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This article reports on guidelines developed based on an extensive research litera-
ture review investigating the potentials of dynamic geometry environments (DGEs) 
when the educational aim is to support students’ development of mathematical 
reasoning competency. Four types of potentials were identified – feedback, drag-
ging, measuring, and tracing – and used in three dimensions of guidelines: students’ 
cognition, task design, and the role of the teacher. Using constructs from the Instru-
mental approach, the Theory of semiotic mediation, and the van Hiele model of levels, 
affordances and guidelines are elaborated upon and their potentials for reasoning  
competency are analyzed.

Research on dynamic geometry environments (DGE) affordances has 
revealed potentials regarding the development of students’ mathemati-
cal reasoning (e.g. Leung, 2015; Edwards et al., 2014). This is promis-
ing, because there is research in Denmark and internationally indicating 
that students’ reasoning abilities are inadequate (e.g. Jessen et al., 2015; 
Hoyles & Healy, 2007). ICT is accessible at all levels of the Danish educa-
tional system, so, in principle, the potentials are available in the mathe-
matics classrooms. However, students’ access to DGEs does not guaran-
tee greater learning outcome. The manner in which DGEs are used is 
essential (Jones, 2005). Therefore, it is an important research objective 
to develop guidelines for fruitful teaching with DGEs. 

Since DGEs can be used for different purposes, it is necessary to clarify 
the mathematical aim of the teaching guidelines. The notion of mathe-
matical competencies, which has gained substantial traction in mathe-
matics education, can be used for this purpose. Niss et al. (2016) call 
for research into teaching that can support students’ development of  
mathematical competencies.

Ingi Heinesen Højsted 
Aarhus University
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Fostering, developing and furthering mathematical competencies 
with students by way of teaching is a crucial […] priority for the 
teaching and learning of mathematics [...] We now need to under-
stand the specific nature of the contexts and other factors that help 
create such progress.  (Niss et al., 2016, p. 630).

Focusing on reasoning competency in relation to using DGEs, this study 
aims to contribute to this end by asking: Which research-based guide-
lines may be formulated for teaching with DGEs in order to support students’  
development of reasoning competency?

The main question gives rise to two auxiliary questions: (i) Which affor-
dances of DGEs can be considered as potentials when the educational aim is 
to support students’ development of reasoning competency? In addition, (ii) 
Which dimensions should such research-based guidelines entail?

To address these questions, a review is undertaken of existing DGE 
research, using reasoning competency as the searching and sorting lens. 
The review findings serve a dual purpose – to establish which dimensions 
the guidelines should entail, and to identify DGE affordances that can be 
considered potentials for reasoning competency. Theoretical constructs 
from the literature that are found to be useful in the conceptual deve-
lopment of the guidelines are also included. On the basis of this work, an 
analysis of the possible development of reasoning competency in relation 
to DGEs is conducted, and finally, to answer the main research question, 
guidelines are suggested. Since reasoning competency plays a crucial role 
in the article, an elaboration of the notion is in order.

The KOM framework and its reasoning competency
The KOM framework 1 introduces a competency-based approach com-
prising eight mathematical competencies, illustrated in the so-called 
KOM flower (figure 1). The framework is integrated in the Danish mathe-
matics education curriculum, and has also had an impact on mathema-
tics education around the globe (e.g. OECD, 2017; for a detailed account, 
see Niss et al., 2016). 

In the reasoning competency (hereinafter referred to as RC), reason-
ing is defined as ”a chain of argument […] in writing or orally, in support 
of a claim” (Niss & Højgaard, 2011, p. 60). RC consists of the ability to 
create and present formal and informal arguments, as well as the ability 
to follow and evaluate arguments made by others. It involves understand-
ing what a mathematical proof is, the role of counterexamples, and the 
difference between a proof and other forms of mathematical reason-
ing, such as explanations based on examples. In addition, it includes the 
ability to develop an argument based on heuristics into a formal proof. RC 
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is not only about justification of mathematical theorems, but also about 
creating and justifying mathematical claims in general, such as answers 
to questions and solutions to problems (Niss & Højgaard, 2011). In this 
article, the notion of proof is understood as the product of a proving 
process (Mariotti, 2012), which includes exploration and conjecturing as 
well as proving conjectures. 

A person’s attainment of a competency is qualified in three dimen-
sions: Degree of coverage indicates to what extent the characteristics of 
the competency can be activated. Radius of action refers to the situations 
and contexts in which the competency can be mobilized, while techni-
cal level describes how advanced the mobilization is (Niss & Højgaard, 
2011). To exemplify with regard to RC, a person might be able to follow 
reasoning put forward by others, but unable to put forward reasoning 
herself, thereby lacking in degree of coverage. She might be able to follow 
mathematical reasoning in the area of statistics but not in geometry and 
therefore has a limited radius of action. She might be able to follow comp-
licated and technically advanced reasoning and therefore has high a tech-
nical level. The dimensions have a subjective character, since, for example, 
a high technical level depends on a person’s age and peers.

Review method
The review was anchored in the hermeneutic framework for literature 
reviewing (Boell & Cecez-Kecmanovic, 2010, 2014), which fundamen-
tally perceives the literature review as a non-linear process of gradually 
developing an understanding of and insights into a domain of research. 
The approach consists of two intertwined hermeneutic circles, the search 

Figure 1. KOM flower (Niss & Højgaard, 2011, p. 1)
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and acquisition circle and the analysis and interpretation circle (see figure 
2). The steps in the circles are carried out in an iterative process, thereby 
approximating a deeper understanding of the area of interest. 

