the number of tasks 
solved in a given timespan. Flexibility (more precisely strategic flexibi-
lity) is related to choosing the strategy which determines what individual 
steps are needed. A flexible problem solver knows different approaches 
and is able to choose the most mathematically appropriate one (Rittle-
Johnson & Star, 2007; Star & Rittle-Johnson, 2008). In this article, we 
focus on the first aspect of flexibility, namely knowledge of appropriate  
alternative. In the test used in this study, from Xu et al. (2017), the effi-
cient approach was always a so-called innovative strategy (cf. table 2), 
hence we use the term innovative in what follows. In our test, partici-
pants could use an innovative strategy either spontaneously or as a result 
of being prompted for multiple solutions. We took an innovative strategy 
produced in either case as evidence of capacity (for innovation). By incli-
nation (towards innovation), on the other hand, we mean a predilection 
for spontaneous innovative strategy. For the operationalization of these 
concepts, see the section Variables below. 

Many students may neither have been provided with the opportunity 
to learn flexibility in equation solving nor see the value in it. On the other 
hand, students who are quick and accurate may create such opportunities 
for themselves by solving given tasks in non-standard or multiple ways. 
Of course, quick and accurate students may also not do so. Hence, we 
expect both capacity and inclination to be related to speed and accuracy. 
To be more specific, our hypotheses are that 

1	 higher capacity for innovation is related to higher speed and higher 
accuracy, and

2	 higher inclination toward innovation is related to higher speed and 
higher accuracy.

There is also a connection in the opposite direction: flexibility enables 
solving tasks quickly and correctly (Heinze, Star & Verschaffel, 2009; 
Lemaire & Siegler, 1995). We will consider this in the discussion.

Method

Context
Finnish children start school at age 7 and attend compulsory school 
until grade 9 with a single compulsory mathematics curriculum for 
everyone. Linear algebraic equations appear in 7th or 8th grade in full  
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generality. High school (grades 10–12) is not compulsory and about half 
of the age group attends. Most of the remaining students attend voca-
tional school. In high school students choose between two tracks in 
mathematics: advanced and basic. 

In TIMSS, algebra was a weakness for Finnish students (Kupari, 
Vettenranta & Nissinen, 2012). In contrast, they have fared well in the 
PISA test, which involves, among others, the ability to apply simple  
equations in context (Kupari et al., 2013).

Participants
We collected data on the ability to produce standard and innovative 
strategies in linear equation solving with the Tri-phase flexibility assess-
ment test (cf. Procedure below) and a convenience sample. The partici-
pating schools were diverse in size and geographic location (both rural 
and urban). 

A total of 266 students participated in the study. The data consist of 
93 tests from 8th graders and 164 tests from 11th graders of which 103 
studied advanced mathematics and 61 studied basic mathematics. Also 
included were 9 students in technical vocational school.

Of the 8th grade students, 75 had studied to some extent with mate-
rial geared toward conceptual understanding of equation solving and  
flexibility produced by our research group for another project.

Procedure
Students completed a 12-equation test, the Tri-phase flexibility assess-
ment, during a regular 45-minute class. The equations used in our study 
are shown in table 1. In the first phase of the test (15 min), students were 
asked to produce one solution to each of the 12 equations. In the second 
phase (20 min), students were asked to produce as many solutions as 
possible for the same 12 equations. In the third phase (5 min), students 
were asked to choose ”the best” solution for each of the tasks. The test 
was devised by Xu et al. (2017), who established its psychometric reliabi-
lity and validity. It has also been used by Liu et al. (2018) to study media-
ting effects of beliefs on the relation between potential and practical 
flexibility; by Joglar Prieto, Abánades Astudillo and Star (2018) to study  
flexibility in the Spanish school system; and by Hästö, Palkki, Tuomela 
and Star (2019) to examine the relationship between flexibility and 
matriculation examination results. 

