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The understanding of mathematical concepts has been described in terms of concept 
definition and concept image. We suggest an elaboration of these constructs, the 
concept element, to find a way to theoretically describe students’ understanding. 
The concept element construct was tested in a setting with students working with 
linear functions at the secondary school level. Our empirical findings reveal traces 
of students’ concept elements regarding linear functions. Some concept elements 
appeared early in the process while others appeared after a cognitive conflict (e.g. 
evoked by the task construction and setting). The detailed grid on which concept ele-
ments are defined was a useful tool, yielding new insights into students’ knowledge 
and understanding.

Conceptual understanding is central to mathematical proficiency (Niss, 
2006) and our scholarly knowledge of students’ conceptual understand-
ing has developed over the years (cf. Kilpatrick, 2001; Star & Stylianides, 
2013). Understanding can be regarded as intertwined conceptual and pro-
cedural knowledge with which students construct and refine connections 
between old and newly acquired concepts (cf. Baroody, Feil & Johnson, 
2007; Hiebert & Carpenter, 1992; Kilpatrick, 2001; Niss, 2006). Hiebert 
and Carpenter (1992) demonstrated that students connect internal repre-
sentations (e.g. internal thoughts and internal images) with external rep-
resentations (e.g. symbols, images and practical material). Understand-
ing can be perceived as a network of connections between internal and 
external representations, where external representations can be shared 
with others. This implies that the breadth and depth of understanding 
correlates to the number and strength of the connections. For instance, 
students who have built a network with strong connections can be more 
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innovative and create new connections that expand their network (their 
conceptual understanding).

When a student creates, modifies, or rejects connections that do not 
work, the level of conceptual understanding advances (Hiebert & Car-
penter, 1992; Jonsson, Norqvist, Liljekvist & Lithner, 2014; Norqvist, 
2018). To understand a ”new thing” (e.g. a concept, an idea, etc.), students 
need to connect it to their existing internal network of connections. A 
cognitive conflict occurs if a student tries to connect a new concept or 
idea that does not fit into the student’s existing network. Such conflict 
may be both an obstacle and a learning opportunity (cf. Granberg & 
Olsson, 2015). Students need to modify or reject existing connections to 
expand their conceptual understanding (cf. Norqvist, 2018; Pettersson, 
2016). However, students cannot develop their conceptual understand-
ing by themselves. According to Tall (2017), the role of the teacher is to 
”encourage the learner to seek to develop more powerful techniques that 
support long-time learning” (p. 59). Long-time learning is important, he 
continues, both in relation to the progression within mathematics and 
in how students as individuals interpret it.

A key question is then how to plan lessons to support long-time learn-
ing and to assess students’ conceptual understanding. Education should 
also be based on research as well as on teachers’ professional knowledge 
(SFS 2010:800). Components of students’ conceptual understanding can 
provide crucial input during the planning of lessons and tasks (Carlson, 
Oehrtman & Thompson, 2007). The aim of this study is therefore to 
develop knowledge useful for both teachers (e.g. in planning lessons and 
assessing student knowledge) and researchers (e.g. in probing student 
understanding). The research question guiding our study is: How  
can we theoretically describe students’ conceptual understanding in a 
productive way? 

In this paper, we suggest a theoretical construct, the concept element, to 
expand the Tall and Vinner framework (1981) along with its terms concept 
image and concept definition. We will use empirical findings regarding 
students working with linear functions in the form y = mx + c in a digital 
environment (see e.g. Pettersson, 2016) to reveal the underpinnings of our 
theoretical proposal. In this case, the students needed to create a network 
of connections linking the concept variable and the specific different 
meaning of each of the symbols y, =, m, x and c, in order to expand their 
conceptual understanding. 

Theoretical frame: concept definition and concept image
In the Tall and Vinner (1981) framework, mathematical concepts 
per se, and the cognitive processes needed to understand them, are  
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theoretically described in terms of concept definition and concept image. 
A concept definition is straightforward: it is a written or spoken defini-
tion of a certain concept. Tall and Vinner (1981) described two kinds 
of concept definitions: 1) a personal concept definition that the person 
formulates from his or her own understanding and 2) a formal concept 
definition shared within a larger group of people. However, a concept 
image is a more complex theoretical construct. It is the sum of the cog-
nitive structures that the student associates with the concept (Tall & 
Vinner, 1981). It contains the wordings, images, thoughts, procedures, 
etc., that a student has connected to the concept, that is, in Hiebert and 
Carpenter’s (1992) terms, all the internal and external representations 
the student uses, as well as their connections. The concept image is the 
persona of the concept as created by the student. However, the concept 
image is dynamic and changes as the student becomes more acquainted 
with the concept and more aware of how to handle it: the student con-
nects more elements to the network of connections that constitutes the 
understanding of the concept.

