
29

Andrews, P. (2020). Swedish primary teacher education students’ perspectives on linear 
equations. Nordic Studies in Mathematics Education,  25 (2), 29–48.

Swedish primary teacher education 
students’ perspectives on linear 

equations

paul andrews

Linear equations, connecting arithmetic to the symbolism of formal mathematics, 
represent a key topic of mathematics. However, the understanding primary teacher 
education students bring to their studies has been rarely examined. In this study, stu-
dents were invited to explain in writing how an unannotated solution to x + 5 = 4x – 1 
had been conceptualised by the hidden solver. Data, coded against an iteratively 
derived framework, showed that most students were familiar with linear equations, 
able to articulate an objective for equation solving and offer solution strategies, typi-
cally based on either doing the same to both sides, swapping the side swapping the 
sign or both.

The literature on equation solving typically distinguishes between two 
forms of equations. Firstly, there are equations like 13 = 3x + 1, which 
have the unknown on one side of the equation only. Such equations can 
always be solved by means of a series of operation reversals (Herscovics 
& Linchevski, 1994). Secondly, there are equations with unknowns on 
both sides that cannot be solved by such approaches (Filloy & Rojano, 
1989, Kieran, 2004). Interestingly, highlighting a definitional problem 
not uncommon in mathematics education, there is no accepted vocabu-
lary for this distinction, with the two forms being described as arithmeti-
cal and non-arithmetical (Filloy & Rojano, 1989), arithmetical and alge-
braic (Andrews & Sayers, 2012), procedural and structural (Kieran, 1992), 
operational and structural (Sfard, 1995) and manipulation and evaluation 
(Tall et al., 2014) respectively. Of these, some have a more natural reso-
nance with the mathematical knowledge necessary for solving the two 
forms of equations than others. For example, operational, procedural and 
manipulation may be problematic because any equation solving involves 

Paul Andrews 
Stockholm University



paul andrews

Nordic Studies in Mathematics Education, 25 (2), 29–48.30

some form or procedure, operation or manipulation, while evaluation 
invokes no mental image of either equation. The labels arithmetical and 
non-arithmetical offer a clearer sense of the distinction, although our 
view is that arithmetical and algebraic offer clearer indications as to the 
mathematical understandings necessary for each form of equation.

In broad terms, being able to solve algebraic linear equations draws 
on a number of related understandings and competences. It requires a 
relational rather than an operational understanding of the equals sign 
(Alibali et al., 2007), whereby the equals sign should be seen as repre-
senting equality between two expressions and not as a command to 
operate (Falkner et al., 1999; McNeil et al., 2006). It requires that learners  
understand and can manipulate the symbols in which equations are 
represented (Huntley et al., 2007). Thus, solving an equation requires 
not only that learners ”understand that the expressions on both sides 
of the equals sign are of the same nature” (Filloy & Rojano, 1989, p. 19) 
but also that they are able to operate on the unknown as an entity and 
not a number, insights that acknowledge the structural symmetry of  
equations (Kieran, 1992).

Didactically, the distinction between arithmetical equations and alge-
braic equations is of significant interest. On the one hand, students who 
are first exposed to arithmetical equations, solved by means of operations 
reversal, may experience difficulties when confronted with algebraic 
equations that cannot be solved in such ways. On the other hand, stu-
dents whose first exposure is to algebraic equations, involving a process 
applicable to both forms of equation, have the advantage of not having 
learnt a set of procedures that will be superseded. However, algebraic 
equations have historically been solved by one of two methods, derived 
from Viete and Euler respectively (Filloy & Rojano, 1989). The former, 
the conceptual basis of a ”swap the side swap the sign” (SSSS) procedure, 
is based on the transposition of terms from one side of the equation to 
the other. The latter, conceptually underpinning a ”do the same to both 
sides” (DSBS) procedure, relies on operations undertaken on both sides 
of the equation simultaneously. Interestingly, it is not unreasonable to 
assume that the former is no more than a procedure inferred from the 
latter, although, as is highlighted later, SSSS has been subject to more 
critisism than DSBS, not least because DSBS supports the later learning 
of algebra, particularly the theory of groups (Wasserman, 2014).