Applying the method
The initial idea was to operationalize RC into search words to cover 
central characteristics of the competency, and combine these with syno-
nyms of dynamic geometry. The initial search was made in the Math-
Educ 2 and ERIC 3 databases, using the search words ”dynamic geometry”, 
”geometry software”, ”geometry technology”, ”interactive geometry” and 
”proof”, ”reasoning”, ”conjecture”, and ”justify”, which, after sorting and 
checking for items occurring twice, gave a total of 151 items. 62 items 
were found to be irrelevant after studying their abstracts, giving a total 
of 89 items that were selected and acquired to be read. Furthermore, pro-
ceedings from the CERME 4 technology TWGs were searched. After 
reading literature acquired from the primary search, interesting refe-
rences were identified and followed (citation tracking) (Boell & Cecez-
Kecmanovic, 2014) and, if suitable, added to the review. In addition, after 
reading and gaining some insight into the area of interest (mapping and 
classifying), adjusted search words were used in focused searches, and 
the operationalization of RC was refined with the search words ”coun-
terexample”, ”argumentation”, and ”heuristic proof” in combination with 
synonyms of dynamic geometry. Other focused searches were related to 
theory, specifically ”instrumental genesis” and ”semiotic mediation” and 
”Hiele” combined with dynamic geometry. A total of 136 publications 
were included to be examined in the review. The definition of RC played 

Figure 2. The hermeneutic framework for the literature review process (Boell & 
Cecez-Kecmanovic, 2014, p. 264)
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a decisive role in the review process, as it influenced the choice of search 
words and the sorting and selection of literature, and was the perspective 
used in the critical assessment of the mapped literature, helping to decide 
which DGE potentials and dimensions of guidelines were relevant. The 
argument development which is the synthesizing result of the literature 
review is unfolded in the following chapter.

Results
The aim of the review process was to address two issues (corresponding to 
the two auxiliary research questions): (i) to find the potentials of DGEs in 
relation to RC, and (ii) to inform the development of guidelines for teach-
ing, i.e. use the literature to understand what dimensions the guidelines 
should entail, including which theoretical constructs may prove useful 
for this endeavor. 

In the following section, theoretical constructs are introduced that 
were identified in the review to be useful in sharpening the guidelines 
conceptually. Then the argument development leading to the potentials 
is presented, followed by review findings leading to the dimensions of 
the guidelines, which are unfolded subsequently. Figure 3 provides an 
overview of the structural development of the guidelines that will be 
presented in the following sections. 

Three theoretical findings to be used in the guidelines
Many studies from the review (e.g. Bretscher, 2009; Alqahtani & Powell, 
2015; Gómez-Chacón, 2012; Gómez-Chacón et al., 2016) are embedded in 
the Instrumental Approach, which involves the process of instrumental 
genesis (Artigue, 2002; Guin & Trouche, 1999). According to this point of 
view, an artefact (such as DGEs) is not an instrument for a student from 
the outset, but becomes an instrument when the student can use the 
artefact in some meaningful way (Vérillon & Rabardel, 1995). Building on 

Figure 3. Structural argument development of the guidelines
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Vergnaud’s (2009) notion of schemes, instrumental genesis characterizes 
how subjects develop utilization schemes, which are cognitive schemes 
intertwining technical knowledge and mathematical knowledge. In a 
scheme-technique duality (Drijvers et al., 2013), these mental schemes 
evolve along with instrumented techniques for using the artefact to 
solve specific tasks. The instrumented techniques are the observable  
manifestation of the students’ utilization schemes. 

Several DGE studies (e.g. Falcade et al., 2007; Mariotti, 2012; Ng & 
Sinclair, 2015) are anchored in the Theory of semiotic mediation (Barto-
lini-Bussi & Mariotti, 2008). Emerging from a Vygotskian (1978/1934) 
perspective, the theory describes how teachers can exploit the possible  
ways of using an artefact (such as DGEs). In the semiotic perspective, the 
teaching and learning process is characterized as an evolution of signs 
such as gestures, verbal utterances, or DGE-mediated actions. The theory 
addresses students’ initial production of situated signs as the artefact is 
used and on the following evolution into mathematical signs, which can 
be mediated by the teacher through social interaction as the teacher con-
nects mathematical meaning to the evoked signs. Bartolini-Bussi and 
Mariotti (2008) use the notion of the semiotic potential of an artefact 
to describe the duality of emergent personal meanings and the possible 
mathematical meanings evoked by using an artefact. Mariotti (2012) con-
siders the analysis of the semiotic potential of an artefact to be the core 
of any teaching design, and exploiting the potential involves: 

the orchestration of didactic situations where students face designed 
tasks that are expected to mobilise specific schemes of utilisation […] 
the orchestration of social interactions during collective activities, 
where the teacher has a key role in fostering the semiotic process 
required to help personal meanings, which have emerged during the 
artefact-centred activities, develop into the mathematical meanings 
that constitute the teaching objectives”  (Mariotti, 2012, p. 170)

Similarly to other DGE research (e.g. Jones, 2000; Idris, 2009; Kaur, 2015; 
Forsythe, 2015), utility is found in the van Hiele model of levels in order 
to relate the students’ cognitive progression to a model of mathematical 
thinking. Van Hiele (1986) outlined how students’ progress through five 
levels of mathematical thinking. The hierarchical structure has been 
criticized, as studies have found that students can be at several van Hiele 
levels in different situations (Burger & Shaugnessy, 1986). However, the 
levels may be thought of as different modes of thinking (Papademetri-
Kachrimani, 2012; Forsythe, 2015) that can be activated in different situa-
tions. The latter understanding of the levels is adopted in this article and 
used in relation to students’ cognition. Levels 1–4, which are relevant for 
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this article, are elaborated upon: (1) Recognition. Students visually recog-
nize figures intuitively by their global appearance. (2) Analysis. Students 
can describe the properties of a figure, but do not interrelate properties 
of figures. (3) Ordering. Students order the properties of figures by short 
chains of deductions and understand the interrelationships between 
figures. (4) Deduction. Students understand deduction and the role of 
axioms, theorems, and proof.