In the Nordic context, Viirman, Attorps and Tossavainen (2010) 
studied concept images of the function concept among engineering stu-
dents and teaching students. They captured the students’ concept images 
using mind maps and demonstrated that most students had an opera-
tional conception of functions. Juter (2009) also used concept images 
when she studied students’ understanding of various concepts (e.g. func-
tions) before and after a course in analysis. As in our study, Juter used 
tasks and interviews to capture traces of concept images. Both Juter and 
Viirman et al. studied connections – links – between concepts: Viirman 
et al. used the number of links as a measure of depth of understanding, 
whereas Juter developed a tool for classifying links in three main catego-
ries: valid, invalid and irrelevant. In a more recent study (Breen, Larsson, 
O’Shea & Pettersson, 2017) using data from interviews and question-
naires, the idea of evoked concept images regarding inverse functions 
was used.

Concept images can be used by teachers to make students aware of 
their own conceptual understandings, as well as to explore their students’ 
conceptual understandings. De Bock, Neyens and Van Dooren (2017) 
explored students’ concept images by examining a student’s ability to 
connect functions to their corresponding properties. Their study shows 
the importance of function properties in students’ concept images and 
highlights the value of making this explicit to students. Furthermore, 
Kontorovich (2018) shows the potential of using concept images as tools 
when planning lessons. Specifically, Kontorovich states the following 
when approaching cross-curricular concepts (e.g. tangent line, angel 
between two lines, graph):
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[I]n the landscape of student’s mathematical education, some con-
cepts are reconsidered in different domains. The domains can be 
rooted in different axiomatic systems and contain different or 
new objects. Accordingly, a domanial shift of these cross-curricular 
concepts is often accompanied by a substantial change in familiar 
dimensions (definitions, properties, procedures and connections 
with other concepts). The domanial shift and the substantial change 
are potential sources for students’ difficulties and mistakes. 

(Kontorowich, 2017, p. 6. Italics in original).

Since concept image has proven to be a useful construct for analysing 
students’ conceptual understanding, we now want to consider the pos-
sibility of expanding the theory to make students’ concept images more 
accessible and useful for teaching. Although complex and impossible to 
describe fully (Tall & Vinner, 1981), a student’s concept image comprises 
various parts, which can be systematically described.

Observing students working with linear functions
Several researchers have pointed out that the concept of functions is 
difficult for students to grasp (see e.g. Knuth, 2000; Watson, Ayalon & 
Lerman, 2017; Zaslavsky, Sela & Leronet, 2002). Although it is impor-
tant to be able to shift between representations, for instance between an 
algebraic representation and a graphical representation (Janvier, 1987), 
students struggle with this skill (Bloch, 2003; Moschkovich, Schoenfeld 
& Arcavi, 1993). The graphical shift seems to be particularly difficult 
(Schwarz, Dreyfus & Bruckheimer, 1990). Markovits, Eylon and Bruck-
heimer (1986) studied the shift between algebraic and graphical represen-
tations and found that the shift from graph to algebra was more difficult 
than the other way around. When students are given the opportunity, 
they avoid the graphical representation (Artigue, 1992; Knuth, 2000). 
Tasks in class expose students more often to the shift from algebra to 
graph then to the shift from graph to algebra (Gagatsis & Shiakalli, 2004).

In linear functions of the form y = mx + c, the symbols m and c (para-
meters in this case) exist in four dimensions: symbolic, graphic, numeri-
cal and contextual (Bardini & Stacey, 2006). The symbolic dimension is 
tied to the algebraic expression, the graphical dimension to the graph, the 
numerical dimension to counting and determining values and the con-
textual dimension is tied to real-life examples. The different dimensions 
contain similarities and differences that make them difficult for students 
to handle. For instance, in the symbolic dimension, m is a coefficient and 
c is a constant. In the graphical dimension, c can be determined at the 
intersection (y-axis, line), but m cannot be determined just by reading 
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coordinates in the coordinate system. Students often show difficulties 
when being asked to explain relations between models and represen-
tations (De Bock, Van Dooren & Verschaffel, 2015). Bardini and Stacy 
(2006) conclude that m is more complex to understand than c in all four 
dimensions. However, when function properties are addressed explicitly, 
students perform better (De Bock et al., 2017). Still, De Bock et al. find 
that despite the student knowing and recognizing the properties of the 
functions, errors are made (e.g. regarding proportionality) depending on 
the representational mode used. 