Most intervention studies have exploited the balance scale as a means 
of facilitating a relational understanding of the equals sign and warrant-
ing a DSBS procedure, whether in Australia (Warren & Cooper, 2005), 
Belgium (Vlassis, 2002), Chile, (Araya et al., 2010) or Turkey (Caglayan 
& Olive, 2010). In similar vein, studies of didactics have found teachers 
exploiting the balance scale in Finland, Flanders and Hungary (Andrews 
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& Sayers, 2012) and Poland (Marschall & Andrews, 2015). Moreover, these 
same studies have shown that such teachers’ didactical sequences usually 
begin with the general, algebraic equation, rather than the particular, 
arithmetical equation, because students who can solve an algebraic equa-
tion can necessarily solve an arithmetical equation. In short, the balance 
scale, despite criticisms that it fails to represent negative values in any-
thing but a contrived way (de Lima & Tall, 2008; Pirie & Martin, 1997), 
seems positively viewed by both teachers and mathematics education 
researchers. Other intervention studies, undertaken by psychologists 
working in the traditions of cognitive load theory, have challenged the 
didactical importance of the balance method. These studies, based on 
introducing students to both operations reversal and DSBS for the solu-
tion of arithmetical equations, find students preferring operation rever-
sal. Their authors (see, for example, Ngu et al., 2015; Pawley et al., 2005) 
conclude that students’ preferences are due to the lower working memory 
demands of operations reversal. However, in focusing only on the proce-
durally simple arithmetical equations, fail to consider either the cognitive  
or the didactical implications for the solution of algebraic equations.

Despite the balance scale-related consensus, the limited assessments 
of students’ strategies for equation solving have typically found an SSSS 
procedure, as with high school students in the US (Huntley et al., 2007) 
and New Zealand (Linsell, 2009). Such an approach, reflecting a rote-
learnt and arbitrary transposition whereby the unknown finishes on 
the left-hand side and a value on the right (Filloy & Rojano, 1989), not 
only perpetuates an operational conception of the equals sign but fails 
to support students’ understanding that such movement does not change 
the equation’s equality. It masks mathematical understanding (Star & 
Seifert, 2006), may lead to various later difficulties (Capraro & Joffrion, 
2006; Kieran, 1992) and become a ”magical” (de Lima & Tall, 2008) pro-
cedure that reduces students ”to performing meaningless operations on 
symbols they do not understand” (Herscovics & Linchevski, 1994, p. 60). 
Finally, teacher education students, who may be expected to have a better 
developed understanding of equations than school students, typically 
offer solutions indicative of an incomplete understanding of their con-
ceptual and procedural bases (Andrews & Xenofontos, 2017; Casey et al., 
2018; Ellerton & Clements, 2011; Isik & Kar, 2012, Stephens, 2008; Tanisli 
& Kose, 2013).

Linear equations in the Swedish national curriculum
The Swedish national curriculum for compulsory school is structured 
by the school years 1–3, 4–6 and 7–9. It asserts that by the end of year 3, 
students will understand ”mathematical similarities and the importance 
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of the equals sign” (Skolverket, 2011, p. 60), which is an understanding 
necessary for the solving of algebraic equations. It adds, more explicitly 
in relation to linear equations, that by the end of year 6, students will be 
familiar with ”unknown numbers and their properties and also situations 
where there is a need to represent an unknown number by a symbol; 
simple algebraic expressions and equations in situations that are relevant 
for pupils; methods of solving simple equations” (Skolverket, 2011, p. 61). 
Finally, by the end of year 9 students will understand the meaning of 
the concept of variable and its use in algebraic expressions, formulae and 
equations; algebraic expressions, formulae and equations in situations 
relevant to pupils; methods for solving equations; functions and linear 
equations” (Skolverket, 2011, p. 63).

