-
NOMAD – 24(1), 2019
Volume 24, No 1, March 2019
e-NOMAD
[PDF] displays the full text pdf. The two most recent volumes are password protected. Use ”Open access” in the menu for full text of older articles.
Annika Pettersson, Yvonne Liljekvist and Jorryt van Bommel
Studying concept elements as a way to trace students’ conceptual understanding
[PDF]Kajsa Bråting, Lars Madej and Kirsti Hemmi
Development of algebraic thinking: opportunities offered by the Swedish curriculum and elementary mathematics textbooks
[PDF]Johan Sidenvall
Literature review of mathematics teaching design for problem solving and reasoning
[PDF]Janne Fauskanger
Ambisiøse undervisningspraksiser i Teacher time out
[PDF]Skapad: 2019-02-15 kl. 14:20
-
NOMAD 24(1), 2019
Ambisiøse undervisningspraksiser i Teacher time out
Janne Fauskanger
Sammanfattning
Denne studien undersøker ambisiøse undervisningspraksiser lærere får muligheter til å øve på å utføre gjennom rutinen Teacher time out (TTO) i et etterutdanningsforløp. Datamaterialet analysert er fra prosjektet Mestre ambisiøs matematikkundervisning, hvor lærere arbeider med bestemte matematiske aktiviteter i sykluser av utforsking og utprøving. Analysene av 139 TTO viser at deltakerne får øve på følgende undervisningspraksiser: 1) å få frem elevers matematiske ideer, 2) å orientere elevene mot hverandres ideer, 3) å respondere på elevenes matematiske ideer, 4) å vurdere elevenes matematiske forståelse, samt til utvikling av mer generell undervisningskompetanse. Implikasjoner for fremtidig etterutdanning og for fremtidig forskning diskuteres.Abstract
This study investigates ambitious teaching practices teachers have an opportunity to practice through the routine Teacher time out (TTO). The data material analyzed is taken from the project Mastering ambitious mathematics teaching, wherein teachers in their professional development work on given teaching activities in cycles of enactment and investigation. 139 TTOs have been analyzed. The analyses indicate that the teachers in TTOs have an opportunity to practice the following teaching practices: 1) eliciting students’ mathematical ideas, 2) orienting students towards each other’s ideas, 3) responding to students’ mathematical ideas, 4) evaluating students’ mathematical understanding, and in addition developing their general teaching competence. Implications for future professional development and research are discussed.Janne Fauskanger
Janne Fauskanger er førsteamanuensis i matematikkdidaktikk ved Universitetet i Stavanger. Hennes forskningsinteresser knyttes hovedsakelig til matematikklæreres kunnskap og praksis, samt til utvikling av læreres kunnskap og praksis.Skapad: 2019-02-15 kl. 14:09