Other studies show that some students understand a change in c-value 
as a movement of the graph along the x-axis (Goldenberg, 1988; Moschko-
vich, 1990) and that students look for values of m and c at the intersec-
tion with the x- and y-axis, respectively (Schoenfeld, Smith & Arcavi, 
1993). Working specifically with the parameters m and c could develop 
students’ symbol sense (Drijvers, 2003). Symbol sense, according to Drij-
vers, incorporates the ability to make sense of symbols, expressions and 
formulae, and to understand their structure. The specific structure of a 
function can be clarified when using its parameters. Varying the value 
of the parameters will give a description of a family of functions (Drij-
vers, 2003) which, in a learning situation, will give students the oppor-
tunity to work with functions as objects per se, not just as distinct lines 
(cf. Yerushalmy, 1991). This seems to be important in order to make the 
function properties explicit for the students (De Bock et al., 2017).

Expanding the framework: concept element
A student’s concept image (e.g. of linear functions) comprises various 
parts and connections that form the conceptual understanding at a spe-
cific moment. Each of these parts, or concept elements, is discernible. 
For example, a student can have concept elements such as ”slope” or will 
use phrases such as ”crosses the y-axis”. The student expresses the gra-
phical representation of a linear function as a ”straight line” and as the  
”intersection with the y-axis is the c-value” (see figure 1).

Figure 1. A concept image: linear functions containing four concept elements

Slope

Intersection with 
y-axis is the c-value

Straight line

Crosses the y-axis
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The student’s concept image can be evoked on different occasions (see 
Breen et al., 2017; Hansson, 2006; Juter, 2006; Vinner, 1983), such as when 
a student is working on a mathematical task. Consider a linear function 
task in which it is possible to notice that the c-value can be determined 
by looking at the intersection with the y-axis versus one in which the 
representation task is different, in which one cannot see where the func-
tion intersects the y-axis. For a student addressing the concept element 
related to the y-intercept (”crosses the y-axis”), a contradictive concept 
element is evoked and a cognitive conflict may occur. A student’s concept 
image might not make sense and the new element cannot be linked to 
the existing network of connections. Here, the concept element that the 
c-value cannot always be determined just by looking to see where the line 
intersects the y-axis needs to be internalised within the concept image 
to create a conceptual understanding without contradictions.

Concept images are mental constructions and cannot be observed or 
studied directly. However, many studies have demonstrated that traces of 
concept images can be studied (e.g. Hansson, 2006; Juter, 2009; Vinner, 
1983). Breen et al. (2017) state that Tall and Vinners’ (1981) concept image 
framework was appropriate to explore students’ concept images of the 
notion of inverse functions. 

Accordingly, we argue that traces of students’ concept elements can be 
studied to learn more about their conceptual understanding. In the fol-
lowing sections, we describe a study of upper secondary students working 
with linear functions in order to illustrate how the theoretical construct 
concept element can be useful.

Method
The study was designed to evoke traces of the students’ concept elements. 
In the study, the tasks and the students’ activities were the centre of atten-
tion. In this section, we outline the principles guiding the intervention 
(e.g. the task design) and the data collection.

Participants and setting
The empirical data were collected within a qualitative study. The setting 
was students working in pairs on mathematical tasks in a dynamic soft-
ware environment (GeoGebra). Video recordings, screen recordings 
(around four hours total) and stimulated recall interviews (around two 
hours total) of six students working on designed tasks were analysed. 
The students were enrolled in the second-level mathematics course in 
upper secondary school. All students in the course (48) were asked if 
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they wanted to participate of which six students volunteered. This paper 
focusses on the work of four students (Maria, Alma, Lisa, Hanna) as their 
work, provided us with a variety of examples to illustrate the concept 
elements construct. The first author conducted all parts of the study. 
The teacher merely mediated contact with the students. The interviews 
were conducted at a school, but not during regular lessons. The regional 
ethical committee approved the design. Written informed consent was 
obtained from each participant individually. All names used in the text 
are pseudonyms.

