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To capture the complexity of students’ understanding of fractions, a model linking 
part-whole to the subconstructs ratio, operator, quotient and measure has been pro-
posed. We ask if this model is compatible with students’ achievements in a Norwe-
gian context. Responses from 638 students were analysed using structural equation 
modelling (SEM), and a good fit of the model was obtained after removing the ratio 
subconstruct. In particular, part-whole is seen to be important for operator, quotient 
and measure. Using qualitative analysis of interviews, we found reasoning associated 
with ratio, with a weak link to the part-whole subconstruct.

Fractions are one of the most advanced and challenging concepts child-
ren encounter during primary school (Charalambous & Pitta-Pantazi, 
2007; Misquitta, 2011). Still, the understanding of fractions is one of the 
most important aims of school mathematics and has been shown to be 
a strong predictor of further achievements in mathematics (Siegler et 
al., 2012). It is well recognized that the concept of fractions has multiple 
facets (Kieren, 1976, 1993; Lamon, 2007), and many students face diffi-
culties in moving beyond the part-whole concept of fractions. In fact, 
studies show that the part-whole interpretation of fractions dominates 
in both students’ and teachers’ thinking (Park, Güçler & McCrory, 2013). 
Through several decades of research, a model of the rational number 
construct has emerged (Kieren, 1976, 1980; Behr, Lesh, Post & Silver, 1983; 
Marshall, 1993; Charalambous & Pitta-Pantazi, 2007), linking part-whole 
to the other subconstructs measure, quotient, ratio and operator.

Several studies take the five-subconstruct model as a reference point 
(Doyle et al., 2016; Gray & Ånestad, 2016; Pantziara & Philippou, 2012). 
However, the model can be understood as representing the adult view of 
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fractions. It is not clear if it describes children’s construction (Charalam-
bous & Pitta-Pantazi, 2007; Olive & Lobato, 2008). Motivated by this 
observation, Charalambous and Pitta-Pantazi (2007) statistically tested 
the model in Cyprus using structural equation modelling (SEM) and 
obtained a good fit. They warned however, that their findings should not 
be overgeneralized, since students’ constructions depend on the context 
and culture in which they are developed. They ask therefore for similar 
studies in other countries. As a partial answer to this challenge, we take 
the study of Charalambous and Pitta-Pantazi (2007) as the starting point 
and consider the case of lower secondary students in Norway. Several 
factors, such as curriculum, textbooks and teacher practices, influence 
students’ construction of knowledge of fractions. Furthermore, students’ 
understanding changes over time, and the time of testing will affect their 
achievements. Thus, it is not clear if the findings of Charalambous and 
Pitta-Pantazi (2007) are fully applicable to students at the lower secondary  
level in Norway.

The work of Charalambous and Pitta-Pantazi (2007) is cited by several 
authors and is also used in Norwegian studies (Bjerke, Eriksen, Rodal & 
Ånestad, 2013; Gray & Ånestad, 2016). We were however unable to locate 
studies that statistically test the model using SEM analysis in countries 
other than Cyprus, and we saw a need for further statistical investigation. 
We chose a context with older students since, in view of the Norwegian 
curriculum, younger students in Norway cannot be expected to answer 
all tasks used by Charalambous and Pitta-Pantazi (2007).

The research questions are as follows:

To what extent do Norwegian 7th to 10th grade students’ achievements 
on different tasks involving fractions correspond with the theoretical 
model reported by Charalambous and Pitta-Pantazi (2007)?

How do students’ achievements on each subconstruct correlate with 
their achievements on the other subconstructs and on fraction 
operations and equivalence of fractions?

Literature review
The complexity of the fraction construct is well recognized; the exact 
nature of the construct is, however, still debated (Lamon, 2007). The 
model considered in this paper, can be traced back to Kieren (1976). He 
connected part-whole to seven interpretations of rational numbers and 
concluded that students need experience with all seven interpretations. 
For each of them, instructional steps were suggested.
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Later, Kieren (1980) pointed to the five subconstructs part-whole, quo-
tient, measure, ratio, and operator. Building on this work, Behr et al. (1983, 
p. 93) investigated ”whether or not subjects performing at a given stage on 
tasks involving one subconstruct perform at a comparable level on tasks 
involving other subconstructs”. They also investigated which subcon-
structs that best could serve to develop the basic fraction concept with 
children and identified a ”preliminary conceptualization of the inter-
relationships among the various subconstructs” as depicted in figure 1. 
”The solid and dashed arrows suggest established and hypothesized rela-
tionships, respectively, among rational-number constructs, relations, and 
operations” (Behr et al., 1983, p. 100).

