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To characterize teaching designs intended to enhance students’ problem solving and 
reasoning skills or to develop other mathematical competencies via problem solving 
and reasoning, a literature review was conducted of 26 articles published in seven 
top-ranked journals on mathematics education from 2000 to 2016. Teaching designs 
were characterized by a) the educational goals of the designs, b) the claims about 
how to reach these goals, and c) the empirical and theoretical arguments underlying 
these claims. Thematic analysis was used to analyze the retrieved articles. All but two 
studies had goals concerned with developing students’ mathematical competencies. 
The overarching ideas of the identified emergent claims regarding the achievement 
of stipulated goals, concerned scaffolding students’ learning and letting students 
construct their own mathematics. Four recurring theoretical arguments were found 
to support emergent claims: hypothetical learning trajectories, realistic mathematics 
education, theory of didactical situations and zone of proximal development.

Two central goals of mathematics education are to support students’ 
development of the interconnected key competencies problem solving 
and reasoning (Ball & Bass, 2003; Kilpatrick, Swafford & Findell, 2001; 
NCTM, 2000; Niss & Jensen, 2002). Students should be able to engage 
meaningfully in problem solving, which is solving a novel task for which 
the solution method is not known in advance (Schoenfeld, 1985), and in 
reasoning, which is ”the explicit act of justifying choices and conclusions 
by mathematical arguments” (Boesen et al., 2014, p. 75). The last three 
decades, there has been an increase of mathematics education research. 
This research has contributed with insights into how to improve teach-
ing to help students develop their problem solving and reasoning com-
petencies (Carpenter et al., 2004; Hiebert & Grouws, 2007; Niss, 2007). 
Furthermore, research has also shown that activities in which students 
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are engaged in problem solving and reasoning can be an effective way to 
promote the development of other competencies, like conceptual and 
procedural understanding (Collins, 2012; Granberg, 2016; Warshauer, 
2015). Despite the insights gained, there is still much we need to know 
to enhance teaching practice (Niss, 2007). Added to this, educational 
research in general has been criticized for its lack of practical applicabi-
lity (Stylianides & Stylianides, 2013; van den Akker, Gravemeijer, McKen-
ney & Nieveen, 2006). An aim by conducting intervention studies, is to 
bridge the gap between research insights gained, sometimes far from the 
classroom, and practical applicability. This review accordingly examines 
and characterizes intervention studies in mathematics education. Here, 
these intervention studies are seen as teaching designs (defined in section 
Design research) in which the central competencies of problem solving 
and reasoning are either the educational goal as such or the means for 
reaching another educational goal. The present results can strengthen 
our knowledge of the theoretical arguments that support certain claims 
about how to achieve specified teaching goals in mathematics education. 

The teaching designs in the reviewed studies were analyzed based on 
their intervention goals, claims about how these goals were to be reached 
and arguments supporting these claims. This structure of goal, claim and 
supporting argument is borrowed from the area of design research (van 
den Akker, 2010). The research question guiding this study is presented 
in section Aim and research question. This review critically analyzes pre-
vious intervention study literature connected to mathematical problem 
solving and reasoning, and presents the goals, claims and arguments that 
predominate in related teaching designs.

Background and framework
This section first expands on the distinction between learning of or learn-
ing via a competency. This is important because the review aims at exa-
mining the extent to which problem solving and reasoning were learn-
ing goals in themselves (i.e., learning of a competency) and the extent to 
which those competencies were used as means for learning (i.e., learn-
ing via a competency). Thereafter, design research and its relationship 
to teaching design are characterized in order to describe the relevant 
terminology and justify the choice of analytical framework. Finally, the 
analytical categories used to analyze teaching designs are presented.

Learning of and via a mathematical competency
Mathematical competence is defined as ”the ability to understand, judge, 
do and use mathematics in a variety of intra- and extra-mathematical 
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contexts and situations in which mathematics plays or could play a role” 
(Niss, 2003, p. 7). A mathematical competency is defined as ”a clearly recog- 
nisable and distinct, major constituent of mathematical competence” 
(Niss, 2003, p. 7). Thus, a mathematical competency is a component of 
general mathematical competence, a specific skill such as problem solving 
or reasoning. The present literature review examines how teaching designs 
are used in mathematics education research as a way to improve mathe-
matics teaching and learning of and via problem solving or reasoning. The 
review thus distinguishes between learning of and learning via a compe-
tency. For example, a learning sequence may comprise the learning of a 
problem solving competency to become a more proficient problem solver. 
It could also be the case that competency in representations and connec-
tions may be developed via problem solving activities (Lithner, 2008).

