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and how do teachers initiate and 
respond to them?
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This article presents different types of student explanations that can were observed, 
and how these were initiated and responded to. The research is based on the prac-
tice of five teachers, with all interactions having been analysed and categorized to 
develop the concepts. First, three distinct types of student explanation were found: 
explaining actions, explaining reasons, and explaining concepts. Secondly, the teach-
ers’ initiations were inspected, by studying the turn before each student explanation. 
Strong connections were found between the initiation and each type of student expla-
nation. Thirdly, teachers’ responses to the students’ explanations were inspected, 
with three main types of response being found to all three types of student expla-
nation: pointing out what to notice, requesting further detail, and confirming and 
moving on. The main contribution of this article is the conceptualization of students’  
explanations and the explanation of how these are initiated and responded to.

During classroom conversation, students contribute with different types 
of interaction. Drageset (2014) suggests that these interactions can be 
separated into five types: explanations, initiatives, teacher-led responses, 
unexplained answers, and partial answers. Of these, students’ explana-
tions might be of the greatest interest for further exploration. It is, of 
course, possible to focus on who explains and how frequently they do so, 
but instead, this article presents the development of concepts describing 
student explanations, as part of the classroom conversation, related to the 
following research question: What types of student explanation can be 
observed, and how are these initiated and responded to? 

The types of student explanation have been reported in shorter ver-
sions of this paper, as part of an article about student interactions in 
general and as a conference paper (see Drageset, 2014, 2015). This paper 
gives a more in-depth and detailed presentation about these types of 
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student explanation, and new knowledge about how teachers initiate 
and respond to them.

Explanations in general
According to Dreyfus (1999), mathematics teaching at all levels ”include[s] 
attempts to make learning more cooperative, more conceptual and more 
connected” (p. 85); a consequence of this is that students are more fre-
quently asked to explain their reasoning. In summing up several correla-
tional studies, Fuchs et al. (1996) state that just giving answers is not asso-
ciated with learning for the provider or the recipient, while constructing 
explanations that clarify processes to help classmates arrive at their own 
solutions results in greater achievements for the provider. This indicates 
that providing explanations results in more learning than receiving 
explanations. However, explanations are not only a tool for learning. 
Reinholz (2016) argues that explanations should be an outcome of inte- 
rest in their own right, as explanations of different types are fundamental 
to mathematics. This is evident in different standards and competency 
models. Niss and Højgaard Jensen (2002) suggest a model in which com-
munication is one of eight competencies. The communication compe-
tency is about formulating one’s own mathematical thoughts in different 
ways, and being able to understand and interpret others’ mathematical 
utterances. Communication is also one of the five mathematical process 
standards of the Principles and standards for school mathematics (NCTM, 
2000), which states that students should share ideas, clarify their under-
standing, and give explanations to each other. It is also emphasized that 
explanations should not only describe procedures but should include 
mathematical arguments and rationales.

However, what separates explanations from other utterances, and 
what types have been suggested in mathematics? According to Yackel 
(2001), explanations are communications made by students ”in order to 
clarify aspects of their mathematical thinking that they think might not 
be readily apparent to others” (p. 5). Similarly, Balacheff (1988) argues 
that an explanation is ”the discourse of an individual intending to estab-
lish for somebody else the validity of a statement” (p. 217). Levenson 
(2013) also sees explanations as communications that answer a question 
given explicitly or implicitly, and both Levenson (2013) and Johansson et 
al. (2014) suggest that explanations can be given to oneself.

Explanations of reasoning and explanations of process
Perry (2000) examined classrooms in the USA, China and Japan, and 
found differences in both the frequency and the type of mathematical 
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explanation. One main difference was that the explanations in the Asian 
classrooms involved more complex topics than those in the USA. Also, 
the explanations in the Asian classrooms were more generalizable across 
problems, while the explanations given in the American classrooms were 
more often related to individual problems. Perry (2000) found that all 
students heard explanations of how to solve individual problems, but 
not all heard the more generalizable explanations of mathematical prin-
ciples and functions (like how a procedure works and what a concept 
means). According to Perry (2000), ”if a student can know why a pro-
cedure works and when to use it, that student will be better equipped 
to handle novel problems […] than a student who does not know these 
things” (p. 204). With this, Perry (2000) points out that there are two 
types of explanation, one focused on how a problem is solved and the 
other on why methods work and when to use them. This distinction is 
similar to the difference between calculational and conceptual expla-
nations, where calculational explanations describe a procedure to solve 
a problem while conceptual explanations describe the reasons for the 
steps (Fuchs et al., 1997). Dreyfus (1999) mentions the related diffe- 
rence between providing chronological accounts of actions carried out 
and pointing out connections and implications. Cobb et al. (2003) and 
Bowers and Doerr (2001) also make a similar distinction between an 
explanation of a process without reason and an explanation of the reasons 
related to a concept. This also relates to the work of Popper (1934/2002), 
who argues for a sharp distinction between the context of discovery (how 
did you find this out?) and the context of justification (how can we decide 
if this is true?).