Marshall (1993, p. 268) developed detailed descriptions of the five sub-
constructs to provide the ”scaffolding for assessment questions”. Building 
on these and the previous works, Charalambous and Pitta-Pantazi (2007, 
p. 294) detailed an operationalization of each subconstruct. They set out 
to ”examine students’ constructions of the different subconstructs of frac-
tions, the associations within these subconstructs, and any potential links 
of these subconstructs to fraction operations and fraction equivalence.”

We will here give a short description of some of the main features of 
each subconstruct and refer the reader to Charalambous and Pitta-Pan-
tazi (2007) for further details. In brief, the five subconstructs are charac-
terized as follows: Part-whole emphasizes that a rational number may be 
interpreted as a partition of a (continuous or discrete) set. Typical ques-
tions are to ask the student to identify a fraction of a given whole, or to 
find the whole from a given fraction. In the ratio subconstruct, fractions 
are comparisons of two quantities. It is therefore considered a compara-
tive index rather than a number (Charalambous & Pitta-Pantazi, 2007; 
Carraher, 1996). Two main problem types are comparison problems and 
missing value problems (Lamon, 2007). In a comparison problem the 

Figure 1. Conceptual scheme linking the five subconstructs of fractions to the  
different operations of fractions and to problem solving (Behr et al., 1983, p. 100)

Equivalence Multiplication Problem solving Addition

Ratio Operator Quotient Measure

Partitioning and Part-Whole 



gustavsen and imenes

Nordic Studies in Mathematics Education, 24 (2), 5–24.8

goal is to determine an order relation between the ratios a/b and c/d, 
while the missing value problem provides three of the four values in the 
proportion a/b = c/d, asking for the fourth. Fractions are interpreted as 
operators when regarded as functions applied to numbers, objects or sets 
(Charalambous & Pitta-Pantazi, 2007; Behr et al., 1983; Marshall, 1993). 
Typical questions are to ask a student to scale a figure by a fraction, reduce 
a recipe by a factor, or if multiplying by a and dividing by b is the same 
as multiplying by a/b (Charalambous & Pitta-Pantazi, 2007; Marshall, 
1993). In the quotient subconstruct a fraction is seen as a result of a divi-
sion (Charalambous & Pitta-Pantazi, 2007; Kieren, 1993). While a/b in 
the part-whole subconstruct represents parts of a whole, in the quotient 
subconstruct ”a represents something that is itself to be partitioned” 
(Marshall, 1993, p. 273). Finally, the measure subconstruct emphasizes 
that fractions are numbers and that a unit fraction is used repeatedly 
to determine a distance from a preset starting point (Charalambous & 
Pitta-Pantazi, 2007; Lamon, 2001; Marshall, 1993). A typical question is 
to ask the student to represent a fraction by a point on the number line.

In their operationalization, Charalambous and Pitta-Pantazi (2007, 
p. 295) interpret the part-whole subconstruct as the ”fundament for 
developing understanding of the four subordinate constructs of frac-
tions”. The solid arrows in figure 1 depict this relationship. Similarly, for 
instance, the dashed arrow from operator to multiplication indicates that 
the operator subconstruct of fractions is hypothesized to be helpful for 
developing understanding of the multiplicative operations on fractions. 
They tested these dependencies against the Cypriot students’ achieve-
ments, using structural equation modelling (SEM), and were able to fit 
a model interrelating the five subconstructs, verifying the solid arrows 
in figure 1. Furthermore, links were found to fraction operations and 
fraction equivalence verifying most of the dashed arrows in figure 1. 
Charalambous and Pitta-Pantazi (2007, p. 309) concluded by asking if the 
good fit with the model justifies ”the traditional instructional approach 
using the part-whole notion as the inroad to teaching fractions”, but 
warns that the structure of the curriculum may be responsible for the 
”hierarchy” in the model. Still, they argue that the good fit of the model 
with their data provides support for the claim that ”the part-whole inter-
pretation of fractions should be considered a necessary, but not sufficient 
condition for developing an understanding of the remaining notions of 
fractions” (Charalambous & Pitta-Pantazi, 2007, p. 310). Thus, they con-
clude that there is a need for instruction to emphasize the other subcon-
structs of fractions, and especially those that their model fit suggests are 
less related to part-whole.

In the Norwegian context Bjerke et al. (2013) investigated fraction 
misconceptions among primary school students and found that students 
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in grade 6 and 7 have insufficient knowledge of fractions. Grønmo and 
Bergem (2009, p. 59) analysed TIMSS 2007 for 8th graders and found 
that Norwegian students had a particularly weak achievement on ratio 
tasks. It should be noted that the TIMSS data from 2007 are relevant to 
the situation before the current Norwegian national curriculum, LK06 
(Kunnskapsdepartementet, 2013), came into effect in 2006. Gray and 
Ånestad (2016) found, when investigating the fraction tasks given at the 
National tests for grade 8 in 2011, that all of the five subconstructs, to 
some extent, are emphasized.