Design research
Design research seeks to understand and inform both theory and prac-
tice concerning how successful a teaching design is under specified con-
ditions and contexts (Brown, 1992; Cobb et al., 2003; Prediger, Grave-
meijer & Confrey, 2015). The fundamental notion of a design research 
project is that it starts with design ideas. These design ideas are theoreti-
cally and empirically grounded ideas about how, for example, specified 
student learning is enhanced. The ideas are then tested in an intervention 
within a certain context (Cobb et al., 2003; McKenney & Reeves, 2012). 
The results of such testing, instead of simply providing an instructional 
sequence that ”works”, are intended to frame theoretical and empirical 
insights, and express them as design ideas (Cobb et al., 2003). These ideas 
can be of a detailed, prescriptive nature that can inform both researchers  
and teachers on how, for example, to design tasks and teaching that 
enhance particular student learning (Cobb et al., 2003; Kali, 2008;  
McKenney & Reeves, 2012).

Over the past two decades, design research has gained prominence 
(Anderson & Shattuck, 2012; Cobb et al., 2003). McKenney and Reeves 
(2013) stressed the need for thoughtful and in-depth analysis of full-text 
reports of design research. Design research should build and be built on 
theory (Cobb et al., 2003; McKenney & Reeves, 2012; van den Akker, 2010). 
The term theory, in this context, refers to the grounding hypothesis or 
idea about something (Thomas, 1997). The design process may draw on 
various kinds of grand theories. Typically, a grand theory would uphold 
certain ideas about human development and learning, for example, Pia-
getian perspectives on knowledge construction or sociocultural theory. 
However, grand theories are often too general to inform the construc-
tion of an educational design. Hence, a specific intermediary framework  
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linking a grand theory or theories and the design process is more suitable 
(Cobb et al., 2003; Ruthven, Laborde, Leach & Tiberghien, 2009). Such 
intermediary frameworks ”extract, coordinate, and contextualize relevant 
aspects of several grand theories that are pertinent to developing, analyz-
ing, and evaluating teaching designs” (Ruthven et al., 2009, p. 330). An 
example of an intermediate framework is Brousseau’s theory of didactical 
situations (TDS) (Ruthven et al., 2009). Central to TDS is the teacher’s 
responsibility for creating a learning situation in which the teacher can 
hand over the responsibility for learning to the student (Brousseau, 1997). 
This intermediate framework has been strongly influenced by Piagetian 
theory, which, as stated earlier, can be seen as a grand theory (Brousseau 
1997; Ruthven et al., 2009).

This literature review is not restricted to reviewing design research 
in mathematics education, but uses the structure of a design research 
study to analyze the reviewed articles’ reporting of intervention studies 
in mathematics education. The structure of design research studies is 
presented in section Analytical categories detecting teaching designs 
which also presents how the teaching designs in the reviewed articles 
were analyzed and characterized. The focus of this literature review is 
on the design ideas connected to teaching, here called teaching design – 
for example, a plan or program functioning as a guide for the construc-
tion and implementation of an activity. A teaching design conveys infor-
mation about essential components of a teaching product, which is the 
outcome of a teaching design. A teaching sequence is one example of a 
teaching product.

Analytical categories detecting teaching designs 
Theory cannot in itself provide a straightforward recipe for designing 
effective learning environments (National Research Council, 2000). 
Analogously, ”physics constrains but does not dictate how to build a 
bridge” (National Research Council, 2000, p. 131). A teaching design must 
include a goal for learning that can direct the design (National Research 
Council, 2000), but to reach that goal, there must be an idea, a claim, as 
to how the goal is to be reached (van den Akker, 2010). For example:

The claim that invented representations are good for mathematics 
and science learning probably has some merit, but it specifies neither 
the circumstances in which these representations might be of value 
nor the learning processes involved and the manner in which they 
are supported.  (Cobb et al., 2003, p. 11)
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A claim should therefore specify what objects are required to enable 
the goal to be reached and a specification of the relationships between 
the objects (Schoenfeld, 2002). The claim, in turn, is to be supported 
by theoretical and empirical arguments (Lithner, 2017; McKenney & 
Reeves, 2012; van den Akker, 2010). The empirical arguments ought to 
be anchored in both previous research and the empirical findings of the 
study in question (Lithner, 2017; van den Akker, 2010). An intervention 
study should therefore provide information about goal(s), claim(s) and 
supporting theoretical and empirical argument(s) (Lithner, 2017; van den 
Akker, 2010).

