NOMAD 22(1), 2017

Skapad: 2017-03-15. Ändrad: 2017-03-15  

NOMAD 22(1), 2017

Matematikundervisning för begåvade elever – en forskningsöversikt

Attila Szabo

Sammanfattning

Artikeln redovisar de huvudsakliga pedagogiska och organisatoriska metoder relaterade till begåvade elevers matematikundervisning som fokuseras i forskningslitteraturen – även könsskillnader, motivation och matematiskt begåvade elevers sociala situation i klassrummet diskuteras. Översikten visar att det finns åtgärder – t ex frivillig acceleration i ämnet där undervisningen är anpassad till elevens förkunskaper och kapacitet eller arbete med utmanande uppgifter i prestationshomogena grupper – som antas ha goda effekter på begåvade elevers kunskapsutveckling i matematik. Analysen visar också att det kan uppfattas som problematiskt att vara begåvad i matematik samt att begåvade flickor upplever vissa aspekter av matematikundervisningen annorlunda jämfört med motsvarande grupp pojkar.

Abstract

The present article offers an overview of those main methodological and pedagogical approaches associated with gifted pupils’ education in mathematics which are focused in the research literature. Furthermore, the article discusses gender differences, motivation and some central aspects of mathematically gifted pupils’ social situation in the classroom. The analysis shows that there are some pedagogical and organizational approaches, e.g. voluntary acceleration where the teaching is adapted to the knowledge and the capacity of the participants or working with challenging mathematical problems in performance-homogenous groups, which may have good effects on gifted pupils’ mathematical achievement. The overview also indicates that mathematically gifted adolescents are facing difficulties in their social interaction and that gifted female and male pupils are experiencing certain aspects of their mathematics education differently.

Attila Szabo

Attila Szabo är fil. lic. i matematikämnets didaktik och doktorand vid Stockholms Universitet. Hans forskningsintressen rör den matematiska förmågans struktur och det matematiska minnets uttryckssätt vid problemlösning hos högpresterande elever.