Norwegian studies mentioned above (Bjerke et al., 2013; Gray & Ånestad, 
2016) utilize the conceptualization of the fraction construct in the five 
subconstructs part-whole, ratio, operator, quotient, and measure. Using 
the five-subconstruct model as a point of reference they do not ques-
tion the applicability in a Norwegian context. However, several factors, 
such as curriculum, textbooks and teacher practices, influence students’ 
construction of fractional knowledge. Hence it is not clear if the find-
ings of Charalambous and Pitta-Pantazi (2007) are fully applicable in 
a Norwegian context. In line with the challenge of Charalambous and 
Pitta-Pantazi (2007) the present study seeks further understanding of the  
applicability of the model by investigating it in a Norwegian context.

Methods
The authors are teacher educators in Norway. We worked with our pre-
service teachers to collect the data for this study. We developed a test, 
and the pre-service teachers administered it during their training period. 
This was done by agreement with the respective schools and it was pos-
sible to use 90 minutes for the test. Furthermore, the tests were coded by 
the pre-service teachers under the supervision of the authors.

The setting of the study
To situate our study, it is relevant to give some background on the Nor-
wegian national curriculum that all schools in Norway follow, LK06 
(Kunnskapsdepartementet, 2013). It was effective from 2006 but will be 
replaced in 2020. There are learning objectives for 2nd, 4th, 7th and 10th 
grade, and the students’ work with fractions from 3rd to 10th grade. In 
Cyprus, the part-whole subconstruct is introduced from 1st grade and 
division of fractions is introduced in 5th grade (Charalambous & Pitta-
Pantazi, 2007). In Norway, division of fractions is not in the learning 
objective after 7th grade but mentioned after 10th grade.

Several Norwegian textbook series, for example ”Faktor” by Hjardar 
and Pedersen (2006), and ”Grunntall” by Bakke and Bakke (2006), devote 
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a large chapter to fractions at the beginning of 8th grade. However, the 
textbook series ”Sirkel” by Torkildsen and Maugesten (2006), concentrate 
on fractions in 9th instead of 8th grade, and are focusing on aspects of 
fractions in connection with other topics in the 8th grade book. Fractions 
also have a prominent place in textbook series for grade 3 to 7. The text-
book series ”Multi” by Alseth, Nordberg and Røsseland (2006), are used 
in 60 % of the schools in grade 1 to 7 (Hagesæther, 2013), and for every 
grade from 3rd to 7th there is a separate chapter for fractions. Notably, 
for the 6th grade there are two chapters, ”Fractions”, and ”Positioning and 
ratios”. The textbook series, ”Grunntall” (Bakke & Bakke, 2006), devote a 
separate chapter to fractions for each year from 5th to 7th grade.

We decided to focus mainly on 8th and 9th graders. Choosing this 
older group means that all of the sample tasks Charalambous and Pitta-
Pantazi (2007) provided, including division of fractions, are included in 
the curriculum. There is also the important question of whether we want 
to test students when they are in the process of learning fractions, and 
thus have mastered only parts of the rather large subject; or when, accord-
ing to the learning objectives in the curriculum, they should be able to 
master the subject more thoroughly, and also at a stage where teachers 
have tried to ensure that all the students have the same basic knowledge 
of fractions before they start on the more advanced topics in the secon-
dary school. If we had tested younger Norwegian students, we would have 
expected a disproportionate dependence on knowledge of the part-whole 
construct, since some of the early teaching of fractions focus heavily on 
this construct. A downside to testing older students is however that some 
subconstructs will be mastered exceptionally well, and thus the test will 
not have the same predictive power.

The development of the test
When developing the test, we took into account the age of the students, 
and that a maximum of 90 minutes was allowed for the test. Our test 
consisted of 35 tasks. Of these, 19 were, except for the changing of some 
numbers, the representative tasks listed in the paper by Charalambous 
and Pitta-Pantazi (2007), two or three for each subconstruct and frac-
tion operation. Most of these were also known or inspired from previous 
works, e.g. Lamon (1993), Marshall (1993) and Noelting (1978). The task 
in figure 2 is an example of one of the adapted tasks.