Every linear equation in one variable can be solved with the standard 
strategy. It consists of the steps distribute-parentheses; combine-like-terms; 
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move x-terms to the left and non-x-terms to the right; divide-by-coefficient. It 
is commonly taught in Finnish schools. The equations in the test can be 
solved by the standard strategy, but each task also allowed for an ”inno-
vative” strategy. As an example, the standard and innovative strategies 
of the fourth equation are shown in table 2. The innovative strategy for 
each of the 12 equations is given by Xu et al. (2017) and is part of the  
Tri-phase flexibility assessment’s scoring manual.

Coding
The solutions were coded following the scheme of Xu et al. (2017). Each 
solution was coded for correctness and strategy. A solution was marked as 
correct if all steps and the answer were correct. Three types of strategies 
were distinguished in the coding: standard, innovative, and other. Stra-
tegy was assessed independent of correctness. Standard strategy means 
following the general procedure detailed above, whereas innovative  

Standard strategy Innovative strategy

4(x + 6) + 3(x + 6) = 21 4(x + 6) + 3(x + 6) = 21

4x + 24 + 3x + 18 = 21 7(x + 6) = 21

7x + 42 = 21 x + 6 = 3

7x = -21 x =-3

x = -3

Table 2. Standard and innovative strategies

1)  4(x� 2) = 24 7)  8(x� 5) = 3(x� 5) + 20

2)  3(x+ 0, 69) = 15 8)  8(x� 2
5 )� 11 = 6(x� 2

5 )

3)  4(x+ 3
5 ) = 12 9)  5(x+ 0, 6) + 3x = 5(x+ 0, 6) + 7

4)  4(x+ 6) + 3(x+ 6) = 21 10)  2x�6
2 + 6x�18

3 = 5

5)  5(x+ 3
7 ) + 3(x+ 3

7 ) = 16 11)  x+3
3 + 3x�9

9 = 1

6)  2(x� 0, 31) + 3(x� 0, 31) = 15 12)  5x+5
5 + 6x+6

6 = 6

Table 1. The equations in the test
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strategies were specified in advance for each task (see Xu et al., 2017). 
Only the first step (i.e. 7(x + 6) = 21 in the example above) was required 
for a solution to be coded as innovative. All other strategies were in the 
category ”other”. 

Writing from which the intended strategy could not be discerned (e.g. 
only an answer is given, or some gibberish is written) were not registered, 
i.e. they do not count as a solution or an attempt. 

Coding was done by a research assistant. Twelve students’ tasks were 
independently recoded by two other members of our research group. The 
inter-rater reliability was 98 %, which is considered very high. 

Variables
As a measure of student speed, we used the number of tasks with a  
solution in the first phase of the test, regardless of correctness. 

It was challenging to disentangle accuracy from speed, since the 
former must somehow also rely on tasks solved correctly, and you cannot 
solve a task correctly if you have not solved it at all. For this reason, we 
used only equations 1–9 to determine accuracy, since equations 10–12 
were solved only by few students and using them would lead to a strong  
connection with speed. 

Accuracy means the number of tasks solved correctly divided by 
sum of the number of tasks solved correctly and the number of tasks 
solved incorrectly. Note that a task may contain both a correct and an  
incorrect solution.

A student’s capacity was defined as the number of tasks to which the 
student produced an innovative strategy in either the first or the second 
phase. A student’s inclination was the number of tasks to which the 
student produced an innovative strategy in the first phase (i.e. without 
extra prompting) less the number of tasks to which the student produced 
in innovative strategy in the second phase. Thus, positive inclination 
means a tendency to offer the innovative strategy unprompted, negative 
inclination a tendency to use other strategies (usually the standard one) 
in the first phase while zero inclination means a no preference between 
these two. The variables used in this study are summarized in table 3. 

Let us digress to discuss the measures of flexibility used in this study 
and earlier studies based on the Tri-phase flexibility assessment. Xu et 
al. (2017) as well as Liu et al. (2018) coded solutions for correctness and  
strategy as described above. However, instead of capacity and inclina-
tion, they used the variables practical flexibility and potential flexibility. 
A task is scored for practical flexibility if the strategy in the first phase 
is innovative. A task is scored for potential flexibility if it has a standard 
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strategy and an innovative strategy and the innovative strategy is marked 
as best. The Tri-phase flexibility assessment has also been used with dif-
ferent flexibility variables by Joglar Prieto, Abánades Astudillo and Star 
(2018) and Hästö, Palkki, Tuomela and Star (2019).