The students had worked with linear functions y = mx + c in previous 
courses and at the time of the study the students were working on this 
topic in their current course. A pre-test was conducted to investigate 
each of the student’s pre-knowledge about how the parameters m and c 
change linear functions 1. Connecting representations, both from graphi-
cal to algebraic and vice versa (as mentioned in De Bock et al., 2015, and 
by Janvier, 1987) was only visible in the pre-test for two of the students, 
Alma and Hanna. Maria and Lisa did not show that they could connect 
the graphical and algebraic representations (Pettersson, 2016). 

Design and procedure
In order to make the function’s properties explicit for the students, as 
suggested by De Bock et al. (2017), the study contained five tasks incorpo-
rating the four aspects that affect the graphical representation of linear 
functions: parameters m and c, the domain of the function and the scale 
of the coordinate axes. In each task, three aspects were held constant and 
the fourth was varied (see table 1). In this paper, we focus on tasks A and B.
In tasks A and B (figure 2), the students were asked to transfer the images 
(presented on paper) onto the computer screen by writing functions in 
the forms y = mx (task A) and y = mx + c (task B) in GeoGebra’s algebra 
window.

The students worked in pairs, as this configuration is beneficial when 
studying learning (Granberg & Olsson, 2015), and were encouraged to 
comment aloud while working on the task and to use the mouse cursor 

Task/aspect Parameter m Parameter c The domain Scale on the x-axis

A Varied Constant Constant Constant

B Constant Varied Constant Constant

D Constant Constant Varied Constant

C and E Constant Constant Constant Varied

Table 1. Constant and varied aspects of the tasks
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to indicate what they were referring to on the computer screen. The 
students were provided with pencils and paper along with the outlined 
task. The students’ activity was video recorded and the screen activity 
was logged, allowing us to detect traces of concept elements in their dia-
logues and actions. A stimulated recall interview was conducted with the 
students after each intervention to evoke further explanations (De Bock 
et al., 2015). The recorded student activities were categorised regarding 
two aspects: traces of concept elements (e.g. oral comments, calculating 
∆y/∆x and counting squares) and the actual actions taken to solve the task 
(writing a function in the algebra window). Video sequences and inter-
view sequences identified as containing traces of concept elements were 
selected for transcription and further analysis.

The selected sequences were analysed and labelled. For example, stu-
dents’ utterances such as ”downwards slope” were labelled using mathe-
matical terms such as ”negative slope”. Traces of concept elements 
appeared at different stages of the task solving. Moreover, cognitive con-
flicts were evident in the students’ working process, such as when the 
feedback from the computer screen contradicted their concept images, 
or when the outlined solving process did not lead to a solution of the task. 
The following two categories therefore evolved: 1) concept elements the 
students displayed initially and 2) concept elements the students dis-
played after a cognitive conflict (e.g. between a previously used concept 
element and feedback from the screen). These categories each have two 
levels: successful (leading to a solution, but not necessarily a mathemati-
cally correct one) and unsuccessful (not leading to a solution, but could 
be mathematically correct). Concept elements are written in italics.

Given the setting of tasks A and B, one example of an initial and 
successful concept element is counting steps (note that in the Swedish 
context the ”rise over run” method where run = 1 is common; in this 
paper we call this counting steps). Another example is the concept 
element that the c-value can be read at the line’s intersection with the y-axis. 
A concept element which is labelled unsuccessful and that appears after a  

Figure 2. Task A (left) and task B (right). Adapted from Magidson (1992, p. 65)
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cognitive conflict is if the c-value is decreased, the line moves to the right on 
the x-axis. This is mathematically correct but will not help the student 
solve the task. The concept element the c-value is the initial value does not 
help the student when a line’s graphical representation does not show the 
intersection with the y-axis.

Analysis and results
In this section, we first present an overview of the results and then refine 
the description using quotations from the interviews and the video 
recordings.

Successful and unsuccessful concept elements
The first task (A) was to create a specific pattern in a digital environ-
ment, using the linear function y = mx. In this task, the m-parameter was 
varied. In the second task (B), the pattern could be created by varying 
the c-parameter. The concept elements the students displayed were 
categorised and labelled according to when in the solving process the 
concept element became evident (initially or after a cognitive conflict) 
and whether or not it was successful as shown in table 2. 