With respect to post compulsory education, or upper secondary school, 
Swedish students opt for one of a number of vocationally- or academi-
cally-focused tracks of three years’ duration. Depending on their track 
choice, students may study up to five mathematics courses, each of one 
semester’s duration and representing an increasing sophistication. That 
being said, all students, irrespective of track, are obliged to follow at least 
the first of these courses, which is designed to complement and extend 
students’ earlier mathematical experiences and includes further expo-
sure to linear equations. Thus, all Swedish students, by the time they 
complete upper secondary school, would have had multiple exposures 
to linear equations. However, as is the case more broadly, little is known 
about the knowledge that students take into their adult lives. More-
over, while equations-related competence is addressed in both national 
and international tests, such studies typically concern themselves only 
with whether or not an answer is correct. Consequently, little is known 
about the equation-solving procedures students employ, particularly with 
respect to any interactions between different approaches and conceptua-
lisations. In part, this may be due to scholars’ tendency to report students’ 
use of either a balance scale-induced DSBS or, more generally, a rote learnt 
SSSS. Typically, they seem not to have considered the possibility that stu-
dents may combine the two. The aim of this paper, acknowledging the 
significance of linear equations as a key transitional topic of mathema-
tics, is to explore the equations-related knowledge of Swedish students 
as they progress beyond the educational system. In addressing this, the 
study is framed by the following questions:

 How do Swedish primary teacher education students construe 
linear equations?

 How do these different construals interact?
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In framing this study, and acknowledging that the mathematical quali-
fications of Swedish teacher education students has been falling since 
the 1980s (Björklund et al., 2005), it seems reasonable to assume that the 
mathematical competence of this group, while clearly not comparable 
with the elite knowledge necessary for the study of numerate university 
disciplines, is unlikely to be at the lower end of the competence spec-
trum. In other words, it is not unreasonable to assume that the equations-
related competence of this group of young adults would not be atypical 
of the cohort in general. Finally, with respect to warranting this study 
and as we discuss in detail below, this paper represents a first attempt at 
scale to test a simple to operate, low inference, framework for analysing 
students’ equations-related knowledge. 

The current study
This paper draws on data derived from Swedish primary teacher educa-
tion students’ written responses to the solution of the algebraic equa-
tion shown below. Presented on paper with no annotations to indicate 
the hidden solver’s thinking processes, additional written instructions 
asked students to imagine, first, that they had a friend who had been 
absent when their class had been shown how to solve such an equa-
tion and, second, to consider what they would say to help their friend 
understand the given solution. Further oral instructions confirmed that 
the task related to when participants had first learnt about algebraic  
equations at school.

x + 5 = 4x – 1
5 = 3x – 1
  6 = 3x
  2 = x

Providing mathematical explanations is a familiar process for Swedish 
students for whom an oral component is an integral part of all national 
assessments. Moreover, explaining to another person, whether real or 
fictitious, facilitates the development and demonstration of both under-
standing (Fiorella & Mayer, 2014) and competence (Denancé & Somat, 
2015), particularly from the perspective of mathematical content know-
ledge (O’Neil et al., 2014) and problem solving (Wetzstein & Hacker, 
2004). Consequently, it was believed the approach would be particularly 
applicable to Swedish students.

Shortly after the start of their programmes, all six classes of one cohort 
of first year teacher education students from a large Swedish univer-
sity were visited and invited to participate in the study, with unwilling  
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students leaving the room for an early coffee break. At the time of the 
study, students, all of whom were aiming to become generalist primary 
teachers, had not yet received any mathematics instruction, although 
all would have completed at least the first mathematics course of upper 
secondary education. Students were given a sheet of paper on which was 
presented the task and its instructions concerning the fictitious student. 
Participants wrote their responses on the same piece of paper and, on 
completion of their account, left the room.

The particular equation was chosen for several reasons. First, alge-
braic equations cannot be solved by operation reversal. Second, it should 
uncover students’ conceptual and procedural knowledge and the relation-
ship between them as, at each step, they would need not only to inter-
pret and explain the solver’s hidden thinking but decide what needs to 
be made explicit to the hypothetical friend. Third, the equation and its 
solution were unhindered by conceptually unnecessary complications 
like brackets or fractions. Fourth, although this is not the focus of this 
paper, the task was designed to elicit students’ underlying didactical 
inclinations, whether conceptually or procedurally focused, an issue of 
particular relevance to a teacher education cohort, an aim successfully 
addressed in a study of Greek and Cypriot primary teacher education 
students (Andrews & Xenofontos, 2017).