Note that the practical flexibility and potential flexibility variables are 
partially based on the same criterion, namely the presence of an innova-
tive strategy. In the Chinese sample of Liu et al. (2018) the correlation 
between the variables was 0.30. However, a preliminary investigation 
of the Finnish data revealed a higher correlation; this is because almost 
all Finnish students chose the innovative strategy as best, so that the 
relation ”practical flexibility ≤ potential flexibility” holds in the Finnish 
data, which forces a strong correlation. Note that capacity measures the 
main criterion of potential flexibility (presence of an innovative stra-
tegies) whereas (capacity + inclination)/2 gives the number of innova-
tive strategies in the first phase of the test, i.e. it equals the practical  
flexibility variable.

Analysis and results
For a general picture of the test results, we start with some descriptive 
statistics. First, we summarize the number of students and groups in 
this study.

The number of tasks with an innovative strategy ranged from 0 to 
12, i.e. the whole range of possible values. Students produced at least 
one solution to a total of 2427 tasks, an average of 9.12 solved tasks per 
student (out of 12). The total number of tasks with at least one innova-
tive strategy was 853, an average of 3.2 tasks per student (out of 12). Of 
these innovative strategies, 734 were marked as the best strategy in the 
third phase, whereas in the remaining 119 tasks some other strategy (or 
none) was marked as best. Table 5 shows the distribution of innovative 

Variable (abbreviation) Definition

capacity (cap) The number of tasks with an innovative strategy 

inclination (incl) The number of tasks in first phase with an innova-
tive strategy less the number of tasks in later phase 
with an innovative strategy

speed (speed) The number of tasks attempted in the first phase of 
the test, regardless of correctness

accuracy (acc) The number of tasks solved correctly divided by sum 
of the numbers of tasks solved correctly and tasks 
solved incorrectly

Table 3. Variables
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strategies based on the phase of the rest in which they were produced 
and whether they were marked as best or not.

Figure 1 shows the number of correct (lower part) and incorrect (upper 
part) tasks. Tasks are divided into four groups of three tasks based on 
their structure (cf. table 1) and the colors correspond to the three groups 
of students (table 4). For instance, from the first dark grey bar we see 
that students in advanced mathematics provided an average of about 
1.75 correct solutions per task for each of tasks 1–3 and an additional 0.25 
incorrect solutions per task for the same tasks. When grey (basic mathe-
matics) and dark grey (advanced mathematics) charts are compared, it 

Innovative strategies in the… Marked as best Not marked as best Total

… first phase 339 21 360

… later phases 395 98 493

Total 734 119 853

Table 5. The number of tasks with innovative strategies

Tasks 1–3 Tasks 4–6 Tasks 7–9 Tasks 10–12

0.5

1.5

2.5

1

2

Figure 1. Students’ average number of correct (lower part) and incorrect (upper 
part) solutions per task in different task groups

Group Diagram color # of classes # of students

8th grade white 6 93

basic math, 11th grade grey 4 61

advanced math, 11th grade dark grey 5 103

Table 4. Number of students and groups
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is seen that students in advanced mathematics have many more correct 
solutions than students in basic mathematics. Furthermore, students in 
general did fewer tasks toward the end of the test.

The task groups and colors in figure 2 are the same as in figure 1, but 
this time we compare the average amount of innovative and standard 
strategies per task. We see that students in basic mathematics had very 
few innovative strategies, even fewer than students in 8th grade even 
though they had many more solutions in total. 

Let us move on to the statistical tests. We analyzed the bivariate Pearson 
correlations between the speed and accuracy variables to determine to 
what extent they are independent and tested whether their correlations 
differ statistically significantly from zero. The correlation between 
speed and accuracy was 0.48 (p < 0.001). Accuracy was quite highly cor-
related with speed, and therefore not optimally suited to measure skill  
independent of speed. 