Concept elements the student  
displayed initially

Concept elements the student  
displayed after a cognitive conflict 
between earlier concept images and 
feedback from the computer or  
worksheet

Successful

Counting steps, one step to the right and 
m steps upwards/downwards. 

The m-value can be determined from one 
step to the left and m steps upwards if the 
m-value is a negative number.

The m-value can be calculated using the 
difference quotient, ∆y/∆x.

The c-value can be calculated from the 
line’s intersection with the x-axis and a 
formula. 

The c-value can be read from the line’s 
intersection with the y-axis.

If the lines are parallel and equidistant, 
you can use the distance in the y-direction 
to calculate the m-values. 

Not successful

The line starts at the origin.

The c-value is the initial value, which is 
where the line starts farthest left.

If the c-value is decreased, the line moves 
to the right on the x-axis.

Table 2. Examples of categorisation of concept elements
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Concept elements regarding the origin
We will now describe how the students Maria, Alma, Lisa and Hanna  
displayed traces of concept elements by citing excerpts from their solving 
process.

Initially, Maria entered the function y = x, but when the line appeared 
on the screen she asked: ”Did we get the whole [line]?” Her reaction was 
categorised as the concept element the line starts at the origin. In the stimu-
lated recall interview, Maria explained that it was the feedback from the 
computer screen (addressing explicit properties of a function, De Bock 
et al., 2017) that changed her concept element to the line crosses the origin:

Maria:	 Well, we hadn’t expected that to happen, but when we saw it, it 
became, like, obvious.

Concept elements regarding the m-value
The students displayed two concept elements regarding how to deter-
mine the m-value: go one step to the right and then m steps up (i.e. counting 
steps) and by computing ∆y/∆x (i.e. the difference quotient). They did not 
think of the m-value as the intersection with the x-axis as suggested by 
Schoenfeld et al. (1993).

Alma: 	 But if you think like this (.) it’s a slope. If you go one step to the right 
you have to go one, two, three, four [steps] upwards to come to the 
line.

Hanna:	 Four, three – isn’t that four divided by three then?

Alma displayed a modification of the concept element counting steps 
when she explained in writing how the m-value and the graphical  
representation of the linear function are connected.

 

Alma:	 You jump one step to the right or to the left depending on whether 
it is a positive number, then you see how many steps it takes before it 
intersects the line.

What Alma displayed is the concept element the m-value can be deter-
mined from one step to the left and m steps upwards if the m-value is a nega-
tive number. When the students handled the graphical representations 
of functions with negative m-values (changing the value of parameters 
and thereby obtaining a family of functions) (Drijvers, 2003), they dis-
played variations of the concept element lines with negative slopes have 
negative m-values.

Johanna: 	 We can take the negative ones on this side [points at the line y = -0.25x 
in the fourth quadrant], so counting the m-value here is probably the 
same except for a minus sign in front.
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Concept elements regarding the c-value
Alma and Lisa worked on task B. Alma began with the function y = 3x + 36. 
She determined, in her words, ”the initial value” 2 of the line. She saw the 
point (-11, 3) as ”the start” (figure 3). She then pointed out the y-value, 
y = 3, as ”the initial value”, and not the intersection with the y-axis (as 
suggested by Schoenfeld et al., 1993). The displayed concept element is 
the initial value is where the line begins farthest to the left.

Alma:	 Well, the initial value is where it begins, so if you begin here it is three 
[points at the function y = 3x + 36 on the paper, looks at where the line 
appears farthest to the left in the graph and then follows y = 3 to the 
y-axis].

During the stimulated recall interview, our analysis of Alma’s concept 
element was confirmed.

Alma: 	 The slope was 3x and since I didn’t know where it crossed the y-axis, I 
thought it was three [points with her pencil on the paper at the arrow 
in figure 3].

Alma then decided to work with another function, y = 3x + 30. She 
studied the line on the worksheet: ”It cannot start because it does not 
intersect the line [the y-axis]”. Alma instead went to the x-intercept, that 
is, displaying the concept element c-value is the line ś intersection with the 
x-axis (see figure 4):

Alma: 	 No negative (.) or (.) this is negative ten [pointing at the line y = 3x + 30, 
where x = -10].

Alma determines ”the 
initial value” on the 

y-axis, i.e. y = 3 

Alma is looking 
at the ”start” 

Figure 3. Alma looks at the start of the line
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[...]
Alma: 	 If it is (.) this is one, two, three, y = 3x – 10 [writes y = 3x – 10 in the 

algebra window].