To characterize the teaching designs found in the retrieved articles, 
the review used a version of van den Akker’s (2010) characterization 
of teaching designs as modified by Lithner (2017). Lithner’s modified 
version used the categories goals, claims and arguments, which convey  
information about:

 – the goal to be attained through the suggested teaching;

 – the claim made as to how the stipulated goal is to be reached, i.e., 
the means for reaching a learning goal, including information 
about the overarching ideas of the intervention and how the  
intervention methodology is to be executed; and

 – theoretical and empirical arguments supporting the claims about 
reaching the stipulated goal; empirical arguments consist of  
empirical evidence from both previous research and the research 
conducted for the study in question.

Aim and research question
Teaching designs can have different educational goals, make different 
claims as to how to reach these goals and cite different arguments sup-
porting the claims made. The aim of literature review is to characte-
rize teaching design in mathematics educational research, connected to 
problem solving and/or reasoning. The research question is accordingly: 
What characterizes the teaching design research that aims to support 
students’ learning of problem solving or reasoning and via problem 
solving or reasoning?

Method
The literature review method essentially followed the method introduced 
by Gough, Oliver and Thomas (2013).
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Search strategy
The search included results from journal articles published between 
2000 and 2016. Only journal articles were included (excluding doctoral 
theses, books and conference proceedings) because the most important 
research results are published as journal articles (Ryve et al., 2015). The 
search was conducted in the following journals on mathematics educa-
tion: Educational Studies in Mathematics, For the Learning of Mathematics,  
The Journal of Mathematical Behavior, Journal of Mathematics Teacher 
Education, Journal for Research in Mathematics Education, Mathematical 
Thinking and Learning and ZDM Mathematics Education. The rationale 
underlying this selection was that these journals were internationally top 
ranked by Toerner and Arzarello (2012), meaning that only top-quality 
articles would be reviewed. The search was conducted via the Mathema-
tics Education Database (MathEduc Database, 2017). Classification codes 
provided by the database were used to delimit the search. The classi-
fication codes included ”teaching methods and classroom techniques”, 
”lesson preparation”, ”educational principles”, ”investigating and problem 
solving” and those referring to the 1st–13th school years.

For an article to be included in the review, its title, keywords, or 
abstract had to contain a two-term combination (term 1 plus term 2) of 
terms shown in table 1 and report on an intervention study. During pilot 
testing of the search method, a single-term search was tried, resulting 
in too many irrelevant hits, as well as a three-term search, which missed 
potentially relevant hits. Using a two-term combination search method 
seemed to result in balanced search results. The two-term combination 
search method was previously used in a literature review by Ryve et al. 
(2015). During pilot testing of the two-term combination search method, 
more search terms were included. The results of this testing indicated 
that some search terms overlapped and did not render more unique hits. 
For obvious reasons, the combination ”design*, design*” was omitted. The 
term ”mathematic*” was not used, because only journals on mathematical  
educational research were included in the search.

The first search identified 187 unique articles. First, to ascertain 
whether the inclusion criteria were potentially met, all the articles were 
checked by reading the title and keywords. If there was any doubt as to 
whether the article should be included in the review, it was included in a 
secondary check. This first check resulted in 84 selected articles. Second, 
the abstracts of all 84 articles were read to check whether the inclusion 
criteria were still met. If there was any doubt, the whole article was read. 
This resulted in a final selection of 26 articles to be reviewed (see appendix  
for list of reviewed articles). 
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Method for extracting and thematizing goals, claims and arguments
For each article, the goals, claims, and theoretical and empirical arguments 
for the teaching design were identified by closely reading the full text 
of each article. To extract the goal of a design, the following analytical 
question was posed: ”What goals are to be attained through the sug-
gested teaching/intervention?” The question was considered answered 
when the design intervention’s purpose was identified (van den Akker, 
2010). To extract the claims of a design, the following analytical ques-
tion was posed: ”What claims are made concerning how the goals are to 
be reached?” The question was considered answered when (i) a descrip-
tion of the characteristics of the proposed intervention (i.e., a descrip-
tion of the overarching ideas of the intervention) and (ii) the methodo-
logy for how this was implemented had been identified (van den Akker, 
2010). The arguments supporting a teaching design were of three types: 
theoretical arguments, empirical arguments from previous studies and 
empirical arguments in the study itself. To extract the different types 
of supporting arguments, the following analytical question was posed: 
”What supporting arguments are given to indicate that the goals were 
achieved through the claimed teaching/intervention?” The question was 
considered answered when (i) theoretical arguments and (ii) empirical 
arguments from the study in question (presented as results) and from 
previous studies were identified.