Potentials of DGEs in relation to RC
As a result of the review, four types of DGE affordances were identified 
as potentials 5 regarding students’ development of RC: feedback, drag-
ging, measuring, and tracing. DGEs are designed to mimic theoretical 
systems, such as Euclidean geometry, essentially creating a microworld 
in which activities follow the theoretical system governing the environ-
ment (Balacheff & Kaput, 1997). This signifies the existence of an inhe-
rent feedback function in the environment, since only objects which are 
possible in Euclidean geometry can be constructed. In a pencil and paper 
environment, there is no control on behalf of the paper over impossible  
constructions, allowing for imprecision, for example in a triangle where 
the medians do not intersect in the same point. Furthermore, dynamic 
geometrical figures can be constructed in the environment, so that 
certain properties are conserved when the figure is manipulated by use 
of the drag mode. The relationship between the elements of the figure 
is locked in a hierarchy of dependencies determining the outcome of a 
dragging action (Hölzl et al., 1994). This allows students to explore the 
figure by dragging free points to discover invariant properties of the 
figure, i.e. properties that are conserved. In a ”robust” construction, the 
properties are conserved when free points are dragged. On the contrary, 
in a ”soft” construction, not all properties are conserved (Healy, 2000; 
Laborde, 2005a).

Types of invariants have been classified to elaborate their role in con-
jecturing and reasoning (e.g. Leung, 2015; Baccaglini-Frank & Mariotti,  
2010). Baccaglini-Frank and Mariotti (2010) suggest discernment 
between direct invariants, which are invariants in the construction that 
are defined directly by DGE commands used to complete the construc-
tion, and indirect invariants, which are those that arise as a consequence 
of the theory of Euclidean geometry, which governs the DGE. If a student 
is aware of the direct invariants of a construction and through explora-
tion discovers indirect invariants, the activity might lead the student to 
make a conjecture (this will be discussed further in the section on task 
design). Many DGEs contain measuring tools that allow students to take 
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measurements of, for example, angles, lengths, areas, and perimeters of 
constructions. If free points of the construction are dragged, causing the 
measures to change, the measurements are updated instantly and con-
tinuously. Therefore, it is possible for the students to discover invariant 
relationships between measures (Olivero & Robutti, 2007). In addition, 
many DGEs contain the possibility of tracing an object, so that the path 
can be visualized from a dragging action. In this way, tracing combined 
with dragging can be used to discover underlying invariant relationships 
(Baccaglini-Frank & Mariotti, 2010; Leung, Baccaglini-Frank & Mariotti, 
2013). The affordance of visually representing geometric invariants when 
using the drag mode is considered a key feature of DGEs in relation to the 
development of mathematical reasoning, the ability to generalize results, 
and conjecturing in geometry (e.g. Arzarello et al., 2002; Laborde, 2001; 
Leung, 2015; Baccaglini & Mariotti, 2010; Edwards et al., 2014), which are 
some of the characteristics of RC.

Dimensions of the guidelines
The review showed that since its introduction, DGE research has had 
shifts in focus (see for example Jones, 2005; Mariotti, 2006; Laborde et 
al., 2006; Hollebrands et al., 2008; Olive et al., 2009; Sinclair & Robutti, 
2013). In broad strokes, three dimensions of research could be identi-
fied. Initially, research focused on the learner, with some early contribu-
tions addressing student cognition (e.g. Arzarello et al., 2002; Hölzl et al., 
1994). More recently, focus has shifted to design of adequate tasks to meet 
learning aims (e.g. Lin et al., 2012; Komatsu & Jones, 2018; Fahlgren & 
Brunström, 2014), as well as to the role of the teacher (e.g. Mariotti, 2006; 
Bartolini-Bussi & Mariotti, 2008). Sinclair et al. (2016) state that although 
research on DGE affordances is vast, task design and teacher practice 
remain understudied, a statement echoed by Komatsu and Jones (2018). 

Findings from all three dimensions are relevant in relation to deve-
loping guidelines for teaching. Consequently, it was decided that the 
research-based guidelines should encompass findings regarding students’ 
cognition, task design, and the role of the teacher. 

Students’ cognition
Several studies on students’ cognition in DGE-related work are embedded 
in instrumental genesis (e.g. Leung et al., 2006; Bretscher, 2009; Baccaglini-
Frank & Mariotti, 2010; Hegedus & Moreno-Armella, 2010; Gómez-
Chacón, 2012). From this point of view, it may be described that the stu-
dents need to develop instrumented techniques and utilization schemes 
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with the DGE, in order for it to become a personalized instrument where 
exploration for invariants can occur in, primarily, conjecturing activi-
ties (e.g. Baccaglini-Frank & Mariotti, 2010). What do such utilization  
schemes (and corresponding instrumented techniques) entail? 

The technique of exploring figures for invariants by dragging pre-
sumes that the students are aware of the relationship between the ele-
ments of a figure which determine the outcome of a dragging action, 
corresponding to van Hiele levels 2–3 (vH lvls 2–3) (Hölzl et al., 1994). 