The same correlation analysis was performed also for capacity and 
inclination. The correlation between them was -0.06 (p > 0.1). Capacity 
and inclination were essentially uncorrelated, which indicates that they 
may capture different aspects of students’ mathematical behavior, and 
that these measures form a reasonable basis for regression analysis. 

Next, we used linear regression analyses (Freund, Wilson & Sa, 2006) 
with capacity and inclination as independent variables and speed and 
accuracy as dependent variables. This choice of which variable set to 

Figure 2. Students’ average number of innovative (lower part) and standard 
(upper part) strategies per task in different task groups

Tasks 1–3 Tasks 4–6 Tasks 7–9 Tasks 10–12

0.8

1.4

1.8

1

2

1.6

1.2

0.6

0.4

0.2
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use as independent variables is based on the fact that speed and accu-
racy were linearly dependent and would thus not be reliable independent  
variables in a regression analysis due to multicollinearity. The analyses 
were carried out with SPSS version 22, correlation was measured as biva-
riate and linear regression was performed with the ”enter” method and 
both independent variables in the same block. 

The results of the linear regressions are shown in table 6. Capacity is a 
statistically highly significant predictor for each dependent variable with 
p < 0.0005. As can be seen from the high p-values, inclination was not a 
statistically significant predictor of speed or accuracy.

Recall that the square of the standardized beta coefficient indicates 
what extent of the variance of the dependent variable is explained by 
the corresponding independent variable in this data. Regression analyses 
showed that capacity has quite a strong relationship to speed and accu-
racy, explaining 29 % and 45 % of the variation, respectively. Whether 
a student is inclined to use innovative strategies or not did not have a  
statistically significant co-variation with speed or accuracy.

To obtain additional insight into the relationship between the  
variables, we performed cross-tabulations between capacity and speed 
and accuracy, i.e. the pairs which showed statistically significant relation-
ships in the regression analyses. For speed, the complete cross-tabulation 
is shown in table 7a. Recall that the table means, e.g., that there were 13 
students with value 5 for speed and 0 for capacity, etc. Empty cells mean 
that there are no such students. 

In tables 7b and 8 we present summary tables of the cross-tabula-
tions between capacity and speed and accuracy. In all summary tables 
the ranges have been split at the middle into just two categories, which 
are labeled ”high” and ”low”.

From table 7a we see that the relationship ”speed ≥ capacity” holds for 
261 of the 266 students. In tables 7a, 8 and 9 we note that there is in each 
case one cell with only a single student, who has high capacity and low 
speed or low accuracy. 

Dependent variable Independent 
variable

Standar-
dized β

t p

Speed capacity .535 10.280 .000

R2 = .29, F = 53.4, p < 0.001 inclination -.024 -.454 .650

Accuracy capacity .671 14.650 .000

R2 = .45, F = 107.7, p < 0.001 inclination -.003 -0.073 .942

Table 6. The results of the linear regression analyses (n = 266)
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Therefore, we see that in this sample, high capacity is related to high 
speed. Equivalently low speed is related to low capacity, but not the other 
way around, i.e. there are plenty of students with high speed and low 
capacity. Similarly, high capacity is related to high accuracy, but not the 
other way around (table 8).

Capacity Speed Total
1 2 3 4 5 6 7 8 9 10 11 12

0 4 6 6 9 13 11 11 17 5 11 7 4 104

1 1 2 3 3 4 3 3 1 4 24

2 1 3 4 1 3 3 3 1 1 20

3 1 1 2 1 3 1 2 6 3 6 26

4 1 1 1 4 7

5 1 1 2 1 2 1 4 12

6 1 1 2 1 1 1 4 11

7 2 1 1 1 3 8

8 1 2 4 3 2 5 17

9 1 2 4 1 9 17

10 2 2 7 11

11 1 5 6

12 3 3

Total 4 6 9 12 18 22 22 38 19 36 21 59 266

Table 7a. Cross-tabulation of speed and capacity

low speed (1–6) high speed (7–12) Total

low cap (0–6) 70 134 204

high cap (7–12) 1 61 62

Total 71 195 266

Table 7b. Cross-tabulation of speed and capacity

low acc (0–0.5) high acc (0.5–1.0) Total

low cap (0–6) 112 92 204

high cap (7–12) 1 61 62

Total 113 153 266

Table 8. Summary of cross-tabulation of accuracy and capacity
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The research hypothesis 1 was thus borne out by the data, whereas 
hypothesis 2 was mostly not confirmed: inclination played almost no 
role in determining speed and accuracy.