Code The student writes something about… Present %
Mentions the unknown the unknown or variable 28 18
Conceptual objective finding the ”value of x” 60 38
Procedural objective getting x alone or x on one side 88 56
SSSS General the general SSSS movement of objects 9 6
SSSS particular addition transposing a particular object additively 

with a consequent sign change
53 34

SSSS particular division transposing a particular object by division 
with a consequent sign change

7 4

DSBS General doing the same to both sides in general 
terms

27 17

DSBS General addition adding to both sides with no reference to 
the particular objects of the equation

8 5

DSBS Particular addition adding to both sides with reference to the 
particular objects of the equation

77 49

DSBS General division dividing both sides by the number in 
front of x

9 6

DSBS Particular division dividing both sides by 3 51 33
Unspecified division dividing by 3; divide 6 by 3 etc., where it is 

not clear that both sides are divided
53 34

Equality of both sides both sides of the equals sign being equal 38 24
Checks solution checking the solution 20 13
Does not solve equation the codes above but does not complete a 

solution
26 17

Table 1. Working definitions, frequencies and percentages of each code
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The framework developed by Andrews and Xenofontos (2017) was taken 
as a starting point, but found lacking due to none of their Greek-speak-
ing participants making reference to DSBS, which initial readings of the 
Swedish data had shown to be widespread. Consequently, the framework 
was developed further. While space prohibits a detailed summary of this 
process, three refinements of the original framework were undertaken. 
At each point, the framework was revised, evaluated against responses 
from 300 Swedish and Norwegian teacher education students, and 
further refined (Andrews & Larson, 2019). The goal was to develop a 
set of low inference codes that would be age- and culture-independent, 
while picking up all perspectives identifiable in the two data sets. Impor-
tantly, low inference codes have two major advantages over other forms of 
coding. First, they should be simple to operationa-lise and, second, while 
not implying value judgements about mathematical hierarchies, their 
interactions may yield insights that other analyses cannot (Andrews, 
2007). The process outlined above, once applied to the data, yielded the 
figures shown in table 1, which includes working definitions of the codes.

Operationalising the framework
Although code frequencies have already been shown, it is important to 
demonstrate how, in practice, the codes were applied. In the following, 
three students’ scripts are presented and discussed in relation to how the 
final set of codes was applied to them. In practice, almost any script could 
have been used, but it is hoped that these will give the reader confidence 
in the framework and its applicability. Isabelle’s script, shown in figure 
1, is followed, table 2, by the rationale for the codes applied to it. This is 
followed by scripts and the derived codes for Johanna and Alice, shown in 
figures 2 and 3, and tables 3 and 4 respectively. All names are pseudonyms.

Figure 1. Isabelle’s script
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Swedish Translation Assigned code
För att räkna ut x-vardet In order to calculate the 

x-value
Conceptual objective: Shown in 
the reference to calculating the 
value of x. 

behöver man ta bort x 
från vänster spalten och 
då tar man även bort ett 
x ur höger spalten

one needs to take away x 
from the left-hand side 
and then also take away 
x from the right-hand 
side

DSBS Particular additive: Shown 
in the statement concerning  
subtracting x from both sides. 

Sedan tar man bort -1 ur 
höger spalten och plusar 
på +1 i vänster spalten

Then one takes away -1 
from the right-hand side 
and adds +1 to the  
left-hand side

SSSS particular addition: Shown 
in the statement concerning the 
change of sign when an object is 
transposed 1. 

för att det ska bli jämt in order that it (the 
equation) should be 
equal

Equality of both sides: No 
comment necessary

Sen delar man 6 i tre för 
att få reda på x värdet

Then one divides the six 
by three in order to get 
the x value

Unspecified division: The state-
ment could imply either DSBS 
or SSSS. 

In an earlier version of the 
framework, due to the statement 
following a DSBS particular addi-
tion, this would have been coded 
DSBS induced SSSS. But this was 
ultimately rejected as requiring 
too high an inference.

Table 2. The codes inferred from Isabelle’s script

Figure 2. Johanna’s script
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Swedish Translation Assigned code
x ska representera en tal x should represent a 

number
Mentions the unknown: No 
comment necessary

Först kan du börja med 
att ställa upp talet på en 
linje

First, you begin by 
setting up the equation 
on a line

No code applied as this is not 
directly related to the solution

Du ska överföra så att du 
har x på en sida och talen 
på en

You should transfer so 
that you have x on one 
side and the number on 
one

Procedural objective: Shown in 
the statement concerning the 
separation of unknowns from 
knowns

När du flyttar över x från 
vänster till höger sida så 
blir 4x iställen 3x efter-
som när du byter plats på 
x över likhetstecknet (=) 
så minskar det