The above concepts are summed up in table 1, which illustrates the dis-
tinction between the two types of explanation. In the right hand column, 

Explaining reasons and concepts Explaining processes

General across problems Specific to a problem

Generalizable explanations Individual problems

Why methods work and when to use 
them

How a problem is solved

Conceptual explanations Calculational explanations

Pointing out connections and  
implications

Chronological accounts of actions 
carried out

Explanations of reasons related to 
the concept

Explanations of process without 
reasons

Context of justification  
(how can we decide if this is true?)

Context of discovery  
(how did you find this out?)

Table 1. Two types of explanation
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there are keywords such as specific, individual, how, calculation, chro-
nological, and process. Together, these concepts describe chronological 
explanations about how to solve specific problems. These are typically 
explanations of the steps taken in the actual process, from task to answer, 
and nothing else.

In the left hand column there are keywords such as general, why, when, 
concepts, connections, reasons, and justification. Together, these con-
cepts describe explanations that are general and focused on reason, jus-
tification, concept, and connections. These are typically explanations of 
reasons beyond specific examples.

It is easy to think that explaining reasons is superior to explaining 
processes. Moreover, it is possible to argue that explaining reasons is 
more complicated than explaining processes. However, what would a 
lesson look like if no process was explained? Instead, one should look at 
these as two general types of explanation that serve different purposes. 

Concepts such as arguments, justifications, and proofs are also closely 
related to explanations. Scholars use these concepts differently, and 
Dreyfus (1999) sums this up by saying that ”for mathematics educators 
there appears to be a continuum reaching from explanation via argument 
and justification to proof, and the distinctions between the categories are 
not sharp” (p. 102). It is clear that most authors treat arguments, justifica-
tions, and proofs as being related to explanations of reasons and concepts, 
while process explanations typically lack these. Figure 1 is a recap and 
comparison of the different types of explanation described in the litera-
ture. On the one hand, explaining processes is related to chronological 
explanations. On the other hand, explaining reasons and concepts seems 
to be related to arguments, justifications, or proofs. This does not mean 
that the similarity goes both ways, as some proofs are not explanatory 
(Stylianides et al., 2016).

These two types of explanation (process vs reason and concept) should 
not be seen as fundamentally different, but instead as belonging to each 
other in a dialectical relationship. This is illustrated in table 1. The rela-
tionship between the specific and the general relates to generalization 

Figure 1. Types of explanation

Types of explanation

Explain reason and concept Explain process

Argue Justify Proof Chronological
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from one or a few to all, and the discovery of a solution relates to the jus-
tification of the same. It is possible to work on one type of explanation at 
a time, but they might sometimes be looked upon as two sides of a coin.

Methodology

Identifying and initiating explanations 
According to Sacks et al. (1974), turns are the most fundamental feature 
of conversation. People take turns talking, sequentially and one at a time. 
The different types of student explanation presented above typically 
come as a result of a question in the turn immediately before. Accord-
ing to Ingram et al. (2016), explanations that describe procedures gene-
rally follow from ”how” questions, while responses to ”why” questions 
include explanations of both procedures and reasons. This might lead to 
the idea that one can identify explanations by looking at the linguistic 
features in the turn just before, in the same way as Bailey et al. (2015) 
define explanations as turns given in response to questions that include 
the words ”how” or ”why”, or as turns that include these responses as part 
of the explanation (such as turns that include ”because” and ”therefore”). 
However, Pimm (2014) questions whether linguistic features are neces-
sary or sufficient for a turn to be identified as an explanation, and Lein-
hardt (2001) claims that explanations often do not have such linguistic 
markers. Of course, identifying explanations depends on their definition, 
and by defining explanations as turns including certain words (such as 
”because” and ”therefore”) following turns that also include certain words 
(such as ”how” and ”why”), one makes identification both precise and easy. 
However, this would not be meaningful if the consequence was that one 
overlooked other turns that have a similar function in the discourse. For 
example, Ingram et al. (2019) illustrate how a teacher can generate the 
need for student explanations without explicitly asking for them.