For example, understanding why the midpoint C in line segment AB will 
move when the free points A or B are dragged in figure 4, and why it is 
not possible to drag point C. This requires an awareness of the theoreti-
cal properties of figures which are mediated perceptually by the DGE 
(vH lvl 2). Therefore, the dragging technique/scheme to explore for inva-
riants involves moving between the spatiographical and theoretical levels 
(Laborde, 2005b) which students need to coordinate. The spatiographical 
level refers to the perceptual appearance of a figure, while the theoreti-
cal level refers to the theoretical properties of a figure. Arzarello et al. 
(2002) describe how a DGE can potentially link the spatiographical level 
to the theoretical level in ascending and descending processes (vH lvl 1–2). 
Ascending happens when the students shift from the perceptual level 
to the theoretical level, while descending happens when the students 
shift from theory to perception. For example, if a student has made a 
conjecture about the theoretical property AC = CB in the construction 
in figure 4, she might validate it by a dragging test. The theoretical con-
jecture is confirmed perceptually in a descending process. On the other 
hand, if a student is unaware of the theoretical properties, the activity 
of dragging may prompt a shift towards awareness of the theoretical 
properties, since the properties are mediated perceptually by the DGE in 
the form of invariants (the property AC = CB remains). The perceptual 
output may result in theoretical awareness in an ascending process. Arza-
rello and colleagues (2002) found that students exploring geometrical 
figures by dragging in DGEs shift back and forth between empirical and  

Figure 4. Midpoint C is locked in the relationship AC = CB
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deductive reasoning in ascending and descending processes. Many studies 
have found that DGEs can support students in connecting empirical and 
theoretical mathematics (e.g. Lachmy & Koichu, 2014, Baccaglini-Frank & 
Mariotti, 2010; Mariotti, 2006; Guven et al., 2010; Hadas et al., 2000; Jones, 
2000; Laborde, 2005b). Even though DGEs can present opportunities for 
students working on the proving process (Laborde 2000; Olivero, 2002; de 
Villiers 2004; Sinclair & Robutti 2013), particularly in the production of 
conjectures, DGEs can also present challenges because of the strong link 
to the spatiographical level (Sinclair & Robutti, 2013). From the perspec-
tive of the Theory of semiotic mediation, the students’ personal meanings 
underlying the initial situated signs stemming from the DGE activity do 
not necessarily relate to the theoretical aspects of the DGE constructions. 
However, the teacher can mediate the evolution of mathematical mean-
ings and mathematical signs, which is needed if the students are to notice 
theoretical relationships in the DGE activity (vH lvl 2–3). 

Additionally, comprehension of direct and indirect invariants is 
required. The students need to understand the difference between inva-
riants caused by the construction and invariants caused by the rules of 
Euclidean geometry in order to investigate a construction to make con-
jectures (see example in next section) (vH lvl 3). Furthermore, exploration 
of invariants requires capacity regarding certain dragging techniques/
schemes. Research on ways of dragging in DGEs has resulted in a clas-
sification of several dragging modalities, which can broadly be divided 
into two categories (Hölzl, 2001; Leung, 2015): (1) Dragging for searching/
discovering, containing dragging modalities where the student drags in 
order to explore the figure for new properties. For example: wandering 
dragging – dragging randomly to try to discover regularities or interesting 
configurations; guided dragging – dragging basic points to make a particu-
lar shape; maintaining dragging – realizing an interesting configuration 
and trying to keep the specific property invariant while dragging (notic-
ing a soft invariant); and (2) Dragging for testing, encompassing the drag-
ging modalities in which the students drag to test an expected reaction 
from the construction. For example, the dragging test – dragging objects 
in order to see if the construction maintains desired properties, i.e. if it 
is robust; the soft dragging test – testing a conjecture about a soft inva-
riant (Arzarello et al., 2002; Baccaglini-Frank & Mariotti, 2010). Similarly, 
measuring modalities for searching and testing have been classified into 
two broad categories: measuring for discovery – wandering measuring, 
guided measuring, perceptual measuring; and measuring for testing – 
validation measuring, proof measuring (Olivero & Robutti, 2007). Stu-
dents’ development of instrumented techniques and utilization schemes 
for dragging and measuring to explore, develop and test conjectures is 
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a prerequisite for working on tasks that can support students’ progres-
sion of RC. In addition, the development of schemes and techniques for 
utilizing tracing and the feedback function of DGEs can be valuable in 
order to work on tasks that may mobilize students’ RC, which will be 
explained in the next section.

Task design
The literature review revealed several types of task design in DGEs. Some 
studies report on task design principles or models for task design (e.g. 
Lin et al., 2012; Komatsu & Jones, 2018; Fahlgren & Brunström, 2014; 
Olsson, 2017), while some have developed models to assess task quality 
(e.g. Trocki, 2014; Trocki & Hollebrands, 2018) in relation to DGEs in 
general, and with focus on reasoning and proof (Baccaglini-Frank et al.,  
2013, 2017, 2018; Leung, 2011; Sinclair, 2003). Models for task design will 
not be introduced in this article, but using the perspective of RC, five 
types of task design were identified as having the potential of mobi-
lizing students’ development of different characteristics of RC, thereby  
potentially increasing students’ degree of coverage of RC.

Construction tasks. (1) The students can be supported in creating and 
justifying mathematical claims in general by offering tasks similar to 
what Mariotti (2012) coined ”construction tasks”, which require the stu-
dents to construct robust figures with specified invariants using limited 
construction commands. Such a task could involve constructing a robust 
square using only construction commands such as points, line segments, 
lines, perpendicular lines (some might prefer not to allow this command), 
circles, and intersection points (see figure 5). The students have to describe 
the procedure and explain why the figure remains invariant, which is to 
create and justify a mathematical claim in terms of the RC. Dragging is 
an instrument to confirm the validity of the construction. This type of 

Figure 5. Constructing a robust square using specified construction commands
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task can help students to develop an awareness of direct invariants, and 
is therefore a valuable prelude to working on conjecturing open tasks, 
which is described next. 

Direct indirect invariants. (2) If a student has developed an awareness 
of the constructed direct invariants, then the discovery of indirect inva- 
riants through dragging can lead to conditional ”if-then” conjectures, 
with the direct invariants being the premise for the indirect inva-
riants (Baccaglini-Frank & Mariotti, 2010, Lachmy & Koichu, 2014). For 
example, a conjecturing open task for students could be to construct 
∆ ABC, the midpoints of two of the sides, and to draw a line segment 
connecting these midpoints (figure 6). 