When you move the x 
from the left to the right 
side, the 4x becomes 3x 
because when you move 
the x over the equals sign 
it is subtracted (literally 
diminished or reduced)

SSSS particular additive: Shown 
in the reference to moving over 
the equals sign and the sign of 
the particular object, x, chang-
ing

Då blir nya talet alltså 
5 = 3x – 1

The task is now 
5 = 3x – 1

No code applied as this is just a 
statement of derived fact

Nu har vi flyttat över x 
och måste vi flytta över 
siffran eftersom siffror 
ska stå för sig och x för 
sig för att vi ska kunna 
räkna ut vad x är

Now we have moved 
over the x, we must move 
over the figure, because 
the figures should stand 
alone and the x should 
stand alone so that we 
can calculate what x is

Conceptual objective: Shown in 
the statement concerning the 
calculation of the value of x. 

Procedural objective: Shown in 
the reference to the figures and 
the x being able to stand alone. 

SSSS particular additive: Here 
there is reference to moving 
over the particular, albeit 
unspecified, figure.

När vi flyttar -1 över 
likhetstechnet ombildas 
det till plus alltså är nya 
talet, 6 = 3x

When we move -1 over 
the equals sign it trans-
formed to a plus, and the 
new task is 6 = 3x

SSSS particular additive: Shown 
in the movement of the -1 over 
the equals sign leading to a 
change of sign

Då kan du dela 6/3 och 
svaret är 2. 2 = x

Next you can divide 6 by 
3 to get 2, x = 2

Unspecified division: It is not 
clear if the specified operation 
is based in DSBS or SSSS

Du kan dubbelkolla att 
du kommit fram till rätt 
svar genom att sätta ett 
multiplikationstecken 
mellan 3 och x. 3 · 2 = 6. 
Ja, då har vi rätt svar

You can double check 
that you have arrived at 
the correct answer by 
inserting a multiplica-
tion sign between 3 and 
x. 3 x 2 = 6. Yes, we have 
the right answer

Checks solution: Although the 
solution is complete, the inten-
tion is clear

Table 3. The codes inferred from Johanna’s script
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Results 
Of the students involved in the study, six either left their sheets blank 
or apologised for their lack of equations-related knowledge. This latter 
group was well represented by Kerstin’s rather poetic view that it was 
”altogether too long since I wrestled with equations” and Aida’s some-
what blunt, ”No idea, I barely understand them myself”. Otherwise, 
156 students, 128 females and 28 males, offered mathematically inter-
pretable responses, the initial analyses of which can be seen in table 1. 

Swedish Translation Assigned code
Vi vill ta reda på vad x 
är värt

We want to find out 
what x is worth

Conceptual objective: Finding the 
value of x

Vi måste börja med att 
få alla x på en sida

We must begin by 
getting all the x:s to one 
side

Procedural objective: A statement 
relating to getting the x alone

Då flytta man över x 
(och sidbyte ger tecken-
byte) så x:et blir värt -x 
(4x – x = 3x)

Then one moves x 
over (and changing the 
sides means changing 
the sign) so that the x 
becomes worth -x

Particular additive SSSS: The 
statement in brackets is trans-
parent

Sedan flyttar man över 
-1 för att få x:en själva. 
Då blir det 5 + 1 = 6

Then one moves the -1 
over in order to get the 
x alone, which gives 
5 + 1 = 6

Procedural objective: A further 
statement relating to getting the 
x alone 

Particular additive SSSS: the 
combination of the moving over 
of -1 and the result being +1 is 
construed as a SSSS action

För att lösa ut 6 = 3x 
måste man dela 3x på 3 
för att få x ensamt, och 
man måste göra samma 
sak på andra sidan 
(6 / 3 = 2)

In order to solve 6=3x 
one must divide 3x by 
3 in order to get x alone 
and one must do the 
same thing to the other 
side (6 / 3 = 2)

DSBS Particular division: Shown 
in the desire to perform the same 
particular division (by 3) to both 
sides 

Procedural objective: A further 
statement relating to getting the 
x alone

Alltså är x värt 2 And so x is worth 2 No code applied as this is just a 
statement of derived fact