Conversation analysis
However, looking at single interactions, or turns, has a very limited scope. 
Even though people take turns in speaking, sequentially and one at a 
time, it is not possible to characterize a conversation as a series of indi-
vidual actions. Instead, conversations are social practices in which each 
turn is thoroughly dependent on previous turns, and individual turns 
cannot be understood in isolation from each other (Linell, 1998). This 
means that categories describing different types of single turn are insuffi-
cient if one wants to study the discourse. Instead, one needs to study how 
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different types of turn affect one another. Also, when responding, one 
or more responses are usually preferred to others. Sidnell (2010) exemp-
lifies this by saying that the preferred response to a dinner invitation is 
to accept. If the invitation is accepted, there is no need for an explana-
tion, but if it is rejected this then requires an accompanying explana-
tion. Linell (1998) explains a similar concept called relevance, stating 
that some responses are more relevant than others. This means that there 
might be more relevant responses to specific types of turn that do not 
require an explanation, while other responses do. The concept of appro-
priation (Newman, 1990) highlights the need to look at both sequences 
and single interventions. Appropriation describes the process of teachers’  
interactive support for students, where feedback given on students’ work 
helps students to learn the overall structure and purpose of the activi-
ties assigned to them. One effect of such appropriation might just be the 
development of relevant or preferred responses to certain types of turn 
(for example, to specific questions or answers). This means that there is 
a need to develop concepts that describe single interventions in order 
to study how they act together on a turn-by-turn basis. It might then 
become possible to obtain a better understanding of processes such as 
appropriation. 

Using concepts from different frameworks enables us to identify spe-
cific types of turn and see how they relate to one another during a dis-
course. This article presents different types of student explanation that 
were identified, and which types of turns promoted each type of expla-
nation and how teachers responded to them. In this way, short series of 
turns related to student explanations were investigated. By doing this, 
it was the ambition of this research to understand more of the work of 
teaching explanations.

Data collection and analysis
This article is based on a study of five teachers’ practices. For each teacher, 
all mathematics teaching during one week was videotaped from the 
start of the topic of fractions: this amounted to four or five lessons of 45 
minutes for each teacher. The camera followed the teacher, and a micro-
phone attached to the teacher managed to catch everything the teacher 
said and almost everything that was said to the teacher or the entire 
class. All teachers, students and parents were informed about the project, 
and according to ethical guidelines in Norway gave free and informed 
consent, save for a few students who did not consent and were given the 
same lessons without being filmed. The filming was done by the author, 
who was positioned in a corner at the back of the classrooms. To avoid 
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disturbing the students, the author did not move from the camera, and 
very rarely did any student turn around to look at the camera or try to 
make contact.

The five teachers were selected on the basis of a test and question-
naire, with the deliberate aim of selecting teachers with different levels 
of knowledge and different types of beliefs related to how students learn 
mathematics (mainly along an axis from emphasis on procedures to 
emphasis on concepts). At the same time, all five met the criterion that 
they were teaching students aged between 11 and 13. The teachers all 
had the typical Norwegian four-year generalist teacher education, which 
includes some education in mathematics, and they were all experienced, 
with between ten and thirty years of teaching practice each. Each class-
room consisted of approximately 20 students. Some of the teachers were 
only four months into their first year with the class, while others had 
been teaching the same class for two or three years. 