Discussion
As expected, high capacity was related to high accuracy and high speed. 
On the other hand, students’ inclination was not related to accuracy 
and speed, contrary to our expectation. This casts some doubts on the 
hypothesis that student predilection for innovative strategies is a vehicle 
for development of flexibility in a skills-oriented classroom.

However, it is worth noting that our measure of inclination mea-
sures what kind of strategies students present in a test-taking situation. 
It is conceivable that many students believe that the standard strategy is 
what is expected of them and thus offered it first (cf. the dispositional  
obstacles to flexibility discussed by Verschaffel, Greer and De Corte, 
2007). Also, it is known that students do not necessary use more effective 
strategies even when they know them (e.g. Torbeyns et al., 2006). After it 
became clear in the second phase that the test was about more than the 
standard strategy, 86 % (table 5) marked the innovative strategy is best, 
even when it was not the first strategy they presented. This supports the  
hypothesis that students might employ the innovative strategies more in 
a non-test-taking situation. 

We also found that high speed and accuracy is not related to high 
levels of capacity. This is consistent with reform-oriented approaches 
which stress that learning basic competences does not lead to higher 
level proficiency (NCTM, 2000). It also fits with the finding by Torbeyns 
et al. (2006) that both below average and above average students dis-
played limited flexibility, whereas top-students are more (spontaneously)  
flexible: we expect both above average and top students to be able to com-
plete these equations with accuracy and speed, at least in high school, but 
only the latter are flexible according. 

Some caveats should be pointed out concerning the limitations of 
this study. First, students answered only one test, and we extracted all 
our measures from the data set. Therefore, the same piece of data may 
be counted in different variables, thus potentially introducing artificial 
correlation. As explained above, we tried to limit adverse effects by mea-
suring accuracy only with solutions from tasks 1–9 rather than all tasks. 
In addition, as pointed out by Lemaire and Siegler (1995), both adap-
tive strategy choice and efficient strategy execution lead to increased 
accuracy and speed; in particular, as can be seen in table 2, the inno-
vative strategies in this study consist of fewer steps, each of which are  
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technically less demanding. Therefore, our variables for accuracy and 
speed are influenced not only by efficient implementation of the strategy, 
but also by strategy choice. The effect of this is limited, but not elimi-
nated, by the fact that most innovative strategies were produced in the 
second phase of the test. Furthermore, a relative measure of accuracy 
was used to limit the correlation with speed. However, these efforts were 
only partially successful. A more accurate picture could be obtained by  
evaluating student speed and accuracy in a separate test where clever 
strategic choices are not available. 

Our study was cross-sectional, so it is not possible to determine 
whether flexibility allowed students to develop greater speed and accu-
racy, or the other way around, or whether both are caused by some addi-
tional factor not considered in this study. However, the 8th grade stu-
dents showed a range of different speeds and accuracy but very few used  
innovative strategies, which suggests that flexibility comes after accu-
racy. Unfortunately, we are no closer to answer perhaps the most inte-
resting question in this area: what causes some quick and accurate skilled 
students to become flexible equation solvers whereas others show no hint 
of flexibility; this remains an issue for future research. 

To summarize, we found that high capacity for innovation was related 
to high accuracy and speed, whereas students with low capacity innova-
tion could have either high and low accuracy and speed. Our most sig-
nificant finding is that students’ inclination had no relation with their 
accuracy and speed. 
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Notes

1	 Note that by ”solution” we always refer to the writing produced by the 
student on the test-sheet. In the context of equations, ”solution” may refer 
to the values of the variable which makes the equation true. In this article, 
this sense of the word ”solution” is never used. 
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