The remaining 16 tasks were developed by the authors. When design-
ing these tasks, the definitions of the subconstructs in Charalambous 
and Pitta-Pantazi (2007) were used, and emphasis was given to comple-
ment the 19 adopted tasks, taking into consideration the Norwegian  
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curriculum and the age of the participants. Three tasks regarding  
percentages were included, measuring different constructs, since we 
view percentages as an important part of the students’ work with frac-
tions. Furthermore, one task with units of measurement was included. 
The test also contained two tasks with algebra for students in secondary  
school (age 13 to 15), but these two were omitted in the final analysis due 
to few correct answers. Some of the tasks could be classified as word 
problems, thus language and problem-solving skills would be expected to  
influence students’ performance. Examples of new tasks aimed at  
measuring understanding of subconstructs include:

PW1
A football team has won 1

3  of their matches this year. They won four matches. 
How many matches have they played? [Part-whole]

M1
Write the fractions 1

5  , 5
4 , 1

8  in order from least to largest. [Measure]

O1
When importing board games, an import tax of 3 % is added, and then 25 % 
sales tax. Would the total price be greater, lesser or equal if the sales tax had 
been added first? [Operator]

Our aim was to create tasks that corresponded to one and only one of the 
subconstructs. However, because the subconstructs are interconnected 
and since common tasks often can be solved by several approaches, this 
is difficult in practice. This challenge was also illustrated in the study 
of Charalambous and Pitta-Pantazi (2007). During the course of their 
analysis, they decided to associate, some tasks originally designed to 
measure a single subconstruct, to more than one subconstruct. We opted, 
however, to associate each task strictly to one subconstruct. The classi-
fication assigned six tasks to part-whole, two to ratio, three to operator, 
five to quotient, five to measure, and six to equivalence. The rest were 

Figure 2. Sample task (part-whole subconstruct) Charalambous and Pitta-Pantazi 
(2007, p. 312)
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assigned to operations. The tasks were validated by the two authors and 
a third researcher. Since we have access only to parts of the test used by 
Charalambous and Pitta-Pantazi (2007), we cannot compare tasks in full 
detail. Their number of tasks, 50 (for a test of 160 minutes), cannot be 
directly compared with our number of tasks, 35 (for a test of 90 minutes). 
For example, we counted the task PW2 in figure 2 above, as one task and 
awarded full score for answering c and d, while half score if only one of 
them were circled. Charalambous and Pitta-Pantazi (2007) counted this 
as one task for each of the answer alternatives, thus a total of four tasks, 
in our view overemphasizing the task. Since we had fewer tasks, our test 
has less redundancy for simple mistakes. Also, five of our tasks concerned 
algebra and percentages. However, we associated the tasks to the same 
subconstructs as in the study of Charalambous and Pitta-Pantazi (2007), 
allowing us to compare the fits of the models.

Participants and data collection
The test was aimed at 8th and 9th grade students; however, some 7th and 
10th grade students were also included. This meant that we obtained 
a larger pool of data, and that we could do comparisons between  
different grades.

In addition to the scoring of the individual tasks, grade level, text-
book used, and gender were registered. The tests were answered anony-
mously and no personal information was collected. Over a period of 
fourteen months we obtained responses. One of the pre-service teachers  
misplaced answer sheets before they were coded adequately and two 
responses did not contain any correct answers. The results for these stu-
dents are not part of the analysis. Among the remaining 638 students, 
there were 38 seventh graders, 218 eighth graders, 207 ninth graders and 
150 tenth graders. For 25 students, data of grade was missing, although 
they came from a pool of eight and ninth grade students.

In addition to the written test, 33 students among the 8th and 9th 
graders were selected for interview. The pre-service teachers administer-
ing the test at four of the schools were asked to interview students, and 
together with their mentors they decided which of the students to inter-
view. The interviewers were asked to focus on one or more constructs 
and ask questions to shed light on the students’ conceptualization of 
fractions; the students’ computational skills; how the students reasoned 
to find a solution strategy; which solution strategies they used; and to 
what extent the students reflected on their choices of solution strategy 
and their reasoning. The pre-service teachers gave written accounts of 
the interviews.
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Data analysis
For the quantitative analysis, a score of 0 was assigned to a blank answer 
or wrong answer, and 1 to a correct answer, as it was not feasible to grade 
the tasks continuously. For some answers a score of 0.5 was assigned. 
Even though each task was scored discretely, the latent variables in the  
structural equation model are viewed as continuous.

We have used descriptive statistics and SEM-modelling. The data 
analysis was carried out using R: A language and environment for sta-
tistical computing (R Core Team, 2018) and lavaan (Rosseel, 2012, 2018). 
The structural equation models were described using the lavaan model 
syntax, and maximal likelihood was used as the estimator.