After the filming, the author transcribed all the videotapes. The ana-
lysis was a conversation analysis based on the transcriptions, in three 
phases. In the first phase, all student interactions were marked, and 
similar looking interactions were grouped together in a process with 
constant comparison and several cycles often described as a grounded 
approach, resulting in a gradual arrival of the five types of student inter-
action reported in Drageset (2014); Student explanations, Student ini-
tiatives, Partial answers, Teacher-led responses, Unexplained answers. 
Then, focusing on the student explanations, these were grouped into dif-
ferent types of explanation in a similar process. Quite soon, it emerged 
that certain keywords, such as ”why”, ”what”, ”how” and ”meaning”, could 
be used to group the explanations. However, other words or formulations 
could mean similar things, such as requests for reasons being grouped 
with questions asking why. Also, the keyword could sometimes be con-
fusing: for example, there is a difference between ”how do you know” and 
”how did you find out”, with the first set being grouped with ”why” and 
”reason” and the latter being more about procedures and being grouped 
with questions asking ”what” and ”how”. In this way, the groups were 
gradually developed into distinct categories, using constant comparison 
and regrouping. This also illustrates that the development of the cate-
gories was not limited to using linguistic markers but instead characte- 
rized each turn according to its function in the discourse. While the focus 
was on single turns, they were characterized based on their role in the  
dialogue and not as isolated turns. 

In the second phase, all teacher turns immediately before the student 
explanations were grouped and categorized in a similar process, and 
in the third phase, all responses to student explanations (the turns  
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immediately after each student explanation) were grouped and catego-
rized in the same way. As described above for the first phase, this was not 
a linear process, but instead used constant comparison and regrouping to 
develop each category further until all relevant data (all student expla-
nations, and all turns immediately before and after each) were coded. It 
is worth noting that almost all the turns immediately before and after 
student explanations were teacher turns, in a typical IRE (Initiation–
Response–Evaluation) pattern (Cazden, 1988; Mehan, 1979).

Findings

Three types of student explanation
The most frequent type of explanation found is illustrated in this excerpt 
(explaining an action).

Student: Then he gives one fourth of the remainder to his sister.
Teacher: Okay, what do you have to do now then?
Student: Then I have to take one fourth of one hundred which is twenty-five 

because twenty-five multiplied by four are … [impossible to hear]. And 
then … one hundred minus twenty-five, that is seventy-five. 

The teacher asks what the student needs to do to find the answer, and 
then the student tries to explain what needs to be done, step by step. 
The first step is to find one fourth, and then the student needs to deduct 
this from one hundred. Such explanations of action were found quite fre-
quently in all five classrooms. They are typically related to explaining 
how or what and to a standard method. Even though there is some varia-
tion between explaining standard methods and non-standard solutions, 
and some variation between explaining what has been done and what 
needs to be done, all these explanations naturally belong to the idea of 
explaining one’s actions. 

The following excerpt illustrates another type of explanation (explaining  
a reason).

Student: One sixth of eighteen equals three.
Teacher: Why?
Student: Because one … three times six are eighteen.

Here, the student tries to explain why he knows that one sixth of eigh-
teen equals three. Arguably, the explanation is incomplete, but it is also 
on the right track. Explaining a reason was common but not frequent, 
and the variations between the classrooms were noteworthy (see figure 
3 for details). Within the category of explaining reasons, there is also 
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variation, with more or less complete and more or less mathematically-
founded explanations; but, together, they are all about explaining why an 
answer or method is correct. The difference between explaining an action 
and explaining a reason is similar to the distinction that Perry (2000) 
draws between explanations of how problems are solved and explana-
tions of why methods work. Explaining a reason is similar to what Yackel 
(2001) calls justification and involves both arguments and justifications; 
Dreyfus (1999) ranks these higher than chronological explanations. A 
proof would be a formal mathematical way of explaining a reason. This 
means that while explaining a reason, students argue in order to justify, 
and might even give a proof. While Dreyfus (1999) differentiates between 
explaining (chronologically), arguing, justifying, and proving, he also 
talks of this as a continuum. In the data studied here, there is a clear dis-
tinction between explaining chronologically (explaining actions) on the 
one hand, and giving arguments and justifications (explaining reasons) 
on the other. 

Even though the distinction between explaining an action and explain-
ing a reason seems clear as presented above, there are, of course, borderline 
issues. For example, an explanation could include both an explanation of 
the steps to take and some general principles.

While the literature on explanations related to what is explained 
mainly finds only two distinct types – one being explaining a method or 
action, and one being explaining a reason – a third type emerges from 
these data. This is illustrated by an excerpt in which a student tries to 
explain what equivalent fractions means (explaining a concept).