Table 4. The codes inferred from Alice’s script

Figure 3. Alice’s script
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Importantly, the reader is reminded that the results here are based on a 
third coding of the full data set, following the iterative development of 
the schedule described above. If, within a student’s account, the same 
code was repeated then only one incidence was recorded. That said, most 
accounts attracted several codes, with an average of 3.6 being applied to 
each. Analyses of variance showed no influence of either gender or age 
on students’ responses, with the latter being particularly interesting; 99 
of the 156 students (63 %) were 22 years or older and, of those, 43 (28 %) 
were 27 years or older, indicating that whatever students had learnt at 
school had been retained for several years. Also, four of the codes shown 
in table 1 were observed in fewer than ten cases each. Of these, three 
represent high levels of generality with the consequence, particularly 
when students might be expected to solve an equation by means of a 
series of particular operations, that their rarity is probably unsurprising. 
Therefore, these are not discussed further as the intention is to focus on 
the commonly occurring codes. That said, it is interesting to note that 
of these four, the emergence of SSSS particular division, which involved 
students describing a form of transposition whereby multiplication on 
one side of the equation became division on the other, was surprising, 
not least because it seemed obscure in relation to the natural and rather 
obvious emergence of the equivalent additive strategy.

Of course, frequencies alone offer only a partial picture of students’ 
construal of the equation solving process. In the following, drawing on 
the ease by which the interactions of low codes can be determined, are 
presented various cross-tabulations intended to highlight the relation-
ship between the commonly occurring codes. However, as the reader will 
be aware, space limitations prevent a complete presentation, as 15 codes 
would yield 15 · 14 / 2 = 105 interactions. Two commonly occurring codes 
concerned statements of objectives, where 60 students (38 %) wrote some-
thing coded for conceptual objective, focused on identifying the value of 
x, while 88 (56 %) indicated a procedural objective, typically about getting 
unknowns on one side or alone. When the two codes were compared, 
as in table 5, the scripts of 40 students (26 %) yielded both conceptual 
and procedural objectives, indicating, overall, that 20 + 40 + 48 = 108 
individual students (69 %) wrote something coded as an objective for the 
equation solving process.

With respect to students’ solution strategies, the most frequently iden-
tified were DSBS particular additive and SSSS particular additive. The 
cross-tabulations of table 6 show that the scripts of only 12 students were 
coded for both strategies, with 65 (42 % of all students) writing uniquely 
of a DSBS approach and 41 (26 % of all students) writing uniquely of 
a SSSS strategy. Thus, 118 individual students (76 %) wrote something  
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recognisable as a conventional additive strategy. In similar vein, table 7, 
shows a complete lack of any interaction of the two commonly occur-
ring division-related strategies. Taken with the 7 scripts coded for SSSS 
particular division, these figures show that 111 students (71 %) wrote 
something intelligible as an awareness of the division process, albeit  
articulated in different ways.

Other questions of interest concern the relationship between the 
forms of objective and dominant solution strategies. It was shown earlier 
that 88 scripts were coded for a procedural objective, while 60 yielded 
a conceptual objective, a ratio of 88 : 60 or 1.47. If students’ objectives 
were independent of their preferred additive approach, then it would 
be reasonable to expect this ratio to persist across these approaches. In 
this respect, table 8 shows the cross-tabulations of each objective with 
each of the dominant additive strategies. With respect to DSBS particu-
lar addition, the ratio is 40 : 29 or 1.38, while for SSSS particular division 

Procedural objective

Absent Present Totals

Conceptual 
objective

Absent 48 48 96

Present 20 40 60

Totals 68 88 156

Table 5. Cross-tabulation of conceptual objectives against procedural objectives

DSBS particular addition

Absent Present Totals

SSSS particular 
addition

Absent 38 65 103

Present 41 12 53

Totals 79 77 154

Table 6. Cross-tabulation of DSBS against SSSS additive strategies

Unspecified division

Absent Present Totals

DSBS particular 
division

Absent 52 53 105

Present 51 0 51

Totals 103 53 156

Table 7. Cross-tabulation of SSSS particular division against unspecified division
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it is 34 : 25 or 1.36. In both cases, if one fewer script had been coded for 
conceptual objective, then the ratios would both have been 1.46. In other 
words, students’ objectives were distributed proportionally across the 
two additive strategies, indicating that however students construe the 
objective of equation-solving, no inference can be made with respect to 
the additive strategy they invoke.