When Alma looked at the feedback from the screen, she erased the  
function.

Alma: 	 But it doesn’t cross the y-axis; it is the x-axis it crosses.

By then Alma knew that they were looking for the line’s intersection with 
the y-axis, but their line did not have one. The representational mode 
contributed to this error (De Bock et al., 2017). She changed the function 
again, this time to y = 3x. After analysing the line on the worksheet, she 
again changed the line to y = 3x – 6, which she thought was easier and for 
which she could determine the y-intercept (i.e. y = -6). Alma managed 
all the other lines with a visible y-intercept. Alma called this point the 
”initial value”.

Alma: 	 We can take this one [points at the function y = 3x – 6]. For this [other] 
one we have no initial value [points at the function y = 3x – 12]. In this 
[third] one we have an initial value [points at the function y = 3x].

Alma then continued to determine the c-value of functions that do not 
visibly cross the y-axis. These lines created an obstacle.

Alma: 	 But how can you determine this one that is not [points with a sweep-
ing gesture across the lines crossing the x-axis on the negative side], is 
this negative x times x or what? Because it is on the x-axis (.) because 
the initial value you can only see on the y-axis. These ones are on the 
x-axis (.) [points at the x-axis].

Alma : ”this 
is -10” 

Figure 4. Alma is reading the line’s intersection with the x-axis
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Lisa: 	 Isn’t it possible to pick any place? You do it like this? (.) [points one 
step to the right and three steps up on the line y = 3x + 36]

Alma:	 The initial value as well, we don’t have an initial value [points at the 
line y = 3x + 36].

Lisa:	 Let’s do these last.

Alma responded to the Lisa ś request to wait with the function y = 3x + 36 
and entered y = 3x – 10 in the algebra window without any comments. She 
then, without saying anything, entered y = 3x – 12 in the algebra window 
and stated that it was correct. She explained her thinking to Lisa.

Alma:	 If you consider that 12 and 4 is 16 in difference (.) … But 4 times 3 is 
12. How much is 6 times 3? 18?

Lisa: 	 Uhuh.
Alma:	 If we take y = 3x – 18 [writes y = 3x – 18 in the algebra window]

Lisa did not understand Alma, so she asked again.

Lisa: 	 I don’t understand what you are doing.
Alma:	 Well (.) I think (.) I tried a bit and then it was like, we don’t know where 

it crosses here, do we?
Lisa: 	 No.
Alma:	 And then, I kind of made a combination of 4 times 3, that’s 12, but it 

is negative 12 and then it is correct, and then I took 6 times 3 is 18 but 
-18. Look, if you move (.) [moves the coordinate system on the screen 
so that the y-intercept at y = -18 is visible] it occurs at -18 [moves the 
coordinate system back to the original position so the intercept at 
y = -18 is invisible again].

Alma searched for a pattern for how to calculate the c-value with help 
of the x-intercept. Alma finally discovered a relationship: c = -(the x-inter-
cept times 3). Alma referred to the minus sign in her formula as follows: 
”But it is on the negative side [of the x-axis]”. Alma did not display any 
traces of concept elements regarding why there should be a minus sign. 
She just changed it to make it fit. One important thing to notice here is 
that Alma moved the coordinate system on the screen to visually verify 
her calculation; she then moved it back. She could have done the same 
(moving the coordinate system) to solve the rest of the lines, but she did 
not. Instead, she continued to calculate the c-value using the x-intercepts. 
Finally, Alma suggested a conclusion.

Alma:	 Hey, the number of the x-axis times the slope. Because then it is, it is 
three upwards all the time.

Alma’s concept element can now be labelled c = -x-intercept times the slope.
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Concept elements regarding the slope
Next we describe how Hanna and Maria worked on the task. Maria looked 
at the worksheet and entered y = 3x in the algebra window. She continued 
to look at the worksheet at the line y = 3x – 6 and determined the c-value 
to be -6 by looking at the line’s x-intercept. She entered the function 
y = 3x – 6 in the algebra window, compared the picture on the screen with 
the worksheet, and concluded that they were the same. Hanna and Maria 
then started to work with the function y = 3x – 12. Hanna was unable to 
find where the function ”started”.

Hanna:	 Where does it start?
Maria: 	 Oh, what a shame [Maria notices that the line does not have any visible 

y-intercept].
Hanna: 	 But it is three steps, for each.
Maria: 	 Uhuh. 
Hanna: 	 Well then, we should be able to go downwards.
Maria: 	 No.
Hanna: 	 [points at (0, -6)] No, it is six steps.