Stud. A: It is fractions with the same value. 
Teacher: Fractions with the same value. 
Stud. B: If you have one half, that is a half, and then you have for example four 

eighths, and that is exactly the same only that the numerator is .... 
Teacher: Yes. That the whole is divided into more and smaller pieces than in 

the first one. Yes. 
Stud. C: Yes, that it is … it is … it is two different fractions that have the same 

value.

These three students all try to explain equivalent fractions, first with a 
statement that the fractions have the same value, then by an example, 
and then by saying precisely that it is two different fractions with the 
same value. All three students’ explanations are about explaining the 
concept of equivalent fractions. Such explanations of concept emerged 
as a distinct type of explanation, different from explanations of action 
and explanations of reason. As with explanations of reason, explanations 
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of concept often were incomplete and partial. Explaining a concept is itself 
distinct from explaining an action, as no action is explained, and from 
explaining a reason, as no solution or method is argued for.

Overall, in these five practices, one in eight student interactions was 
an explanation. More than half of those explanations were explaining an 
action (what and how), while explaining a reason (why) and explaining a 
concept (meaning) made up just over and under a quarter, respectively. Typi- 
cally, one would find linguistic markers (”how”, ”what”, ”why”, ”meaning” 
when requesting explanations, and ”because” during the explanations), 
but this was not always the case (as described in the methods section). 

As the literature review illustrates, scholars often define explanations 
using a dichotomy between two fundamentally different types of expla-
nation, or a dialectical relationship between the two. One of these types 
focuses on how to calculate, offering a chronological account of actions 
without reasons; the other focuses on the reasons why, on connections, 
justifications, proofs, arguments, implications, and concepts. The review 
also illustrates that this second type of explanation is more diverse than 
the first. This diversity is illustrated by the findings above, where the 
data suggest a division into three main types of explanation, where con-
cepts are separated from the second type. But would such a division be 
meaningful?

There are clear relationships between reasons (arguments, justifica-
tions, proofs) and concepts, and Fuchs et al. (1997) state that an explana-
tion is conceptual if it describes the reasons for the steps of a solution. 
Concepts such as a square are defined by specific characteristics. These 
characteristics are often concepts themselves. Arguably, concepts are the 
basis on which reasoning rests. In formal mathematical proofs, one starts 
with definitions of concepts and uses these as tools in the reasoning. 
Using their characteristics, one could argue that a rhombus is always a 
parallelogram while the reverse is not always true. In this way, concepts 
are explicitly related to the process of reasoning. Consequently, working 
with explanations and the understanding of concepts per se can be seen 
as foundational work for reasoning. Arguably, an essential part of this 
would be to connect the concepts, as reasoning often involves the use of 
several concepts. 

At the same time, one can explain a concept without reasoning – 
for example, by using a definition or illustration. It is also possible to 
explain the reason why half of 6/7 is 3/7 without applying the concept 
of fractions explicitly. One could explain that we have six pieces of a cake 
that was divided into seven equal pieces, and that sharing these pieces 
between two of us would give us three of the seven pieces each. It is clear 
that an understanding of the concept of fractions is the foundation of 
this solution, but it is not the concept that is explained.
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While there is a clear connection between reasons and concepts, there is 
also a principal difference that arises from these data. The act of explain-
ing a reason relates to a solution, a method or an action, while the act 
of explaining a concept does not. Instead, explaining concepts is about 
meanings, such as what ”equivalence” means and what ”denominator” 
means.

This means that separating explanations of concepts per se from 
explanations of reasons can give an insight into how classrooms work 
with the foundations needed for explaining reasons. As a result of this, 
a new figure is suggested in which explanations of concepts, reasons, 
and actions are related to the concepts from the literature review (figure 
2). No separation was found in these data between the three types of  
explanations of reasons: proving, justifying, and arguing. 

For illustration, the numbers of each type of student explanation in each 
classroom are included in figure 3 (as percentages of all student inter-
actions). This illustrates how the five classrooms varied in the number 
of student explanations in total, with classroom E having more than 
three times as many explanations as classroom A. It also illustrates the  
variation in the amount of each type of explanation. 