A qualitative analysis with focus on the ratio subconstruct was con-
ducted, since this was the construct which eventually had to be excluded 
in the quantitative analysis, and all 19 interviews which included solu-
tion strategies on tasks under the ratio construct were analysed. Ten of 
these students only gave an answer to one of the tasks in the interview. 
The strategies used by the 19 interviewed students were assigned to one 
of four categories.

Results, findings and discussion

Means, standard deviations and correlations
For each student, the arithmetic mean score for the tasks correspond-
ing to each subconstruct was computed, thus obtaining a score on each 
construct for each student. Then, for each construct, the average of 
these scores were calculated, along with the standard deviation, and is  
tabulated in table 1.

We have also tabulated the means and standard deviations using only the 
tasks adopted from Charalambous and Pitta-Pantazi (2007), see table 2, 
and note that the means are not very different.

Since the tests are not identical and the setting is different, we cannot 
directly compare with the means reported in the paper by Charalambous 
and Pitta-Pantazi (2007) and by Leung (2009). Nevertheless, we point out 

Subconstructs P-W Ratio Opera Quoti Meas Equiv Multi Add Total

M 0.64 0.81 0.36 0.54 0.39 0.66 0.22 0.40 0.49

SD 0.24 0.28 0.31 0.31 0.25 0.30 0.22 0.49 0.19

Table 1. Average success rate of constructs. Algebraic tasks are not included
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that the lower average score on the measure subconstruct relative to the 
part-whole is in line with both of these studies.

In table 3 the correlations between students’ mean scores of the tasks 
related to each subconstruct are given. As expected, the mean scores for 
each subconstruct are positively correlated.

In table 3 we see that multiplication has a higher correlation with other 
subconstructs as compared to addition when all tasks are included. 
The reason for this may be that several of the tasks on multiplication 
were word problems, and that more complicated tasks tend to draw on  
knowledge from several different areas.

The larger correlation (r(636) = .59, p < .001) between part-whole and 
equivalence may indicate that the part-whole subconstruct is more 
central to the equivalence tasks than the measure and quotient sub-
constructs. Moreover, equivalence is a strong predictor of the students’ 
achievement on the test. However, the task concerning addition of frac-
tions had only a moderate correlation (r(636) = .40, p < .001) with the tasks 
concerning equivalence. On the other hand, we observed that the highest  
correlations with knowledge of adding fractions were with specific tasks 

Table 2. Average success rate of constructs when using only the 19 tasks taken from 
Charalambous and Pitta-Pantazi (2007)

Subconstructs P-W Ratio Opera Quoti Meas Equiv Multi Add Total

M 0.55 0.81 0.39 0.50 0.32 0.64 0.21 0.40 0.47

SD 0.34 0.28 0.37 0.35 0.26 0.32 0.29 0.49 0.20

Table 3. Correlation r(636) (p < .01) between the students’ average score on tasks 
associated to each subconstruct 

Subconstructs P-W Ratio Opera Quoti Meas Equiv Mult Add Total
Part-Whole .25 .30 .30 .26 .44 .18 .27 .61
Ratio .28 .16 .21 .23 .26 .12 .11 .45
Operator .41 .18 .32 .28 .35 .29 .21 .60
Quotient .47 .25 .37 .37 .42 .22 .29 .71
Measure .49 .26 .38 .46 .32 .23 .22 .66
Equivalence .59 .28 .37 .47 .45 .23 .43 .74
Multiplication .48 .22 .47 .43 .46 .49 .21 .47
Addition .33 .11 .20 .32 .30 .40 .36 .52
Total .79 .41 .62 .74 .72 .78 .74 .50
Note. The lower left triangle, in boldface, is the correlation with all tasks included 
except for the tasks involving algebra. The upper right triangle is the correlation with 
only the tasks from the appendix of Charalambous and Pitta-Pantazi (2007) included.
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related to equivalence adopted from Charalambous and Pitta-Pantazi 
(2007, p. 314) and with one of the tasks the authors classified as related to 
measure where the students were asked to order three fractions according 
to their size. We note that this is in agreement with the model by Behr 
et al. (1983) and Charalambous and Pitta-Pantazi (2007). The solving of 
this task requires finding a common denominator and it is therefore not 
surprising that this shows some correlation with adding fractions.

Among the equivalence tasks, we noted a difference between tasks 
using small numbers, where it is easy to use trial and error, and nearly 
equivalent tasks with larger numbers, whose predictive power seems 
better. It should be noted that Charalambous and Pitta-Pantazi (2007, 
p. 314) used numbers with greater value in one of the tasks on equivalent 
fractions we adapted.

SEM-models
We tested several SEM-models. In lavaan we defined latent variables for 
each of the subconstructs, and it was specified that the latent variables 
were measured by the scores on the tasks associated with the given sub-
construct. Regressions were specified according to the graphical models 
as in figure 3 and figure 4.