The students recognized the pattern of equal distance between the 
lines and by decreasing and increasing the c-value by six steps they could 
work through all the functions without any obstacles causing a cognitive  
conflict.

We have now illustrated how traces of concept elements can be detected 
in students’ work on mathematical tasks. In the next section, we illustrate 
how the identified concept elements occurred both in the students’ initial 
work and in their evolving understanding of linear functions.

Concept elements before and after a cognitive conflict
Traces of concept elements became evident at various times: some of the 
concept elements were displayed from the outset and some only after a 
cognitive conflict. These conflicts occurred, for instance, between the 
students’ interpretation of the task (on the worksheet) and the feedback 
from the computer screen. They could also occur between the students’ 
interpretation of the task and their previous concept elements. In this 
section, we focus on describing the traces of concept elements displayed 
just before and after a cognitive conflict.

While Maria and Hanna were working on the task, a cognitive conflict 
became evident when Maria stated that ”Did we get the whole [line]?”. 
Her concept element the line starts at the origin changed in response to 
feedback from the computer screen to the line crosses the origin. In figure 5,  
we describe the concept element before and after the cognitive conflict. 
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Hanna and Maria did not display any other cognitive conflicts when 
working on this task. They finished task A after ten minutes.

While working on task B, Maria and Hanna displayed the concept element 
the c-value can be read from the lines intersection with the y-axis. This concept 
element was successful for certain lines, but a conflict emerged for lines 
that did not have a visible y-intercept. The students resolved this conflict 
after they realised that the c-value for these lines could be calculated from 
the distances between the lines in the y-direction (figure 6). They ended 
their work on task B after about seven minutes.

If we now look into the working process of Alma and Lisa, we can trace 
three cognitive conflicts (see figure 7). At the beginning, a cognitive con-
flict occurred when the students were to determine the line’s intersec-
tion with the y-axis, as the line they chose did not have a visible intersec-
tion. Alma then determined an initial value where the line began on the 
lefthand side. This led to the second cognitive conflict, as the feedback 
from the computer screen was inconsistent with the picture on the work-
sheet. The third cognitive conflict occurred when Alma determined the 
c-value to be the line’s x-intercept.

Cognitive conflict: the graphical 
representation on the computer 
screen did not match the initial 
concept element.

The line starts at the origin

The line cosses the origin

Figure 5. Cognitive conflict in task A, Maria and Hanna

Cognitive conflict: the line in 
focus did not have a visible 
y-intercept.

The c-value can be read at the 
line’s intersection with the 
y-axis. 

If the lines are parallel and 
equidistant, you can use the 
distance in the y-direction to 
calculate the m-values. 

Figure 6. Cognitive conflict in task B, Maria and Hanna
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Summary
In the ”Result and analysis” section, we illustrated how to use the theo-
retical construct concept element in describing the traces of the students’ 
initial and evolving conceptual understanding evident when they were 
engaging in the tasks. We could see both successful and unsuccessful 
concept elements. Furthermore, we could describe the students’ working 
process, that is, how concept elements changed when a cognitive conflict 
occurred. In the next section, we discuss the implications of using the 
concept element as a tool for understanding the evolution of the students’ 
conceptual understanding.

Discussion
In this paper, we suggested a theoretical construct, the concept element, 
as an elaboration of Tall and Vinner’s (1981) framework. We did this to 
find a way to theoretically describe the evolution of students’ concep-
tual understanding that is useful for both teachers and researchers. We 
illustrated how students’ activities could be analysed and understood as 
conceptual processes, since traces of concept elements were evident in 
the students’ working process. We also illustrated how cognitive conflicts 
(e.g. evoked by the task construction and setting) could change existing 
concept elements. As mentioned before, Tall and Vinner (1981) defined 

Cognitive conflict: the graphical repre-
sentation on the computer screen did 
not match the line on the worksheet.

Cognitive conflict: the graphical repre-
sentation on the computer screen did 
not match the line on the worksheet.

Cognitive conflict: the investigated 
line on the worksheet did not have a 
visible x-intercept.

The c-value can be read at the line’s 
intersection with the y-axis. 

The c-value is the initial value, which 
is where the line starts farthest left. 

The c-value is the is the line’s x-inter-
cept. 