Themes were then extracted from the identified goals, claims and 
arguments. Thematic analysis (Braun & Clarke, 2006) was used to do this, 
by means of (i) close reading of the full article, (ii) generating initial codes, 
and (iii) combining codes into themes. Examples of initial codes (with 
examples of relevant articles in parentheses) resulting in the goal theme 
”problem solving” were: ”ways to work” (Abdu, Schwarz & Mavrikis, 2015, 
article 1); ”strategies” (Koichu, Berman & Moore, 2004, article 10; Lynch & 
Star, 2014, article 13); and ”problem solving” (Csíkos, Szitányi & Kelemen, 
2012, article 4; Lee, Yeo & Hong, 2014, article 12). After close reading and 
rereading of the selected articles, the initial codes were all connected 

Term 1 Term 2

Teach* Design*

Instruction* Method*

”Problem solv*” Principle*

Reason*

Design*

Table 1. The search terms used in the literature review
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to the goal of developing students’ problem solving competency. The 
results section presents examples illustrating why certain articles were  
categorized under certain themes. 

Results
This section first presents a table (table 2) listing the reviewed articles, 
showing the various goals, claims and theoretical arguments identified 
when analyzing the articles, as well as whether the claims of the articles 
used problem solving or reasoning to reach the stipulated goals. There-
after, three sections present descriptions and examples of the reviewed 
articles’ various goals (section Goals as part of a teaching design), claims 
(section Claims as part of teaching design) and theoretical and empiri-
cal arguments (section Theoretical arguments and examples of empirical 
arguments as part of a teaching design). A number in parentheses after 
each article connects the article to the results in table 2; the full article 
reference is found in the appendix. To illustrate the results, examp-
les of reviewed articles are cited, rather than presenting an exhaustive  
treatment of all reviewed articles.

Goals as part of a teaching design
All but two studies had goals connected to mathematical competen-
cies (these two studies are indicated as ”Other” in table 2 in the ”Goal” 
column). Nine studies had goals connected to problem solving, one 
to reasoning, and 14 to other competencies (e.g., communication, rep-
resentations and connections). Therefore, ten studies (nine problem 
solving plus one reasoning studies) had the learning goal ”learning of the  
competencies problem solving or reasoning”.

An example of a study with a learning goal connected to problem 
solving was one by Visnovska and Cobb (2015) (article 25), in which the 
authors presented the results of an in-service training program. The aim 
was to study a means of supporting teachers’ development of instruc-
tional practices that involved diagnosing students’ reasoning and adjust-
ing the instruction according to the diagnosis. The in-service training 
was to promote the development of students’ problem solving compe-
tency. A study with a competency goal other than problem solving and rea-
soning was conducted by Ridlon (2009) (article 18), who reported on a two-
year classroom-intervention study with the goal of improving students’ 
communication and thinking skills by letting students work on problem 
solving tasks in collaborative groups. Here, problem solving was used as 
a means to develop other competencies – i.e., learning via a competency. 
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Notes. The articles’ goals, claims and theoretical arguments are stated, and whether the 
goal was to be reached via problem solving or reasoning. The various goals, claims and 
theoretical arguments are defined in sections Goals as part of a teaching design, Claims 
as part of teaching design, and Theoretical arguments and examples of empirical argu-
ments as part of a teaching design, respectively.
Abbreviations: PS – Problem solving, TS – Teacher-led scaffolding, EM – Emergent 
models, SS – Students’ self-assisted scaffolding, TU – Teaching unit, ZPD – Zone of 
proximal development, RME – Realistic mathematics education, TDS – Theory of 
didactical situations, HLT – Hypothetical learning trajectories.