We were unable to get a good fit with the full model of Behr et al. (1983) 
and Charalambous and Pitta-Pantazi (2007). For this reason, we decided to 
investigate a restricted model given in figure 4. A closer analysis revealed 
that the two tasks concerning ratio were problematic. Both were adapted 
from Charalambous and Pitta-Pantazi (2007, p. 312). In order to obtain a 
good fit, a substantial amount of the variance of students’ scores on tasks 
concerning the ratio concept have to be explained by the variance of their 
scores on tasks concerning part-whole. However; the correlation between 
students score on part-whole and ratio was only r(636) = .25, p < .001, 

Figure 3. SEM-model showing the Part-whole (Par), Ratio (Rat), Operator (Opr), 
Quotient (Quo), and Measure (Mea) subconstructs

Par

MeaQuoOprRat
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less than the correlation between part-whole and any other construct. 
Also; there must be sufficient covariance between the scores on tasks 
under the same subconstruct, and this was not the case. In fact, we could 
not reject the hypothesis that the responses on the two tasks measuring 
the ratio construct, R1 and R2, were independent. Using a contingency 
table and Pearson’s test without Yates’ continuity condition we obtained  
χ2 (1, N = 638) = 0.21, p = .646.

High success rate on the ratio tasks was another obstruction to a good 
fit. If most students answer a given task correctly, regardless of their 
achievements on other parts of the test, the task have weaker predic-
tive power. For the ratio tasks the mean score was 0.81 (SD = 0.28), com-
pared to an average of 0.49 (SD = 0.19). Also, task R1 and task R2 had 
low correlation with the total score, r(636) = .30 and r(636) = .28 respec-
tively. There were only five tasks with lower correlation with the total 
score. Expecting that the success rate on the tasks would be higher for 
10th graders than for the lower grades, we broke down the results for 
each grade and calculated the correlation, see table 4, and found that the  
correlation between the two tasks was low for all grade groups.

Grade 7 8 9 10 All

# students 38 218 207 150 638

Mean score Task R1 0.737 0.835 0.821 0.867 0.828

Mean score Task R2 0.711 0.739 0.826 0.873 0.798

Correlation -.250 .101 -.114 .086 .018

Table 4. Correlation between Task R1 and Task R2 broken down by grade 

Note. There were 25 students where data for grade were missing.

Figure 4. Fitted SEM-model showing the Part-whole (Par), Operator (Opr), Quo-
tient (Quo), and Measure (Mea) subconstructs (χ2/df = 1.619, RMSEA = 0.031,  
CFI = 0.938) 

Par

MeaQuoOpr

0.74
0.65

1.06

Note. The weights in the figure are an estimate of the regression coefficients (SD of 
these estimates is between 0.11 and 0.15).
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In view of the possibility that a high success rate for the answers of the 
tasks led to the independence hypothesis not being rejected, we also 
tested the independence of task R1 and task R2 for the 8th graders and 
obtained χ2 (1, N = 218) = 2.22, p = .137 using a contingency table (there 
were too few 7th graders). The lack of significant correlation between 
the ratio tasks may indicate that random mistakes are more common 
than mistakes rooted in misconceptions. Similarly, since the ratio tasks 
only had two possible answers, guessing could be contributing to a lower 
correlation.

In summary, there are challenges to the reliability of the ratio tasks. 
However; it is still possible that Norwegian students at 7th to 10th grade 
do not rely on part-whole reasoning as much as the Cypriot students. 
Our qualitative analysis of 19 interviews in the next section seems to 
support this.

The model used by Behr et al. (1983) and Charalambous and Pitta-Pan-
tazi (2007) asserts that part-whole plays a prominent part in the under-
standing of the other subconstructs. As part-whole is the starting point 
for fractions in both the Norwegian and the Cypriot curriculum, in the 
latter one introduced from the first grade (Charalambous & Pitta-Pantazi, 
2007), one could think that younger students make more use of strate-
gies depending on part-whole reasoning than older students, making it 
is easier to obtain a good fit for the model with younger students com-
pared to older students. Likewise, independent focus on the ratio subcon-
struct, as indicated in a separate chapter in the most popular Norwegian  
textbook  for 6th grade written by Alseth et al. (2006), may also contri-
bute to the development of an understanding that does not rely as heavily 
on part-whole as in Cyprus. Thus, both the maturity of the students and 
curricular factors may have contributed to the lack of fit with the ratio 
subconstruct included. That the rest of the subconstructs still have a sig-
nificant dependence on part-whole may be seen as a stronger support for 
the rest of the model than if we had tested younger students.