In exploring the construction by dragging free points, students can dis-
cover the invariant parallelism of DE and AC, which was not a property 
of the initial construction. The potential of measuring can also be used to 
discover the invariant relationship of length DE being half of length AC. 
These conjectures can, with guidance from the teacher (discussed later), 
lead to a proof process of the midpoint theorem. In this case, dragging and 
measuring are tools to investigate the theoretical properties of the figure.

Maintaining dragging. (3) The usage of robust constructions has been 
prevalent in DGE teaching (Ruthven et al., 2005), but in a slightly diffe-
rent type of task, the students can be prompted to make a soft construc-
tion and to try to discover the conditions for which some property is 
maintained, using the maintaining dragging modality (Baccaglini-Frank 
& Mariotti, 2010). For example, a simple task for students could be to con-
struct line segments AB and BC and look for the positions of B which 
satisfy AB = BC, using trace activated on point B. By interpreting the trace 
path shown in figure 7, the students can discover and perhaps conjecture 
that points which are equidistant from two given points would all lie on 
the perpendicular bisector of the line segment joining the two points. 
In this case, the potential of tracing is utilized to unveil an underlying 
invariant.

Pseudo-objects. (4) By offering tasks instigating students to construct 
non-constructible pseudo-objects (Baccaglini-Frank et al., 2013, 2017 

Figure 6. Direct and indirect invariants in a robust construction



Nordic Studies in Mathematics Education, 25 (2), 71–98.

utilizing affordances of dynamic geometry environments

83

2018), abilities in proving by means of contradiction can evolve. A pseudo-
object contains contradictory properties with regard to Euclidean theory, 
and it is therefore not possible to construct in a DGE. As students attempt 
to construct the pseudo-object, (e.g. figure 8 or 9) the feedback affordance 
provided by DGEs can assist the student in realizing the impossibility of 
the construction. Designing such tasks involves identifying proto-pseudo 
objects, which are objects that have the potential of becoming pseudo-
objects for the students, for example a triangle in which two angle bisectors  
are perpendicular (Baccaglini-Frank et al., 2013, 2017, 2018). 

Figure 7. Maintaining the property AB = BC in a soft construction with trace activated

Figure 8. Starting from two perpendicular lines g and f (the angle bisectors) and 
reflecting AC in them

Figure 9. Investigating the pseudo-object by constructing the triangle first and then 
dragging and measuring
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Hidden conditions. (5) Another aspect of RC is to understand the role of 
counterexamples. To this end, the potential of dragging can be utilized 
by designing tasks, which prompts students to discover counterexamples 
to conjectures as they manipulate constructions. The conjectures may be 
given in the task description or discovered by the students themselves. 
Komatsu and Jones (2018) suggest that such heuristic refutation tasks 
could include ambiguous diagrams with ”hidden conditions”, exempli-
fied in figure 10 with the accompanying task: ”there are four points A, 
B, C, and D on circle O. Draw lines AC and BD, and let point P be the 
intersection point of the lines. What relationship holds between ∆ PAB 
and ∆ PDC? Write your conjecture. (2) Prove your conjecture.” (Komatsu 
& Jones, 2018, p. 9). The students might argue that ∠ BPA = ∠ DPC (verti-
cal angles are equal) and that ∠ ABP = ∠ PCD (inscribed angle theorem), 
hence ∠ PAB ∼ ∠ PDC. 

But when the students are prompted to drag points A, B, C and D, they 
might discover local counterexamples to the conjecture, such as figure 11, 
and be motivated to revise their conjecture.

Figure 10. Diagram with ”hidden conditions”,  inviting insufficient conjectures

Figure 11. Counter-example to the conjecture, AC parallel to BD
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4.6 Role of the teacher
The teacher plays an important role in helping students to transform per-
sonal meanings into mathematical meanings as described by Bartolini-
Bussi and Mariotti (2008). To do so, the teacher should be conscious of the 
mathematical goal of the DGE class activity, and should use opportuni-
ties to emphasize mathematical meanings of the DGE-mediated signs. 
When teaching, discussing or giving feedback, the teacher should identify 
emerging signs, and try to inject mathematical meaning into these signs 
(Bartolini-Bussi & Mariotti, 2008). The teacher can guide the students to 
understand the mathematical implications of the feedback provided by 
the DGEs as well as the mathematical meaning of dragging, measuring, 
and tracing. As the students produce initial situated signs and develop 
personal meanings in relation to feedback, dragging, measuring, and 
tracing, the teacher can mediate the evolution of mathematical mean-
ings and signs. RC includes the ability to present formal arguments and 
to develop arguments based on heuristics into formal proofs (Niss & Høj-
gaard, 2011). In order to further progress the students’ degree of coverage,  
the teacher needs to engage the students in proving their conjectures. 
This, however, does not happen automatically. Some studies (e.g. Mar-
rades & Gutiérrez, 2000; Connor et al., 2007) even suggest that explo-
ratory use of DGEs can inhibit the progression of students’ deductive 
proving, since the students are empirically convinced that a fact is evident, 
and do not see the point of having to prove it (again). However, studies 
also show that DGE exploration does not have to jeopardize this pro-
gression (Lachmy & Koichu, 2014; Sinclair & Robutti, 2013). Researchers  
highlight the important role of the teacher in guiding and motivating the 
students towards justifying their conjectures and towards applying a theo- 
retical approach (e.g. Mariotti, 2012; Arzarello et al., 2002). De Villiers 
(2007) argues against questioning the conviction that empirical methods 
give, or trying to convince students to undertake theoretical verification 
to further verify what they already find evident, but stresses that instead 
the teacher should motivate the students by asking ”why” the fact is 
evident. Trocki (2014) argues that motivation and guidance for students 
to connect informal exploration and conjecturing to theoretical justifi-
cation might also be incorporated into the DGE task itself, for instance 
by including questions that prompt students to justify their conjectures. 