In similar vein, table 9 shows similar results for the comparisons between 
the two objectives and the dominant division strategies. Here, the respec-
tive ratios were 32 : 26 (1.23) and 27 : 20 (1.35), neither of which is signifi-
cantly different from the 1.47 shown above. In other words, knowing stu-
dents’ objectives for equation-solving will yield no insights with respect 
to their division strategies.

Finally, the figures of table 10 show the distribution of the two domi-
nant division strategies against the two dominant additive strategies. It 
is here, for the first time, that variation in students’ perspectives begins 
to emerge. For example, it seems clear that scripts coded for DSBS par-
ticular addition were more likely to invoke a DSBS particular division 

Conceptual objective Procedural objective

Absent Present Totals Absent Present Totals

DSBS particular 
addition

Absent 48 31 79 31 48 79

Present 48 29 77 37 40 77

Totals 96 60 156 68 88 156

SSSS particular 
addition

Absent 68 35 103 49 54 103

Present 28 25 53 19 34 53

Totals 96 60 156 68 88 156

Table 8. Cross-tabulations of the two particular addition strategies against the two 
objectives

Conceptual objective Procedural objective

Absent Present Totals Absent Present Totals

DSBS particular 
division

Absent 71 34 105 49 56 105

Present 25 26 51 19 32 51

Totals 96 60 156 68 88 156

Unspcified  
division

Absent 63 40 103 42 61 103

Present 33 20 53 26 27 53

Totals 96 60 156 68 88 156

Table 9. Cross-tabulations of two division strategies against the two objectives
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than scripts coded for SSSS particular addition. It is also clear that these 
same scripts were more likely to be coded for DSBS particular division 
than unspecified division, indicating a relatively strong overall DSBS con-
ception. On the other hand, students coded for SSSS particular addi-
tion were more likely to be coded for unspecified division than DSBS  
particular division.

Discussion
In this paper, by drawing on the application and analysis of low-infe-
rence codes applied to beginning primary teacher education students’ 
written interpretations of a solution to x + 5 = 4x – 1, I have examined 
the understanding of linear equations that Swedish primary teacher 
education students bring to their undergraduate studies. The analyti-
cal framework, developed from one used in an earlier study of Cypriot 
and Greek teacher education students (Andrews & Xenofontos, 2017), 
had been subjected to four iterations of development, each yielding 
codes of lower levels of inference than the previous (Andrews & Larson, 
2019). This framework has made it possible to address the two research 
questions, concerning students’ construals of linear equations and,  
importantly, the interactions of those construals.

The analyses show that linear equations were familiar to the great 
majority of students, with only six of the 162 participants effectively 
denying any knowledge. The remaining students, 126 females and 26 
males, offered mathematically interpretable responses indicative, for 
the majority, of clearly-remembered equation solving principles. Indeed, 
acknowledging that almost two-thirds of respondents were 22 years or 
older and recalling material learnt several years earlier, it is encourag-
ing to see the high proportions of students offering equation-solving 
objectives (69 %), alongside clearly articulated equations-related addition 
(78 %) and division strategies (71 %). In comparison with their interna-
tional peers, the results of this study present a relatively positive picture 

DSBS particular division Unspecified division

Absent Present Totals Absent Present Totals

DSBS particular 
addition

Absent 66 13 79 53 26 79

Present 39 38 77 50 27 77

Totals 105 51 156 103 53 156

SSSS particular 
addition

Absent 67 36 103 73 30 103

Present 38 15 53 30 23 53

Totals 105 51 156 103 53 156

Table 10. Cross-tabulations of two additive strategies against two division strategies
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of Swedish students’ equation-related competence. For example, of the 
Greek and Cypriot primary teacher education students who had com-
pleted the same task as that reported here (Andrews & Xenofontos, 2017), 
only 6 % (compared with 38 %) offered a conceptual objective, while not 
one wrote anything related to DSBS, referring only to SSSS. By way of 
contrast, the scripts of 102 Swedish students (65 %) yielded statements 
in receipt of at least one DSBS code, while not one student wrote any-
thing interpretable as an arbitrary transposition whereby the unknown 
finishes on the left-hand side and a value on the right (Filloy & Rojano, 
1989). Such results, even though this was made explicit in only a quarter 
of the submitted scripts, suggest that the students of this study, even 
those whose solutions were dominated by SSSS, were largely aware of the 
equality of the two sides of the equation (Capraro & Joffrion, 2006; Star 
& Seifert, 2006), another characteristic missing in the Greek-speaking 
students’ reasoning.