We concluded that quantitatively, we were unable to identify either 
the ratio factor or the association between ratio and part-whole in the 
current dataset, and hence we omitted the ratio subconstruct from the 
SEM-model.

With the ratio factor removed we got a very good fit (χ2/df = 1.619, 
RMSEA = 0.031, CFI = 0.938) of the model in figure 4. Using only the rele-
vant tasks from Charalambous and Pitta-Pantazi (2007) we also obtained 
a very good fit of the model (χ2/df = 1.429, RMSEA = 0.026, CFI = 0.973). 
We view this as a confirmation of a part of the model of Behr et al. (1983) 
adapted by Charalambous and Pitta-Pantazi (2007) as we are confirm-
ing the factors operator, quotient and measure and their dependence 



gustavsen and imenes

Nordic Studies in Mathematics Education, 24 (2), 5–24.18

on the part-whole factor. In particular, it confirms that the part-whole  
interpretation of fractions plays a dominant role.

Even though the measure aspect does not derive directly from part-
whole (Stafylidou & Vosniadou, 2004), we see that measure is the sub-
construct that has an edge with the highest weight from part-whole, 
indicating the central position of both the part-whole and the measure 
subconstructs. This is different from the fit of Charalambous and Pitta-
Pantazi (2007) where measure is the subconstruct with the weakest asso-
ciation to part-whole. There has been some discussion among researchers  
as to whether part-whole and measure should be viewed as separate 
subconstructs  (Lamon, 2007).

We note that the model presented in figure 1 include ratio and in fact 
assume that understanding of equivalence depends mainly on knowledge 
of the ratio construct. Since we had to remove the ratio construct from 
the SEM-model, we restricted ourselves to statistical confirmation of the 
sub-model given by figure 4.

A qualitative analysis of the ratio subconstruct
As we were unable to include the ratio construct in the SEM-model, 
but wanted to investigate the relation, we decided to use a qualitative 
analysis of this subconstruct. The two tasks included have been exten-
sively used in the literature. Task R1 was adapted from Charalambous and 
Pitta-Pantazi (2007, p. 312) who used the following task inspired by an  
experiment of Noelting (1978).

R1
John and Mary are preparing orange juice for their party. Presented below are 
the recipes they used. What recipe will make the juice the most ”orangey”?

– John’s recipe: Two cups of concentrate juice – five cups of water.
– Mary’s recipe: Four cups of concentrate juice – eight (eleven) cups of water.

We altered the task by replacing eight with eleven. Thus, we avoid that 
the strategy of comparing four cups to two cups of concentrate juice 
without considering the water yields a correct answer. Task R2 is identi-
cal to a task used by Charalambous and Pitta-Pantazi (2007, p. 312) which 
originates from Lamon (1993). 

In both task R1 and task R2 it is possible to obtain the correct answer 
even though the student has a misconception. The success rate of 82.8 % 
and 79.8 % respectively, was contrary to what we expected, since task R1 
was changed in order to make it harder.
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Problems concerning ratio have been classified into comparison problems 
and missing value problems, similar to fraction comparison and equiva-
lence tasks respectively (Lamon, 2007, p. 637). We follow Charalambous 
and Pitta-Pantazi (2007) and do not include the missing value problems  
in the ratio subconstruct task analysis. Of the 33 interviewed students, a 
total of nine told how they reasoned on both ratio tasks, four how they 
reasoned on task R1, and six how they reasoned on task R2. The answers 
were classified into four categories: norming, comparative index, formal 
part-whole, and guessing. The most common method of reasoning is 
what is classified as norming (Lamon, 2007), including informal use of 
external ratio. A student using the norming process will ”choose one of 
the ratios and use it to interpret the other ratio” (Lamon, 2007, p. 644). 
An example of this is the interviewed 9th grade student justifying his 
answer of task R2 by explaining:

The three boys share a pizza. If the girls divide themselves in groups 
of three on the pizzas they have, we are left with a girl that gets a 
whole pizza, therefore the girls get more pizza. Or, we can say that 
there are two girls to each pizza, and then there is a third girl that 
joins in on one of the pizzas. The boys are three to the one pizza 
they have, and therefore the girls get more pizza.

This thinking is related to the rate concept and is also called exter-
nal ratio (Charalambous & Pitta-Pantazi, 2007; Lamon, 2007). The 
student also used the norming process when reasoning on task R1, and  
understands that there is a ratio and scales in order to compare:

If John’s juice is to approach Mary’s, he doubles the recipe and then 
gets 4 parts oranges and 10 parts water. He then still has less water 
than Mary and therefore stronger juice.