Figure 2. Types of student explanation, adjusted from figure 1 according to findings

Types of explanation

Explain reason and concept Action
(explain process)

Argue Justify Proof Chronologicalper se

Concept

Figure 3. The part of each type of student explanation in each classroom 
Note. The y-axis shows the percentage of all student interactions. The x-axis shows each 
classroom.
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What initiated these explanations?
Investigating the turns immediately before each type of explanation 
resulted in quite clear findings. Explaining an action typically came in 
response to a teacher asking the student to relate how a solution was 
found, what was done to find the solution, or what needed to be done. The 
linguistic markers of ”how” and ”what” were found in almost all turns 
immediately prior to explaining an action. This seemed to be used both 
as a control of students’ understanding and as a way to make the details 
explicit for others.

The initiation of explaining a reason had the most explicit linguis-
tic marker, as such explanations almost always came as a response to 
a teacher asking why, and only a few times in response to equivalent 
expressions (can you explain the reason, what is the reason).

Explaining a concept was typically also closely related to a linguistic 
marker, as these explanations typically came in response to a teacher 
asking what a specific concept (like ”denominator”, ”numerator”, or 
”equivalent fractions”) meant.

Even though these three categories were initiated in unusually dis-
tinct ways, there were some deviations. The most frequent of these was 
when the teacher asked why, or requested a reason in some other way, 
and instead got an explanation of the steps taken to arrive at the answer 
(explaining an action). As this was also sometimes accepted, it might 
indicate that this was part of the classroom’s socio-mathematical norms, 
or that these norms did not explicitly or always differentiate between 
explaining actions and explaining reasons.

These distinct differences in how the three types of explanation were 
initiated also illustrate how strongly a turn (explanation) is dependent 
on the previous turn (initiation). This confirms the fundamental idea 
stated by Linell (1998), that each turn is thoroughly dependent on pre-
vious turns, and that individual turns cannot be understood in isolation 
from one another. It also gives a strong illustration of what it looks like 
when some responses are more relevant than others (Linell, 1998) or are 
preferred to others (Sidnell, 2010). 

Teacher responses to student explanations
The teachers responded to the students’ explanations in many different 
ways, but only a few responses were frequent. There were no noteworthy 
differences between the responses to the different types of explanation. 
This is somewhat surprising, given the strong evidence of turns depend-
ing on the type of explanation (Linell, 1998; Sidnell, 2010). As a conse-
quence, this section will present the way in which the teachers responded 
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to explanations in general, not to the three types of student explanation 
(action, reason, concept). 

The most frequent type of response is illustrated by this excerpt from 
a discussion about fractions equal to one half. The teacher asks the stu-
dents to find the denominator when the numerator is 34, and the fraction 
has to be equal to one half (pointing out to notice).

Student: Sixty-eight.
Teacher: Bravo. Sixty-eight [writes the fraction on the blackboard]. Because … 

what was the reason for this?
Student: Because three plus three is six and four plus four is eight.
Teacher: Yes. Double. Yes. Double the denominator related to the numerator. 

The student explains the reason in a somewhat algorithmic way, in reality 
explaining the action of doubling. The teacher responds to this by point-
ing out and clarifying the general idea before the process continues with 
similar tasks, using the idea pointed out by the teacher. A similar response 
came in this excerpt (pointing out to notice).

Teacher: Three tenths and twenty-nine hundredths. Can you manage that one? 
Which one is the largest?

Stud. 1: Three tenths.
Teacher: You think that it is three tenths. How did you manage … It is entirely 

correct, but how did you think, then? How did you manage to solve 
it?

[Student 1 does not answer the question, so the irrelevant responses are omitted]
Stud. 2: Because twenty-nine hundredths become twenty-nine parts of a 

hundred, while thirty, no, three tenths becomes thirty hundredths.
Teacher: Precisely. Three tenths are the same as thirty hundredths, and that is 

larger than twenty-nine hundredths.

Here, the student explains the action needed to solve the task. In the last 
turn of the excerpt, the teacher repeats the student’s explanation but also 
changes it a little, to emphasize that three tenths are the same as thirty 
hundredths and that is the larger amount. 