The possession and development of RC in relation to DGEs
Based on the review results presented in chapter four, we can analyze 
how the development of RC may be supported with DGEs using the ter-
minology in the KOM framework concerning a person’s attainment of 
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a competency. As previously mentioned, the attainment is described in 
three dimensions: degree of coverage, radius of action, and technical level.

Degree of coverage
It is evident from the findings that the development of students’ pos-
session of various characteristics of the RC can be supported by utiliz-
ing DGE potentials (task types 1–5), thereby increasing the students’ 
degree of coverage of RC, in particular the ability to create and present 
informal arguments, because the dragging arguments are empirically 
based on invariant relationships discovered in many examples. Hence, 
focus is primarily on the exploration and conjecturing phase of the proof 
process. For example, the direct/indirect invariants task (task type 2) 
illustrates how dragging and measuring might be utilized in the con-
jecturing phase of conditional statements. Similarly, the soft invariant 
task illustrates how dragging, measuring, and tracing can be utilized in 
exploring and conjecturing about equidistant points and the perpendi-
cular bisector of the line segment joining them. However, with guidance 
from the teacher, the students’ abilities in relation to the second phase of 
the proof process – validating the conjecture – can also evolve, thereby 
expanding the students’ degree of coverage of RC. While validating the 
conjecture, the students might primarily work outside the DGE, but they 
are likely to return to verify/refute their progress as found by Olivero 
and Robutti (2007). As mentioned, RC consists not only of being able to 
reason yourself, but also of being able to follow and evaluate reasoning 
put forward by others (Niss & Højgaard, 2011). This may be incorporated 
in the teaching design, in order to support the students’ development of 
their degree of coverage of RC, by organizing the teaching environment in 
a way that encourages the students to collaborate (e.g. to work in pairs). 
It can also be explicitly addressed in the tasks themselves, e.g. by asking 
the students to explain their reasoning to each other, in pairs and in class 
discussions. Additionally, they can be required to evaluate the reasoning 
put forward by others. When the students manage to validate their con-
jectures deductively, the teacher (or perhaps prompts in the task) should 
highlight the difference between the theoretical proof and the conjecture 
to foster an understanding of the difference between the two – which is a  
characteristic of the RC.

Radius of action
As the students work on the aforementioned types of tasks (1–5), their 
radius of action regarding RC may expand, because they can progressively 
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activate their RC in an increasing amount of subject matter. Covering a 
variety of areas in geometry in the task design will further this agenda.  
Furthermore, the students’ radius of action may be promoted, since they 
develop the ability to activate their RC in the context of using a DGE 
for this purpose.

Technical level
The students’ progression within the technical level of RC can also be 
supported, particularly if consecutive tasks demand higher levels of rea-
soning from the students, for example by successively increasing the 
number of steps needed in the chain of reasoning to solve the task or 
the number of presuppositions needed to prove a conjecture. As pre-
viously mentioned, the degree of difficulty regarding the technical level 
of RC involved in solving a certain task has a subjective character, as it 
depends on the educational level of the students trying to solve the task. 
The guidelines do not address a particular educational level; however, if 
we take Danish lower secondary school as an example and look at the 
task example used to characterize task type 3, then we can imagine that 
the task is not too demanding with regard to students’ technical level of 
RC, while the example in task 2 is more complicated, even though the 
conjecturing phase of the example in task 2 may be relatively simple, 
proving the conjecture involves a few steps and demands a higher degree 
of technical level of RC. 

Formulating guidelines for teaching with DGEs to support RC
Based on the findings from the review on DGE literature and the subse-
quent analysis (auxiliary questions (i) and (ii)), guidelines are suggested 
in table 1 in appendix A. In essence, the guidelines are an analysis of 
the semiotic potential of DGEs when the educational aim is to support 
students’ development of RC, with the analysis building on previous 
research in the field.

There are six columns in the table; the first column holds steps of 
progression 0–4, in which steps 2–3 have a subset of steps. The van Hiele 
levels of mathematical thinking are also indicated in the first column. 
Although the guidelines are presented in steps of a hierarchical nature, 
and van Hiele’s levels are used, they are not considered discrete or 
clearly continuous, which can be seen with some overlapping descrip-
tions in steps 1 and 2 (a, b, c, and d). In addition, it may well be that the 
development of several steps can occur at the same time, for example  
developing an understanding of free and locked objects (step 1) at the 
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same time as developing basic DGE proficiency (step 0). Columns two 
and three address the dimension of students’ cognition using the notions 
of instrumented techniques and utilization schemes 6. Column four 
indicates what kind of tasks might mobilize the desired techniques and 
schemes, while column five describes the role of the teacher in facilitat-
ing the process. Column six describes which characteristics of the RC 
the DGE-mediated activity is expected to mobilize. 

Below, some comments are added to each step of progression.

0 Basic DGE proficiency regarding commands of construction and 
measuring is needed to work on tasks which can support the  
development of RC.

1 Being able to discern between free and locked objects requires 
that the students are aware of the theoretical properties of figures 
(vH lvl 2). Additionally, an awareness of theoretical relationships 
between the elements of a figure or between figures is required  
(vH lvl 3).

2 (a, b, c and d) Awareness of the hierarchy of dependencies which 
determine the dragging outcome is necessary. This covers an 
understanding of free points, direct invariants, and robust and 
soft constructions (vH lvl 2–3). Furthermore, the ability to discern 
between direct and indirect invariants is required in, for example, 
conditional ”if-then” conjecturing (vH lvl 3–4). Comprehension of 
certain dragging modalities and measuring modalities can support 
the exploration for conjectures. Tasks which support this cognitive 
development and the degree of coverage of RC include: construc-
tion tasks that encourage creation and assessment of mathematical 
claims, as well as understanding of direct invariants (vH lvl 2–3); 
conjecture open tasks which encourage construction (robust and 
soft) of direct invariants that bring on indirect invariants and allow 
for exploratory work in order to support the development of the 
first phase of the proof process (vH lvl 3–4).