Article Goal Claim
Overarching idea        Via PS or reasoning

Theoretical argument

1 PS TS PS ZPD

2 Other competency Other PS RME

3 Other TU PS Other

4 PS Other PS Arguments not explicit

5 Other EM Reasoning RME

6 Other competency EM Reasoning RME

7 Other competency SS Reasoning TDS

8 PS TU PS Arguments not explicit

9 Other competency TS, SS Reasoning ZPD

10 PS TU PS Arguments not explicit

11 Other competency TS PS ZPD

12 PS SS PS Arguments not explicit

13 PS TU Reasoning Arguments not explicit

14 Reasoning SS Reasoning ZPD

15 Other competency TU PS Arguments not explicit

16 Other competency TU PS Arguments not explicit

17 Other competency TS Reasoning ZPD & HLT

18 Other competency TU PS Arguments not explicit

19 Other competency Other Reasoning Other

20 PS TU PS Arguments not explicit

21 Other competency EM Reasoning RME & HLT

22 Other competency TS Reasoning RME & HLT

23 Other competency TU PS, Reasoning Arguments not explicit

24 Other competency TU PS TDS

25 PS TS Other ZPD & RME

26 PS Other PS Other

Total: 
26

PS: 9 
Reasoning: 1 
Other: 2 
Other compe-
tency: 14

SS: 3 
TS: 5 
SS & TS: 1 
EM: 3 
TU: 10 
Other: 4

PS: 14 
Reasoning: 10 
PS & reasoning: 1
Other: 1

ZPD: 4 
ZPD & RME: 1 
ZPD & HLT: 1 
RME: 3 
RME & HLT: 2 
TDS: 2 
Arg. not explicit: 10 
Other: 3

Table 2. Articles included in the full-text literature review
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Claims as part of teaching design
In analyzing the studies, four overarching ideas of emergent claims as to 
how the stipulated goals were reached: teacher-led scaffolding, student 
self-assisted scaffolding, emergent models and teaching units. These 
overarching ideas are characterized in the subsections that follow. Four 
of the 26 studies did not make claims fitting into these categories. In 25 
cases, the teaching design goal was reached via problem solving or rea-
soning, for example, in the study by Ridlon (2009) (article 18) mentioned 
in section Goals as part of a teaching design. It was more common to use 
problem solving and reasoning as means (i.e., learning via problem solving 
or reasoning, 25 studies) than to have problem solving or reasoning as a 
teaching goal (i.e., learning of problem solving or reasoning, ten studies). 

The analysis showed that a similar claim could be connected to dif-
ferent goals. For example, goals connected to problem solving and goals 
connected to other competencies could both be claimed to be reached 
via some type of scaffolding. Claims made about teacher-led scaffolding 
and student self-assisted scaffolding were most frequently connected to 
goals about problem solving or reasoning, while claims about emergent 
models were most frequently connected to goals about other compe-
tencies. The overarching idea of teaching units was connected to goals 
about both problem solving and other competencies. In the following  
subsections, the four overarching ideas of claims are presented.

Scaffolding via the teacher
The first overarching idea of claims concerned reaching design inter-
vention goals by means of teacher-led scaffolding. Wood, Bruner and 
Ross (1976) characterized scaffolding as a ”process that enables a child or 
novice to solve a problem, carry out a task or achieve a goal which would 
be beyond his unassisted efforts” (p. 90). This was exemplified in Prediger 
and Pöhler’s (2015) study (article 17), whose goal was to develop students’ 
conceptual understanding in mathematics and language learning in a 
multilingual context. Their claim was for a scaffolding strategy charac-
terized by the teachers’ (i) ongoing diagnoses of the students’ thinking 
and learning, (ii) adapting their instruction to the students’ thinking and 
learning, and (iii) systematically fading out their interactional support. 
The most frequently used move was to ask students for clarification in 
spoken language. A second example of a claim connected to teacher-
led scaffolding, was made by Visnovska and Cobb (2015) (article 25) in 
a study reporting on a professional development program in which the 
teachers were to become more proficient in whole-class scaffolding. The 
goal was to improve teachers’ instruction (see section Goals as part of a 
teaching design). Methodologically, this was implemented by means of 
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high-quality instructions, open-ended tasks and supporting the students 
based on their specific difficulties – so-called adaptive support. Within 
this approach, teachers were expected to diagnose students’ mathemati-
cal reasoning by focusing on what students did and said as they partici-
pated in classroom activities. Visnovska and Cobb (2015) reported that 
the professional development program led teachers to more proactively 
plan how to support the emergence of students’ reasoning.

Abdu et al. (2015) (article 1) reported on a study with two goals of teach-
ing students: to solve mathematical problems and to learn how to learn 
together. During two iterations, a group of teachers enacted scaffolding 
strategies in a whole-class context that fostered metacognitive skills and 
the social dimension that encourages group learning. The study showed 
that the strategic organization of learning together positively influenced 
the students’ ability to solve mathematical problems together.