The two excerpts above illustrate the response of pointing out what to 
notice: to tell the students what to notice, and sometimes reformulating 
the explanation to make it more general. Pointing out what to notice came 
in different forms, sometimes with only some words or parts of the expla-
nation being pointed out, and at other times with the explanation being 
adapted. Within this variation one can see that, in this type of response, 
the teacher builds on the explanation in order to help other students 
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understand or catch on to the idea. This variation also illustrates how 
the teacher establishes socio-mathematical norms, deliberately or not, 
by repeating acceptable explanations and adjusting explanations that 
are not complete, in an appropriation process. Such pointing out to notice 
was the dominant response to all three types of explanation in all five 
practices.

At other times, the teacher’s response to a student’s explanation looked 
like this (confirm and move on).

Student: One sixth of eighteen is three.
Teacher: Mmm [confirming]. What is three sixths of eighteen?
Student: Um … I don’t know.
Teacher: But if one sixth is three…
[Other students’ comments omitted]
Student: Nine.
Teacher: Yes, but why?
Student: Because it becomes more. Three, six, nine.
Teacher: Three, six, nine, yes. One sixth of thirty? 

Midway through this excerpt, the student arrives at the answer of nine. 
When the teacher asks why, the student responds by counting three steps 
of three (which is more of an explanation of an action). The teacher 
repeats the exact words of the student, accepts it and goes on. This illus-
trates the response of confirm and move on: that teachers sometimes just 
accept and confirm an explanation, with or without repeating it, and go 
on. 

The difference between point out to notice and confirm and move on is 
at the core of orchestrating – when to go into detail and when to move 
on. While pointing out, emphasizing, and clarification are significant 
teacher actions in order to help other students understand, it also seems 
evident that a teacher cannot go into detail about every explanation. 
Then there would be little progress. Also, some student explanations 
might be assessed as sufficient, and then the teacher probably sees no 
need for an intervention.

At other times, the teacher could reply like this (request for further 
detail).

Teacher: What does it mean to find equivalent fractions? Anyone that can say 
something about it? What do you do then?

Student: There are many different fractions that have different denominators, 
but … means the same anyway.

Teacher: Different denominators but means the same anyway. How would you 
clarify that?
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The student’s explanation of the concept of equivalent fractions is clearly 
insufficient, and the teacher responds by requesting further detail. This 
is also at the core of understanding fractions: how can they be equal and 
different at the same time? Such requests for further details were about 
addressing the critical details, potentially both to check the particular 
student’s understanding and to make the details accessible to other stu-
dents. These responses often asked for details about how the students 
arrived at an answer.

The dominant type of teacher response to student explanations was 
to point out what to notice. This could have at least two types of impact, 
one as part of the process of establishing socio-mathematical norms, and 
the other as part of helping both the actual student and the others to 
understand what is the most important thing to remember from this 
explanation. In order to point out what to notice, the teachers sometimes 
repeated students’ explanations accurately, but more often altered them 
to make their point clearer.

Two other types of response occurred regularly. One was to confirm 
and move on, the other to request further details. Requesting further details 
signals that it might be necessary for the teacher to gain insight into the 
student’s thinking and knowledge, and there is the potential to share 
details of the thinking that might help other students to understand.

Discussion
This article reports from at study aimed to explore students’ explanations 
in the classroom and the way in which teachers initiate and respond to 
them. The main contribution of the article is the conceptualization of 
student explanations and of how these were initiated and responded to. 
First, three types of student explanation were developed from the data; 
explaining an action, explaining a reason, and explaining a concept. The 
teachers’ initiation of, and responses to, each type of explanation were 
then inspected. 

The three distinct types of student explanation refer to different types 
of mathematical work. Explaining an action is about sharing the way a 
solution was found sequentially, and such explanations are essential in 
order to help teachers to assess, and fellow students to follow, the line 
of thought. Explaining an action might be quite procedural, using stand-
ard methods or rules and explaining each step in the particular case. 
Explaining a reason is distinctly different, as it goes into the reason why 
a rule or a method is a mathematically justified choice in this case, or 
why an answer is correct. Explaining a reason is a type of mathemati-
cal work that goes to the core of mathematical understanding. While 
explaining an action and explaining a reason are typically related to solving 
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tasks, explaining a concept is not. It is about explaining a concept per se. 
Explaining a reason is arguably closely related to conceptual understand-
ing, but it might still be beneficial to study explanations of reasons and 
explanations of concepts as separate types. Explaining a concept per se 
can be seen as establishing the foundation for explaining a reason, and  
consequently of value in itself. 