The c-value can be calculated using 
the following formula:
c = -(the line’s x-intercept ∙ slope) 

Figure 7. Cognitive conflict in task B, Alma and Lisa
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concept images to describe the students’ internal and external represen-
tations of a concept and its connections. The elaboration into concept ele-
ments suggested in this paper provides a detailed framework with which 
it is possible to analyse students’ conceptual understanding. 

A student’s concept image comprises various parts that can be described 
in several systematic ways. For instance, Juter (2009) and Viirman et al. 
(2010) studied the connections, or links, between concepts. Viirman et 
al. used the number of links to measure depth of understanding, whereas 
Juter developed a tool for classifying links into three main categories: 
valid, invalid and irrelevant. In our study, the connections per se are not 
emphasised. We instead focus on the concept elements building the 
concept image, in order to follow the traces of evolving student under-
standing. In this way, our emphasis is similar to that of Greefrath et 
al. (2016), who inquired into aspects of students’ ”Grundvorstellungen” 
as meaning-making and, thus, as the interpretation of a mathematical 
concept (cf. Vom Hofe & Blum, 2016): 

A concept image may contain several individual Grundvorstellungen 
that conceptualize different perspectives on that concept. Individ-
ual Grundvorstellungen are central components of a valid concept 
image. 	 (Greefrath et al., 2016, p. 103)

Grundvorstellungen as a pedagogical construct can roughly be translated 
as ”basic idea” or ”basic concept” (see e.g. Roos, 2017) and, like concept 
images, it must be divided into parts (”aspects”) when inquiring into 
students’ conceptual understanding. One may ask why it is important 
to extend the theory by adding another level. The answer is not just 
about providing a tool to theorise empirical findings; it is also a matter of  
supporting teachers’ professional approach to teaching and learning. 

Teachers need tools to systematically develop lessons that promote 
long-term learning (Tall, 2017), founded on aspects that can uncover the 
”increasing sophistication of mathematics” (Tall, 2017, p. 56). The theo-
retical description of conceptual understanding through, for instance, 
concept images, is difficult to implement in class (Bingolbali & Monag-
han, 2008). Concept elements, however, may be useful in both identi-
fying and implementing lessons supporting mathematical proficiency, 
as described by Niss (2006). Breen et al. (2017) discussed the connec-
tion between questions asked and the evoked concept image and found 
that the ”components” differed. This indicates a relation between stu-
dents’ conceptual understanding and (some) instruction, pinpointing the 
need for a more fine-grained tool. De Bock et al. (2017) discuss the role 
of explicitly addressed function properties when explaining students’ 
results in tests. Their findings raise questions about the inconsistencies 
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in the students’ concept images. They argue that the properties may have 
different statuses in a student’s concept image, some easily assessable and 
other assigned first after careful considerations. De Bock et al. (2017) 
therefore call for more ”ecologically valid studies on students’ ability to 
make use of and to discriminate between different function properties” 
(De Bock et al., 2017 p. 953). Our study demonstrated that students’ con-
ceptual understanding of linear functions can be described using concept 
elements, and we suggest that concept elements can serve as a tool for 
identification, description and implementation in other topic areas as 
well. This is in line with the work by Kontorovich (2018). He states the 
need for models that teachers can use both when planning lessons and 
analysing students’ ways of thinking concerning cross-curricular con-
cepts. Hence, concept elements may be useful for mathematics teachers. 
For example, it seems to be promising as a tool for detecting traces of stu-
dents’ conceptual understanding, both initial and evolving (e.g. through 
tasks provoking a cognitive conflict). In this respect, its use recalls the 
detection of critical aspects of an object of learning in variation theory 
and the connections between these aspects (e.g. van Bommel, 2014). Here 
the focus is on the students’ process and their own connections. The 
scholarly knowledge of students’ conceptual understanding, regarding 
evoked concept images (e.g. Breen el al., 2017; Juter, 2009), and using 
symbols and representations (Bardini & Stacey, 2006; Drijvers, 2003), 
can inform the practice and, by using concept elements as a theoretical 
tool, the teaching can be research-based. We can therefore see concept 
elements as an expansion of Tall and Vinner’s (1981) framework that is 
useful for both teachers’ and researchers’ work.
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Notes

1	 All tasks and more about the study, see the licentiate thesis by Pettersson 
(2016).

2	 ”The initial value” (Swedish startvärde) is not as well-defined a term in a 
Swedish school context as in an English-speaking school context.
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