3 (a and b) Understanding and being able to exploit the feedback 
function inherit in the DGE to investigate the construction of non-
constructible pseudo-objects in order to foster abilities in proving 
by means of contradiction (vH lvl 3–4); understanding and being 
able to exploit the feedback function inherit in the DGE to find 
counterexamples to conjectures about diagrams with hidden  
conditions (vH lvl 3–4).
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4 Being able to prove the conjectures. The role of the teacher is 
important in motivating the students towards theoretical valida-
tion of their conjectures to develop the second phase of the proof 
process (vH lvl 4). The teacher can encourage the students to return 
to the DGE in order to verify/refute their progress as they are 
proving their conjectures.

Concluding remarks
The process of answering the research questions comprised of search-
ing the literature for DGE affordances that are considered potentials in 
relation to supporting students’ development of RC, and of identify-
ing which dimensions the guidelines should entail. Four DGE potentials 
were identified: feedback, dragging, measuring, and tracing. The utiliza-
tion of these was described in three dimensions of the guidelines: stu-
dents’ cognition, task design, and role of the teacher. The guidelines in 
Appendix A contain five steps of progression, in which the dimensions 
are addressed and the expected mobilization of RC is described. 
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Notes

1 The English translation of the acronym is Competencies and mathematical  
learning. The KOM framework was published in Danish in 2002 and in 
English in 2011. In 2019, an updated version of the framework was proposed 
by the authors (Niss & Højgaard, 2019). 

2 https://www.zentralblatt-math.org/matheduc/ 

3 https://eric.ed.gov/ 

4 Congress of the European Society for Research in Mathematics Education.

5 To clarify, the notion of ”potential” is used here regarding affordances of 
DGEs which are not easily available in other common mathematics educa-
tion mediums, in particular the pencil and paper environment. It could be 
argued that the possibility of constructing, for example, a circle or a regular 
polygon is an affordance of DGEs, but it is not a major addition compared 
to the pencil and paper environment, and therefore not considered a  
potential in this review.

6 The table provides a broad description. A fine-grained analysis is needed  
at the level of schemes, e.g. rules of action, operational invariants etc. 
(Vergnaud, 2009).



ingi heinesen højsted

Nordic Studies in Mathematics Education, 25 (2), 71–98.96

Appendix A

Steps of 
progres-
sion

Guidelines Aim

Students’ cognition Tasks Teacher’s role Reasoning 
competency

Instrumented 
techniques

Utilization 
schemes

(during instruc-
tion, discussions 
and feedback) 
Generally: Iden-
tifying emerging 
signs and pro-
gressing towards 
mathematical 
meanings.

Degree of  
coverage: which 
characteristic is 
activated.

0. Basic DGE 
proficiency, van 
Hiele levels 1–2.

Students need to 
develop technical 
proficiency with 
the DGE. They 
need to be able 
to use the differ-
ent commands 
for constructing, 
measuring, and 
dragging.

Technical and 
mathematical 
knowledge about 
the commands 
of constructing, 
measuring, and 
dragging.

Tasks which 
require the stu-
dents to use the 
commands of the 
DGE. E.g. con-
structing points, 
lines, line seg-
ments, parallel 
lines and circles, 
finding inter-
section points, 
measuring angles, 
lengths, areas etc. 
and dragging these 
objects.

Highlighting 
the mathemati-
cal meaning in 
DGE-mediated 
activities, e.g. con-
structing a circle 
with two mouse 
clicks (definition 
of a circle), or the 
mathematical 
meaning of drag-
ging as a way of 
varying the exist-
ing construction, 
such as varying 
coordinates of a 
point.

Prerequisites for 
working on con-
jecturing tasks 
and for justifying 
mathematical 
claims.

1. Free and 
locked objects, 
van Hiele levels 
2–3.

Making construc-
tions with free 
and locked objects. 
Dragging/measur-
ing to investigate 
the construction.

Understanding 
the difference 
between free and 
locked objects. 
This requires 
attention to and 
comprehension 
of the theoretical 
properties of con-
structions. 

Construction 
tasks which high-
light the diffe- 
rence between 
free and locked 
objects. E.g. 
constructing 
two points and a 
midpoint between 
them. Describe 
why you can/
cannot drag some 
points.

Focus on the 
mathemati-
cal relationship 
between elements 
of the construc-
tion which deter-
mine whether the 
objects are free 
or locked, which 
means focus on 
the theoretical 
aspects of figures, 
e.g. the mathemat-
ical meaning of a 
midpoint.

Justify mathe-
matical claims. 
Prerequisite for 
working on con-
jecturing tasks.

2a. Robust con-
structions, van 
Hiele levels 2–3.

Making robust 
constructions 
with dependencies 
between elements 
in the construc-
tion, so that some 
desired properties 
remain invariant 
when free objects 
are dragged. Drag-
ging/measuring 
to investigate the 
construction.

Understanding 
that direct invari-
ants occur because 
of the theoretical 
properties induced 
in the construc-
tion. 

Tasks that require 
the student to 
construct figures 
in which some 
properties remain 
invariant during 
dragging. ”Con-
struction tasks” 
(Mariotti, 2012). 
E.g. constructing a 
quadrilateral with 
one right angle.

Highlighting 
and encourag-
ing student focus 
on the theoretical 
properties of the 
figure. E.g. right 
angles require per-
pendicular line seg-
ments. Invariants 
occur because of the 
mathematcal rela-
tionship between 
elements of the 
figure.