Student self-assisted scaffolding
The second overarching idea of claims concerned reaching design inter-
vention goals by teaching students how to learn by using scaffolding 
strategies or solution method plans aimed at scaffolding their problem 
solving. For example, Lee et al. (2014) (article 12) reported on a study 
claiming that the goal had been reached by scaffolding students via a 
prompting scheme focused on understanding and planning. The claim 
was supported by the empirical results, which indicated that participat-
ing students from the experimental group developed problem solving 
strategies better than did a reference group. However, the authors stated 
that the intervention might have been slightly too short for the students 
to internalize these strategies.

Emergent models
The third overarching idea of claims concerned emergent modeling. 
According to Gravemeijer (1999), the essence of emergent modeling is 
letting students take a situation-specific problem and model it infor-
mally as a point of departure, and gradually, with teacher support, letting 
the model develop into more formal mathematics. In this way, the stu-
dents gain new mathematical knowledge and understanding. According 
to Gravemeijer (1999), that emergent modeling is useful is a claim con-
nected to realistic mathematics education (see section Theoretical argu-
ments and examples of empirical arguments as part of a teaching design). 
For example, Doorman and Gravemeijer (2008) (article 6) investigated an 
intervention in which teachers used an instructional sequence designed 
to help students move from informal mathematics to more formal mathe-
matics, in this case, reasoning about change. In another example, Stephan 
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(2015) (article 22) reported on a teaching design intervention whose 
goal was to let students meaningfully learn addition and subtraction. 
Both Doorman and Gravemeijer (2008) and Stephan (2015) referred to  
emergent modeling as the means for reaching the teaching goal.

Teaching unit
The final overarching idea of claims concerned various teaching units in 
which teachers executed some kind of detailed instructions. This over-
arching idea was found in various studies but did not comprise claims 
connected to teacher-led scaffolding, student self-assisted scaffolding, 
or emergent models. This overarching idea of claims represents a rather 
varied group, since the way the teaching units were constituted varied 
considerably from study to study, but was united by the common theme of 
using detailed teaching instructions. For example, Tempier (2016) (article 
24) presented a design study whose goal was for students to overcome 
difficulties with the decimal number system. The claim made was that 
this could be done by providing the teachers with instructional resources 
intended to produce autonomy and support student decision making. 
Tempier (2016) was quite detailed as to how the teaching sequence should 
be conducted.

Theoretical arguments and examples of empirical arguments
This section presents the theoretical arguments that emerged, together 
with examples of empirical arguments supporting the claims made. 
Connections are also made between the theoretical arguments and the 
various claims. The results concerning the arguments used to support 
the claims are summarized in table 3.

Sixteen out of 26 studies based their claims on theoretical arguments. 
The studies that did not heavily rely on theoretical arguments justified 
their designs by referring to previous empirical results. Four theoretical 
arguments were identified: Hypothetical learning trajectories (HLTs), 
Realistic mathematics education (RME), Theory of didactical situations 
(TDS) and Zone of proximal development (ZPD). The basis of HLTs 
(Clements & Sarama, 2004; Simon, 1995) is the understanding that, for 
example, teachers anticipate the learning paths of their students in order 
to plan teaching and facilitate learning. Central to RME (Freudenthal, 
1973, 1991; Gravemeijer, 1994) is using mathematics to understand and 
solve real-world problems, in order to gradually develop formal mathe-
matics (Freudenthal, 1973). For example, in the study reported by Vis-
novska and Cobb (2015) (see section Scaffolding via the teacher, article 
25), the theoretical argument supporting the claim made rested on 
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RME. Visnovska and Cobb (2015) stated: ”The supports for the teachers’ 
learning included an instructional sequence on statistical data analysis 
that reflected RME design principles and that had been developed and 
refined during two prior classroom design experiments” (p. 1135). RME 
emphasizes the importance of understanding teaching from the stu-
dents’ point of view and strives to support the progressive development 
of their mathematical activity. Arguments connected to HLTs and RME 
seemed to complement each other, since they are both used to support 
claims made in two of the retrieved studies (Stephan & Akyuz, 2012, 
article 21; Stephan, 2015, article 22). Stephan and Akyuz (2012) wrote: 
”The approach that undergirds the design of the integers instructional 
sequence is Realistic Mathematics Education” (p. 432); the authors conti-
nued, saying that HLTs ”served as the backbone for this study” (p. 433). A 
third theoretical argument is TDS (Brousseau, 1997), which was defined 
in section Design research. Tempier (2016, p. 264f) (article 24) used TDS 
to support his teaching design: 

Based on the example of didactical engineering developed [...] by 
Brousseau, I can say that didactical engineering is characterized by 
collaboration between teachers and researchers for studying didac-
tical situations; collaboration in which teachers and researchers 
have distinct roles. [...] Through the individual teachers involved 
in [the] experiments [...] I aim to develop a resource for potential 
larger scale use. 