The study of how teachers initiated the three types of explanation 
gave rise to no surprises. Explaining an action came mainly in response 
to questions about how and what, explaining a reason was almost always 
in response to questions about why, and explaining a concept came as a 
response to a request to explain the meaning of a concept. This illustrates 
how strongly one turn affects the next turn, and is in line with estab-
lished knowledge in conversation analysis (Linell, 1998). It is therefore 
surprising that no such pattern was found in the teachers’ responses to 
the different types of explanation. Three main types of response were 
found, and these were the dominant teacher responses to all three types 
of student explanation. The most frequent type of response was to point 
out what to notice, and sometimes to reformulate the explanation to make 
it more general. A second regularly observed response was to request 
further details. By doing this, the teacher typically asked for an explana-
tion of how the student arrived at the given answer or suggestion, or of 
what was done. This is essentially the same as initiating an explanation 
of an action. A third regularly observed response was to confirm and move 
on. This illustrated that there is not always a need or wish to point out, 
emphasize, or further detail all student explanations. 

The connection to linguistic markers is also interesting. In these prac-
tices, it was almost always possible to identify initiations (requests) for 
student explanations by looking for linguistic markers (”what”, ”how”, 
”why”, ”meaning”). This means that the teachers asked direct questions, 
and did not generate the need for student explanations without questions 
in the way Ingram et al. (2019) describe as an alternative method. Also, 
each linguistic marker led to a particular type of explanation, with few 
exceptions. However, while the student explanations frequently included 
one linguistic marker (”because”), this occurrence was far from being as 
consistent as in the initiations. Looking at the turn immediately after 
a student explanation, no consistent linguistic markers were found. 
Further research is needed to understand how practices that create the 
need for students’ explanations are different from the practices of always 
asking explicitly, which is possibly related to how this affects student 
participation.

All three types of response can be seen as part of the teacher’s work 
of establishing socio-mathematical norms, consciously or not. By  
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pointing out particular explanations (or emphasizing or reformulating 
parts of them), by requesting clarification and further details, and by con-
firming and moving on, a teacher signals what is acceptable and what is 
not. Over time, and during an appropriation process, socio-mathematical 
norms might be formed. However, one would expect to find differences 
in how this works, possibly related to how consistent the teacher is, and 
this needs further research. 

Why are the students so clearly affected by the prior turn when giving 
explanations, while the teacher seems not to be affected when respond-
ing to these explanations? As always, there might be several reasons. 
Could it be that the types of response developed are general types, and 
that one needs to go deeper to observe the turn-by-turn dependency? 
Alternatively, might the teachers have agendas that affect their responses 
more deeply than the different types of student explanation? There is 
a need to study whether the turn-by-turn dependency observed in a 
general conversation is also valid for a conversation between a teacher 
and student, which might be seen as a conversation between an authority 
in the field and a less knowledgeable person, or an authority and a subor-
dinate. The authority might then not be as strongly affected by the pre-
vious turn as the subordinate. Alternatively, could it be a characteristic of 
teaching that the (teacher) agenda affects responses more strongly than 
the content (of the student turn)? These are questions that it would be 
interesting to study further. 

Conclusion
There are three main contributions from this study. The first contribu-
tion is the concepts developed to distinguish between the different types 
of student explanation. The findings from this article suggest that it is 
meaningful to divide student explanations into three types (concept, 
reason, action, see figure 2) instead of just two types (reason and concept 
as one, and action as the other, see figure 1). The second contribution is the 
different types of teacher initiation and response to the student explana-
tions. The explanations were typically initiated by asking what and how 
(actions), why (reason) and what something meant (concept), while the 
responses to the student explanations were mainly to point out to notice, 
confirm and move on, and request further detail. The third contribution is to 
note the way in which the teacher initiations followed easily observable 
linguistic markers, while the teacher responses did not. The lack of dif-
ference in teacher responses to different types of student explanation is a 
clear deviation from the rules of normal conversation, and might indicate 
that a teacher–student conversation is something that is really different 
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from other types of conversation. Altogether, the concepts developed to 
describe the three types of student explanation and how teachers initiate 
and respond to these give us tools to study classroom conversations on a 
more detailed level than we were previously able to do. 
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