This student is representative for those seven and ten students classified 
as using the norming method or the external ratio informally to answer 
R1 and R2 respectively.

R2
Who gets more pizza, the boys or the girls?
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In contrast another student (8th grader) divided the number of pizzas by 
the number of persons and compared the results, thus formally using the 
comparative index (Charalambous & Pitta-Pantazi, 2007). Three students 
answered R2 in similar ways. None used this approach for R1. A slightly 
different approach is seen in the following reasoning on task R1:

John has 2
7  oranges, Mary has 4

15  .

The same student (9th grader) remarked on task R2:

The boys get 1
3  pizza each, the girls get 3

7  . The girls therefore get 
the most.

This student uses a formal approach, and instead of using for example 
the ratio 4 to 11, considers 4

15  , i.e. a part-whole interpretation. One other 
student reasoned on R1 using these formal rules. There is a difference 
between ratio and the other constructs in the way they combine through 
arithmetic operations. However, students having a good command of 
the ratio concept easily switch between ratio and part-whole compari-
son (Lamon, 2007, p. 659). Studies suggest that older students tend to 
replace informal reasoning strategies by rules and algorithms (Lamon, 
2007, p. 645). There were four students who said they just guessed on task 
R1 and one on task R2.

We must be careful in drawing conclusions from the small sample of 
interviews. However; we see the ratio subconstruct as distinguishable 
from the other four subconstructs, in that the majority used norming 
(including use of external ratio) or the comparative index. The limited 
use of part-whole reasoning is consistent with the low correlation 
between the ratio tasks and the other tasks and may indicate that ratio is  
constructed separately from the part-whole interpretation.

To further understand the students’ reasoning, we investigated their 
textbooks, ”Faktor” (Hjardar & Pedersen, 2006) and ”Grunntall” (Bakke 
& Bakke, 2006), and found that none of the interviewed students had a 
textbook focusing especially on ratio the year they were interviewed. 
This could partially explain the amount of informal reasoning on the 
ratio tasks. Also, Grønmo and Bergem (2009, pp. 71–72) found that ”the 
Nordic group” of countries, emphasize mathematics related to daily life, 
including estimation, at the expense of classical formal mathematics. 
Thus, it should not be surprising that the Norwegian students used non-
formal reasoning on the ratio tasks and did depend less than Cypriot stu-
dents on the understanding of the part-whole subconstruct when solving 
tasks on ratio. However, we also found some indications that the ratio 
subconstruct is linked to the part-whole subconstruct.
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Conclusions
Using structural equation modelling, we were able to obtain a very good 
fit with a simple model (figure 4) showing that part-whole has an impor-
tant role in Norwegian 7th to 10th graders’ understanding of fractions, 
thus confirming the prominent position of the part-whole subconstruct 
reported in other studies. The strengths of the associations between part-
whole and the different subconstructs are; however, different from those 
reported by Charalambous and Pitta-Pantazi (2007), and this is inter-
preted as an influence of cultural and curricular factors and the maturity 
of the students. We were unable to obtain a good fit when including the 
ratio subconstruct. Analysing 19 task interviews, we found mainly infor-
mal reasoning viewed as specific to the ratio subconstruct, but also some 
reasoning relating the ratio subconstruct to the part-whole. We observed 
that these findings were consistent with emphasis in textbooks and broad 
characteristics pointed out by Grønmo and Bergem (2009).

We found that the mean scores for each subconstruct are positively 
correlated, and there is a particularly high correlation between tasks 
measuring the understanding of part-whole and equivalence of fractions.

Several studies conducted in Norwegian contexts (Bjerke et al., 2013; 
Gray & Ånestad, 2016) utilize the five-subconstruct conceptualization of 
fractions. Our partial verification of the model in a Norwegian context 
adds further validity to these and other studies.

We argue that our findings have implications for teaching: One can 
expect that a good understanding of part-whole will contribute to the 
understanding of the other subconstructs. However, part-whole does not 
fully explain the variation in the other subconstructs; hence the stu-
dents need learning experiences connected with each of the subcon-
structs and especially with those that the model-fit suggests are less 
related to part-whole (see figure 4). This is in alignment with other studies  
(Charalambous & Pitta-Pantazi, 2007, p. 310; Lamon, 2007, p. 635).

For further research, we conjecture that the model linking part-
whole to the subconstructs ratio, operator, quotient and measure has 
wide applicability. However, we believe the amount of variance that 
part-whole explains in the other constructs will depend on factors such 
as context and the age of the students tested. Thus, caution must be 
exercised when the model is applied. In some contexts, the association 
between part-whole and the other subconstructs may be weaker than 
under other circumstances. 
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