Justify mathe-
matical claims. 
Prerequisite for 
working on con-
jecturing tasks. 
Exploring and 
conjecturing.

2b. Soft con-
structions, van 
Hiele levels 2–3.

Making soft con-
structions with 
non-dependencies 
between some 
elements in the 
construction, so 
that some desired 
properties remain 
invariant only when 
certain conditions 
are satisfied. Drag-
ging/measuring and 
tracing to investi-
gate the construc-
tion.

Understanding 
that direct non-
invariants occur 
because of the lack 
of dependencies 
between theo-
retical properties 
induced in the 
construction. 

Tasks which 
require the 
student to con-
struct figures with 
soft invariants, 
in which some 
properties can be 
maintained only 
under certain 
conditions. E.g. 
finding the posi-
tions of point B for 
AB = BC. 

Highlighting 
and encouraging 
student focus on 
the theoreti-
cal properties of 
the figure. E.g. 
meaning of per-
pendicular bisec-
tor. Non-invari-
ants occur because 
of the mathemati-
cal relationship 
between elements 
of the figure.

Justify mathe-
matical claims. 
Exploring and 
conjecturing.

Table 1. Research-based guidelines for mathematics teaching with dynamic geometry 
environments to support students’ development of reasoning competency.
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2c. Dragging/ 
measuring 
modalities for 
exploration, van 
Hiele levels 2–3.

Being proficient 
in different drag-
ging/measuring 
modalities: Drag-
ging for search-
ing/dragging for 
testing; measuring 
for searching/
measuring for 
testing.

Understanding 
fruitful dragging 
and measuring 
modalities in 
order to explore 
constructions to 
unveil indirect 
invariants and 
make conjectures. 
Including the 
”maintaining drag-
ging” modality for 
soft invariants.

Tasks requiring 
the students to 
make conjectures 
by dragging and 
measuring in 
certain ways in 
order to notice 
indirect invari-
ants. This includes 
tasks with soft 
invariants.

Explaining and 
illustrating how 
to drag free points 
with different 
aims: Randomly, 
looking for invari-
ance of properties 
and measures, 
maintaining a 
property (main-
taining dragging).

Justify mathe-
matical claims. 
Prerequisite for 
working on con-
jecturing tasks. 
Exploring and 
conjecturing.

2d. Direct and 
indirect invari-
ants, van Hiele 
level 3.

Constructing 
direct invariants 
which induce 
indirect invariants 
because of Euclid-
ean theory. Drag-
ging/measuring 
to investigate the 
construction.

Understanding 
the difference 
between direct 
and indirect invar-
iants, and the con-
nection between 
them.

Tasks requiring 
the students to 
make construc-
tions with direct 
invariants, where 
dragging free 
points in the 
construction also 
unveils (surpris-
ing) indirect 
invariants.

Explaining and 
highlighting that 
direct invariants 
can induce indirect 
invariants because 
of the ”rules of 
Euclidian geom-
etry”. E.g. lines 
perpendicular to 
parallel lines are 
parallel. Introduc-
ing the ”if-then” 
relationship 
between direct and 
indirect invari-
ants. Stressing the 
empirical nature of 
the conjecture.

Justify mathe-
matical claims. 
Exploring and 
conjecturing.

3a. Feedback: 
non-construct-
ible pseudo 
objects, van 
Hiele levels 3–4.

Constructing, 
measuring and 
dragging to test 
the possibility of 
an object.

Understand-
ing the feedback 
function inher-
ent in the DGE, 
and thereby the 
possibility of 
exploring whether 
objects can be 
constructed.

Tasks instigating 
the students to 
construct non-
constructible 
pseudo-objects. 

Highlighting 
and encouraging 
student focus on 
the theoretical 
properties of the 
non- constructible 
figure. Injecting 
mathematical 
meaning into the 
students’ evolving 
signs of conflic-
tions regarding 
the object.

Exploring and 
conjectur-
ing. Abilities in 
proving by means 
of contradiction 
can be developed.

3b. Feedback: 
Counterexam-
ples to conjec-
tures, van Hiele 
levels 3–4.

Constructing 
figures and explor-
ing (dragging, 
measuring) in 
order to find coun-
terexamples to 
conjectures.

Understanding 
the feedback func-
tion inherent in 
the DGE. Under-
standing how a 
counterexample 
forfeits the con-
jecture.

Tasks which 
prompt students 
to discover coun-
terexamples to 
conjectures as 
they manipulate 
constructions. 
Such tasks could 
include diagrams 
with hidden 
conditions, and 
the tasks should 
explicitly prompt 
the students to 
find counterex-
amples.

Highlighting 
and encouraging 
student focus on 
the theoreti-
cal properties of 
the figure which 
underlie the con-
jecture to which 
counterexamples 
are to be found. 
Injecting mathe-
matical meaning 
into the students’ 
evolving signs 
regarding the 
object.

Exploring and 
conjecturing. 
Understanding 
the meaning and 
role of counter-
examples.

4. Proving the 
conjectures 
from steps 2b, 
2c, 2d, 3 and 4, 
van Hiele level 4.

Using DGEs to 
verify/refute pro-
gress on proving 
the conjectures.

Understand-
ing the feedback 
function inherent 
in the DGE, and 
thereby the possi-
bility of verifying/
refuting conjec-
tures.

Follow-up tasks 
requiring the 
students to prove 
their conjectures. 
Students can work 
outside the DGE, 
but return to 
verify/refute their 
progress.

Motivate the 
students to under-
take theoretical 
verification by 
asking ”why” their 
conjecture is true 
instead of dismiss-
ing the empirical 
evidence provided 
by the DGE (De 
Villiers, 2007).

Abilities in 
proving; develop-
ing an argument 
based on heuristics 
into formal proof. 
The difference 
between a proof 
and other forms 
of mathematical 
reasoning such as 
explanations based 
on examples.
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