A final theoretical argument was found in articles that referred to ZPD 
(Vygotsky, 1978) in connection with scaffolding (Puntambekar & Hub-
scher, 2005; Smit, van Eerde & Bakker, 2013; van de Pol, Volman & Beis-
huizen, 2010; Wood et al., 1976). ZPD is defined as the ”distance between 
the child’s actual developmental level as determined by independent 
problem solving and the higher level of potential development as deter-
mined through problem solving under adult guidance and in collabora-
tion with more capable peers” (Vygotsky, 1978, p. 86). ZPD was used as a 
theoretical argument supporting the claim by Kazak, Wegerif and Fujita 
(2015) (article 9), who reported on a study in which students were to scaf-
fold each other via communication: ”the group is able to spontaneously 
reproduce the role of the teacher who, from a Vygotskian perspective, 
offers scaffolds for problems that are within the ZPD of the learner” 
(p. 1270). As seen in table 3, the most common theoretical argument was 
ZPD, and HLTs were only used in combination with other theoretical 
arguments. The studies most likely to lack a supporting theoretical argu-
ment were those making teaching unit type claims (see section Teaching 
unit). Overall, the reviewed articles made many references to previous 
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empirical studies to support their teaching design claims. The articles also 
cited empirical arguments derived from their own empirical investiga-
tions in proving the claims made. Table 3 includes examples of empirical  
arguments supporting the claims made.

Conclusion and discussion
Most of the reviewed studies’ goals concern an emphasis on, and an urge 
to improve, the teaching and learning of problem solving, reasoning, 
and other mathematical competencies, an emphasis in line with the 
conclusions of Carpenter et al. (2004), Hiebert and Grouws (2007) and 

Claims: over-
arching idea

Theoretical 
argument

Examples of empirical arguments

Teacher-led 
scaffolding (6)

ZPD (5*) Positive results were obtained using scaffolding in com-
bination with small group strategies (Abdu et al., 2015).
Scaffolding and tinker plots enhanced conceptual under-
standing (Kazak et al., 2015).
Student efforts to present and defend the task and solu-
tions were partly successful (Kotsopoulos & Lee, 2012).

RME (2*) The teachers proactively planned how to support the 
emergence of student reasoning (Visnovska & Cobb, 2015).

HLT (2*) Results indicate that students could successfully use 
their own experience to grasp the meaning of addition 
and subtraction (Stephan & Akyuz, 2012).
Results indicate ”the relevance of a key characteristic of 
effective micro-scaffolding, namely reference to a hypo-
thetical learning trajectory as macro-orientation” (Predi-
ger & Pöhler, 2015, p. 1179).

Student self-
assisted scaf-
folding (4)

ZPD (2) The scaffolding support tool enabled a shift in the 
understanding of the worked problem (Kazak et al., 
2015).

TDS (1) The interactive visualizations activated the formation of 
intuitive access to concepts of calculus (Hoffkamp, 2011).

Teaching 
units (10)

TDS (1) The ”situations can potentially help students to learn 
place value concept” (Tempier, 2016, p. 261).

Emergent 
models (3)

RME (3*) Understanding was enhanced when building on stu-
dents’ informal notion of speed (de Beer, Gravemeijer & 
van Eijck, 2015).
Emergent models supported the development of student 
reasoning (Doorman & Gravemeijer, 2008).

HLT (1*) Results indicate that students could successfully use 
their own experience to grasp the meaning of addition 
and subtraction (Stephan & Akyuz, 2012).

Table 3. The overarching ideas of the claims supported by theoretical and empirical 
arguments (number of articles in parentheses)

Note. * One or more of the articles used more than one theoretical argument; see table 2 
for details.



Nordic Studies in Mathematics Education, 24 (1), 51–74.

review of mathematics teaching design

65

Niss (2007). Though this might be seen as an expected result, consider-
ing the selection criteria, this indicates that the reviewed articles mirror 
an international trend in mathematics education research. The litera-
ture review shows that problem solving and reasoning are successful 
ways of achieving teaching design goals, even if the goals are other than 
problem solving or reasoning. This may be because the mathematical 
competencies are intertwined (Niss, 2003), so it is possible to develop one 
competency by means of another, as previously shown by, for example, 
Collins (2012), Granberg (2016) and Warshauer (2015). For example, in the 
reviewed studies, reasoning was seldom an explicit teaching goal, but was 
frequently used as a means to reach a learning goal. The review showed 
that claims concerning the use of scaffolding strategies are connected 
to different kinds of goals, possibly because scaffolding is an effective 
teaching strategy for student learning in general or at least in a wide 
range of situations.