More generally, the above indicates a conception of equations and 
equation solving different from that found in other studies of primary 
teacher education students undertaken in ways unrelated to that reported 
here. For example, Stephens (2008), investigating American primary 
teacher education students at the mid-point of their programme, found 
”a collective conception of algebra as a school subject matter dominated 
by symbols and symbol manipulation” (Stephens, 2008, p. 44), results 
reflected by Tanisli and Kose (2013) with respect to Turkish preservice 
primary teachers. In similar vein, Ellerton and Clements’ (2011) study of 
more than 300 middle school teacher education students, also mid-way 
through their programmes, found that ”most of the students seemed 
to be unwilling, or unable, to go beyond mere symbol manipulation” 
(p. 400). Even when compared with studies of secondary teacher edu-
cation students – students who could reasonably be expected to have a 
secure understanding of linear equations – the evidence reported here 
compares very favourably. For example, while Alvey et al. (2016) found 
US secondary teacher education students reporting similar procedures 
to those reported here, other studies have found poor procedural fluency 
and a lack of awareness of the objectives of equation solving in both the 
United States (Casey et al., 2018) and Turkey (Isik & Kar, 2012). In sum, 
the Swedish primary teacher education students of this study seemed to 
have a more sophisticated perspective on linear equations at the start of 
their programme than many of their international peers at points much 
later. More importantly, perhaps, it seems that Swedish teacher education 
students’ knowledge of linear equations confounds the received percep-
tion, a perception founded on international tests of mathematics achieve-
ment, that, in relation to its economic peers, Sweden performs poorly 
educationally.
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Finally, reflecting on the methods of this study, two key issues stand 
out. First, the task proved effective in eliciting students’ understand-
ings of the equation solving process. In this respect, the instruction to 
explain the solution to a friend was effective in encouraging students to 
justify their interpretations of the actions of the hidden equation-solver. 
Indeed, this study has confirmed the potential of explanation to uncover 
both understanding (Fiorella & Mayer 2014) and competence (Denancé 
& Somat, 2015). Second, the analytical framework, with its low inference 
codes and no hierarchy, went deeper into solvers’ conceptualisations than 
other studies, whose approaches would not have distinguished between 
approaches based on DSBS and SSSS (see, for example, Foster, 2018; Star 
& Seifert, 2006; Vaiyavutjamai & Clements, 2006). Indeed, in many such 
studies, little attention has been paid to the underlining conceptualisa-
tion of solvers’ thinking. Indeed, those studies with such a focus have 
typically drawn on a standard algorithm (Hästö et al., 2019; Star & Siefert, 
2006; Xu et al., 2017) or a canonical approach (Buchbinder et al., 2015; 
Buchbinder et al., 2019), each of which draws effectively on DSBS and a 
well-defined sequence of steps reflecting the rules of arithmetic found in 
typical textbooks (Alvey et al., 2016). Moreover, large-scale international 
tests of achievement, even when they expect students to show their solu-
tions, pay no attention to the particular approaches adopted by students 
(See, for example, the released items from TIMSS 2011 in Foy et al., 2013). 
Thus, due to its flexibility and ease of use, the analytical framework used 
in this study has the potential to transform the study of students’ equa-
tion solving competence, not least because the interactions of the codes, 
as indicated above, offer insights typically hidden from other approaches.
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Note

1 This particular statement prompted much debate, as Isabelle’s choice of 
language hindered the development of a set of low-inference codes. Her 
statement concerning the ”taking away of -1 from the left-hand side” and 
”adding 1 to the right” proved problematic. It could not be coded DSBS, 
because an explicit reference to the same operation on both sides would be 
expected. However, while her phrase could be interpreted as a procedure 
generalised from DSBS, it was interpreted as an SSSS procedure whereby 
whatever operation was performed on one side of the equation, the oppo-
site was performed on the other. In an earlier version of the framework, a 
category of DSBS induced SSSS, which would have been applied here, had 
been considered. However, it was thought to require too high a level of 
inference and was subsequently rejected.
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