The claims regarding goal achievement, cluster into four overarching 
ideas: teacher-led scaffolding, student self-assisted scaffolding, emergent 
models and various teaching units. These claims could, in turn, be con-
nected to the theoretical arguments’ hypothetical learning trajectories, 
realistic mathematics education, theory of didactical situations and zone 
of proximal development. The empirical arguments given in the indi-
vidual studies can be seen as pieces of evidence that the tested teaching 
designs were individually successful. 

The review shows that most of the studies base their designs on theo-
retical arguments and the studies that cite theoretical arguments to 
support their claims often refer to an intermediate theory. The most 
frequent theoretical argument used to support claims relates to ZPD 
(Vygotsky, 1978). Some of the reviewed articles expand on the notion 
of adaptive scaffolding, which can be understood as more detailed and 
individualized support. In this context, adaptive scaffolding seems to 
tie scaffolding and ZPD together with HLT (Clements & Sarama, 2004; 
Simon, 1995), in that HLT can support the construction of scaffolding. 
Several of the articles cite examples of how students can be scaffolded 
in their mathematical learning, without taking away the mathemati-
cal and cognitive challenge. One element of scaffolding is the gradual 
fade-out of teacher support, which can be seen as part of letting stu-
dents engage in productive struggle. Students are engaged in produc-
tive struggle if they ”figure something out that is not immediately appa- 
rent […] [and are] solving problems that are within reach and grappling 
with key mathematical ideas that are comprehendible but not yet well 
formed” (Hiebert & Grouws, 2007, p. 387). Letting students engage in 
meaningful mathematics, and doing this through productive struggle, 
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has been shown to be crucial for their learning (Hiebert & Grouws, 2007; 
Schoenfeld, 1985). Potential productive struggle can be a way to develop 
problem solving and reasoning (Jonsson, Norqvist, Lithner & Liljekvist, 
2014; Schoenfeld, 1985). Productive struggle could also be claimed to be 
a way to develop other mathematical competencies. None of the studies 
connects the TDS notion of situation of devolution (Brousseau, 1997) to 
the scaffolding aspect of systematically fading out the teacher’s interac-
tional support, even though these concepts seem related. In a situation 
of devolution, the student systematically receives conditions, rules, goals 
and criteria for success from the teacher, and thereby the responsibility 
for learning is handed over to the student (Brousseau, 1997). 

The groups of identified claims and references to theoretical argu-
ments seem to connect to some of the key strategies of formative assess-
ment (Black & Wiliam, 2009), although only one article explicitly refers 
to it. A key strategy to help a student reach a stipulated goal is for the 
teacher to provide feedback, to help the student progress as a learner. This  
strategy can be linked to the elements of scaffolding diagnosis and adap-
tive support (Puntambekar & Hubscher, 2005; van de Pol et al., 2010). 
Another key strategy of formative assessment is activating students 
as owners of their learning process. This strategy can be linked both 
to claims about emergent models, in which a central element is that 
students construct their own mathematics, and to scaffolding and the 
concept of systematically fading out the teacher’s interactional support 
(Puntambekar & Hubscher, 2005). This key strategy can be linked to the 
TDS notion of devolution, because activating students as owners of their 
learning process includes handing over responsibility to the student.

Ten of the reviewed articles did not present theoretically clear argu-
ments supporting their teaching designs. According to McKenney and 
Reeves (2012), teaching designs should be based on theory to be stable. 
Stylianides and Stylianides (2013) stated that one key to letting research 
influence classroom practice is to test theory-based solutions, to show 
what things work and to explain why they work. Cobb et al. (2003) stated 
that one characteristic goal of teaching design research is the advance-
ment of theory. It could therefore be questioned whether theory can be 
advanced if one’s teaching design is not clearly grounded in theory from 
the start. Most of the studies that did not explicitly use theoretical argu-
ments to support their claims belonged to the teaching unit claim cate-
gory, in which more detailed teaching instructions were used during the 
intervention. This connection could be interpreted as indicating that 
if the aim of a teaching intervention is to advance theory and teaching 
based on theory, detailed teaching sequence instructions might not be 
the best way to achieve this. 
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